Mercurial Branching Model for task features - mercurial

My development env: Windows 7, TortoiseHg, ASP.NET 4.0/MVC3
Test branch: code on test server
Prod branch: code on production server
This is my current branching model. The reason to branch out every task (feature) is because some features go to live slower. So in above graph, task 1 finished earlier (changeset #5), and merge into test branch for testing. However, due to bug or modification of original request, changesets #10, #12 have been made. While task 2 has finished testing #8 and pushed to live #9 already.
My problem is every time when modifying task branch (like #10, #12), I have to do another merge to test branch (#11, #13), this makes the graph very messy.
Is there any way to solve this issue? Or any better branching model?

It really sounds like you are trying to implement a feature branching strategy. However, based on your diagram, I think you're missing a few steps and/or are merging the wrong branches. In essence, you should probably have more like 4 lines of development there, plus 1 representing all feature branches. Unfortunately, I have not been able to find a nice diagram, except for one talking about Git and a workable branching strategy here. The diagram, though, better explains what you are looking for, even if you are using a different DVCS like Mercurial (my fav). Using Steve Losh's Guide to Branching in Mercurial and the Hg Book, you should be able to implement a good feature branching strategy that works for you. Steve's got pros/cons for each approach.
And, no, you don't need to clone to branch properly. Mercurial has named branches that allow you to switch between branches easily if you are commonly working on multiple unfinished items and/or performing code reviews/testing for other developers. With any kind of Web-based development with IIS, named branches are easier to work with as things don't move and different version can continue to work with the same configuration under IIS.
I must say, though, that feature branching or whatever name you give it is almost always a bad idea as branches that run too long (say, a year, which I have seen with disastrous results) can be almost impossible to merge back in unless you are frequently (daily) managing synchronization between the feature branch and its parent. This type of maintenance overhead is not worth the trouble and you're better off sticking to trunk-based development with release branches for bug fixes and fix your code to abstract code that is production-used and unfinished work.

When you want to work on a new feature, you better make clone from test repo. Branches in mercurial are supposed to stay unrelated... Imagine that you made a release v1.0 and going to work on v2.0 of your application (default branch). You will create branch v1.0 to keep it updated with bug fixes.

You can use separate repositories for each branch instead. Then rebase the changes on the latest changeset. This could reduce the number of merges.

Related

How to manage concurrent development with mercurial?

This is a best practice question, and I expect the answer to be "it depends". I just hope to learn more real world scenarios and workflows.
First of all, I'm talking about different changes for the same project, so no subrepo please.
Let's say you have your code base in an hg repository. You start to work on a complicated new feature A, then a complicated bug B is reported by your trusted tester (you have testers, right?).
It's trivial if (the fix for) B depends on A. You simlply ci A then ci B.
My question is what to do when they are independent (or at least it seems now).
I can think of the following ways:
Use a separate clone for B.
Use anonymous or named branches, or bookmarks, in the same repository.
Use MQ (with B patch on top of A).
Use branched MQ (I'll explain later).
Use multiple MQ (since 1.6)
1 and 2 are covered by an excellent blog by #Steve Losh linked from a slightly related question.
The one huge advantage of 1 over the other choices is that it doesn't require any rebuild when you switch from working on one thing to the other, because the files are physically separated and independent. So it's really the only choice if, for example, A and/or B touches a header file that defines a tri-state boolean and is included by thousands of C files (don't tell me you haven't seen such a legacy code base).
3 is probably the easiest (in terms of setup and overhead), and you can flip the order of A and B if B is a small and/or urgent fix. However it can get tricky if A and B touches the same file(s). It's easy to fix patch hunks that failed to apply if A and B changes are orthogonal within the same file(s), but conceptually it's still a bit risky.
4 can make you dizzy but it's the most powerful and flexible and scalable way. I default hg qinit with -c since I want to mark work-in-progress patches and push/pull them, but it does take a conceptual leap to realize that you can branch in MQ repo too. Here are the steps (mq = hg --mq):
hg qnew bugA; make changes for A; hg qref
mq branch branchA; hg qci
hg qpop; mq up -rtip^
hg qnew bugB; make changes for B; hg qref
mq branch branchB; hg qci
To work on A again: hg qpop; mq up branchA; hg qpush
It seems crazy to take so many steps, and whenever you need to switch work you must hg qci; hg qpop; mq up <branch>; hg qpush. But consider this: you have several named release branches in the same repository, and you need to work on several projects and bug fixes at the same time for all of them (you'd better get guaranteed bonus for this kind of work). You'd get lost very soon with the other approaches.
Now my fellow hg lovers, are there other/better alternatives?
(UPDATE) qqueue almost makes #4 obsolete. See Steve Losh's elegant description here.
I would always use named branches, because that lets Mercurial do its job: to keep your project history, and to remember why you made which changes in what order to your source code. Whether to have one clone or two sitting on your disk is generally an easy one, given my working style, at least:
Does your project lack a build process, so that you can test and run things right from the source code? Then I will be tempted to have just one clone, and hg up back and forth when I need to work on another branch.
But if you have a buildout, virtualenv, or other structure that gets built, and that might diverge between the two branches, then doing an hg up then waiting for the build process to re-run can be a big pain, especially if things like setting up a sample database are involved. In that case I would definitely use two clones, one sitting at the tip of trunk, and one sitting at the tip of the emergency feature branch.
It seems like there's no more or better choices than the ones I listed in the question. So here they are again.
Use one clone per project.
Pros: total separation, thus no rebuild when switching projects.
Cons: toolchain needs to switch between two clones.
Use anonymous or named branches, or bookmarks, in the same repository.
Pros: standard hg (or any DVCS) practice; clean and clear.
Cons: must commit before switching and rebuild after.
Use MQ with one patch (or multiple consecutive patches) per project.
Pros: simple and easy.
Cons: must qrefresh before switching and rebuild after; tricky and risky if projects are not orthogonal.
Use one MQ branch (or qqueue in 1.6+) per project.
Pros: ultra flexible and scalable (for the number of concurrent projects)
Cons: must qrefresh and qcommit before switching and rebuild after; feels complicated.
Like always, there's no silver bullet, so pick and choose the one right for the job.
(UPDATE) For anyone who's in love with MQ, using MQ on top of regular branches (#2 + #3) is probably the most common and preferable practice.
If you have two concurrent projects with baseline on two branches (for example next release and current release), it's trivial to hop between them like this:
hg qnew; {coding}; hg qrefresh; {repeat}
hg qfinish -a
hg update -r <branch/bookmark/rev>
hg qimport -r <rev>; {repeat}
For the last step, qimport should add a -a option to import a line of changesets at once. I hope Meister Geisler notices this :)
So the question is, at the point when you are told to stop working on feature A, and begin independent feature B, what alternative options are there, for: How to manage concurrent development with mercurial?
Let's look at the problem with concurrency removed, the same way you write threaded code- define a simple work flow for solving any problem given to you, and apply it to each problem. Mercurial will join the work, once it's done. So, programmer A will work on feature A. Programmer B will work on feature B. Both just happen to be you. (If only we had multi-core brains:)
I would always use named branches, because that lets Mercurial do its job: to keep your project history, and to remember why you made which changes in what order to your source code.
I agree with Brandon's sentiment, but I wonder if he overlooked that feature A has not been tested? In the worst case, the code compiles and passes unit tests, but some methods implement the previous requirements, and some methods implement the new ones. A diff against the previous check-in is the tool I would use to help me get back on track with feature A.
Is your code for feature A at a point when you would normally check it in? Switching from feature A to working on feature B is not a reason to commit code to the head or to a branch. Only check in code that compiles and passes your tests. My reason is, if programmer C needs to begin feature C, a fresh checkout of this branch is no longer the best place to start. Keeping your branch heads healthy, means you can respond quickly, with more reliable bug fixes.
The goal is to have your (tested and verified) code running, so you want all your code to end up merged into the head (of your development and legacy branches). My point seems to be, I've seen branching used inefficiently: code becomes stale and then not used, the merge becomes harder than the original problem.
Only your option 1 makes sense to me. In general:
You should think your code works, before someone else sees it.
Favor the head over a branch.
Branch and check-in if someone else is picking up the problem.
Branch if your automated system or testers need your code only.
Branch if you are part of a team, working on a problem. Consider it the head, see 1-4.
With the exception of config files, the build processes should be a checkout and a single build command. It should not be any more difficult to switch between clones, than for a new programmer to join the project. (I'll admit my project needs some work here.)

Mercurial: Concrete examples of issues using hg pull --rebase

I'm struggling to find the mercurial workflow that fits the way that we work.
I'm currently favouring a clone per feature but that is quite a change in mindset moving from Subversion. We'll also have issues with the current expense we have in setting up environments.
Using hg pull --rebase seems to give us more of a Subversion-like workflow but from reading around I'm wary of using it.
I think I understand the concepts and I can see that rewriting the history is not ideal but I can't seem to come up with any scenarios which I personally would consider unacceptable.
I'd like to know what are the 'worst' scenarios that hg pull --rebase could create either theoretical or from experience. I'd like concrete examples rather than views on whether you 'should' rewrite history. Not that I'm against people having opinions, just that there already seem to be a lot of them expressed on the internet without many examples to back them up ;)
The first thing new Mercurial converts need to learn is to get comfortable committing incomplete code. Subversion taught us that you shouldn't commit broken code. Now it's time to unlearn that habit. Committing frequently gives you a lot more flexibility in your workflow.
The main problem I see with hg pull --rebase is the ability to break a merge without any way to undo. The DVCS model is based on the idea of tracking history explicitly, and rebasing subverts that idea by saying that all of my changes came after all of your changes, even though we were really working on them at the same time. And because I don't know what your changes are (because I was basing my code off of earlier changesets) it's harder for me to know that my code, on top of yours, won't break something. You also lose the branching capabilities by rebasing, which is really the whole idea behind DVCSs.
Our workflow (which we've built an entire Mercurial hosting system around) is based on keeping multiple clones, or branch repositories, as we call them. Each dev or small team has their own branch repository, which is just a clone of the "central" repository. All of my new features and large bug fixes go into my personal branch repo. I can get that code peer reviewed, and once it's deemed ready, I can merge it into the central repo.
This gives me a few nice benefits. First, I won't be breaking the build, as all of my changes are in their own repo until they're "ready". Second, I can make another branch repo if I need to do a separate feature, or if I have something longer-running, like for the next major version. And third, I can easily get a change into the central repo if there's a bug that needs to be fixed quickly.
That said, there are a couple different ways you can use this workflow. The most simple, and the one I started with, is just keeping separate clones. So I'll have website-central, website-tghw, etc. It works well, especially since you can push and pull between them locally. More recently, I've started keeping multiple heads in the same repo, using the remotebranches extension to help manage them and hg nudge to keep from pushing everything at once.
Of course, some people don't like this workflow as much, usually because their Mercurial server makes it hard to make server-side clones. In that case, you can also look at using named branches to help keep your features straight. Unfortunately, they're not quite as flexible as Git branches (which is why we prefer branch repos) but they work well once you understand how to close branches, and why you can't really get rid of them once you start one.
This is getting a bit long, so I'll wrap it up by encouraging you to embrace the superior branching and merging that Mercurial provides (over SVN). There is definitely a learning curve, but once you get the hang of it, it really does make things easier.
From the question comments, your root issue is that you have developers working on several features/bug fixes/issues at one time and having uncommitted work in their working directory along with some completed work that is ready to be pushed back to the central repository.
There's a really nice exchange that covers the issue well and leads on to a number of ways forward.
http://thread.gmane.org/gmane.comp.version-control.mercurial.general/19704
There are ways you can get around keeping your uncommitted changes, e.g. by having a separate clone to handle merges, but my advice would be to embrace the distributed way of working and commit as often as you like - if you really feel the need you can combine the last few local commits into a single changeset (using MQ, for example) before pushing.

Mercurial Workflow for small team

I'm working in a team of 3 developers and we have recently switched from CVS to Mercurial. We are using Mercurial by having local repositories on each of our workstations and pulling/pushing to a development server. I'm not sure this is the best workflow, as it is easy to forget to Push after a Commit, and 3 way merge conflicts can cause a real headache. Is there a better workflow we could use, as I think the complexity of distributed VC is outweighing the benefits at the moment.
Thanks
If you are running into a lot of 3 way merges it might be because you have too much overlap in what you and your team members are working on. Mercurial is pretty good at handling merges itself, so long as you all aren't editing the exact same lines of a file. If possible, you could divide up the work more clearly and avoid some of the headaches of large merges. Also note that this would still be a problem with CVS since it's arguably worse at merging than mercurial.
You also don't need to push after every commit. Your workflow could look something like this:
Commit part of some feature.
Commit some more of some feature.
Commit last part of feature.
Commit bug fixes for stupid mistakes.
Push full feature to repo.
To an extent, this looks like Going Dark, but that can be alleviated by making sure that the features in the above example are smallish in scope.
Forget all you know about CVS. Mercurial is nothing like it even if some commands feel somewhat similar.
Read http://hginit.com/. Follow the examples.
Forget all you know about CVS.
I mean it. This is the hardest part. Learn to trust your tool.
It sounds like you're all making your changes to the same branch. This has the unsatisfying side-effect that you're merging each others' changes on almost every single commit, which would be fine except that manually intervening for conflicts isn't something you want to do every time you push.
Here's the workflow I would suggest. The idea is to use branching more heavily, so you need to merge to the master branch less often.
Have every developer develop every feature in a separate branch. This way:
you avoid constantly merging changes from other people, and
you are free of the pressure to push incomplete work before the next guy, "makes it hard to merge."
When a feature is "done" and if the changes would appear to apply cleanly (a judgement call), merge the feature branch directly into the master branch and delete the feature branch.
If a feature falls way behind the master branch (many features merged), or if the merge otherwise appears difficult:
merge master into the feature branch.
Find and fix any bugs in contented isolation from other developers.
Assuming the feature is ready to go, merge it into master (notice: now the merge in this direction will be clean by definition). If not, you can just continue developing.
We are using Mercurial by having local repositories on each of our workstations and pulling/pushing to a development server.
That sounds fine to me. My team is about double the size and it works great.
I'm not sure this is the best workflow, as it is easy to forget to Push after a Commit,
You don't have to push after every commit; you push when you want to push. That's the big idea about DVCS: that Commit and Push are distinct!
and 3 way merge conflicts can cause a real headache.
Are you working on the same lines of code a lot? On my team of 5-6 programmers, pushing/pulling a few times a day, and committing up to a couple dozen times a day, I can't remember the last time I've had to manually resolve merge conflicts. Certainly not in the past month or two.
Is there a better workflow we could use, as I think the complexity of distributed VC is outweighing the benefits at the moment.
Perhaps you should describe your workflow in more detail, because the only complexity over centralized version control that I encounter on a typical workday is maybe one command, and the benefits are huge. Doing "hg blame" just once saves me more time over the centralized version than all the "hg push"es I've had to type all year!
For what it's worth, we're a similar size team working with Mercurial for the first time and we started with the same problem.
We persisted and things are now significantly better. I think most of the problems occurred when the codebase was tiny and people were all trying to work on the same thing. Now that it's a little more established people aren't treading on each others' toes quite so much and the Paris much reduced.
Hope you get it sorted!

Doing without partial commits the "Mercurial way"

Subversion shop considering switching to Mercurial, trying to figure out in advance what all the complaints from developers are going to be. There's one fairly common use case here that I can't see how to handle.
I'm working on some largish feature, and I have a significant part of the code -- or possibly several significant parts of the code -- in pieces all over the garage floor, totally unsuitable for checkin, maybe not even compiling.
An urgent bugfix request comes in. The fix is nice and local and doesn't touch any of the code I've been working on.
I make the fix in my working copy.
Now what?
I've looked at "Mercurial cherry picking changes for commit" and "best practices in mercurial: branch vs. clone, and partial merges?" and all the suggestions seem to be extensions of varying complexity, from Record and Shelve to Queues.
The fact that there apparently isn't any core functionality for this makes me suspect that in some sense this working style is Doing It Wrong. What would a Mercurial-like solution to this use case look like?
Edited to add: git, by contrast, seems designed for this workflow: git add the bugfix files, don't git add anything else (or git reset HEAD anything you might have already added), git commit.
Here's how I would handle the case:
have a dev branch
have feature branches
have a personal branch
have a stable branch.
In your scenario, I would be committing frequently to my branch off the feature branch.
When the request came in, I would hg up -r XYZ where XYZ is the rev number that they are running, then branch a new feature branch off of that(or up branchname, whatever).
Perform work, then merge into the stable branch after the work is tested.
Switch back to my work and merge up from the top feature branch commit node, thus integrating the two streams of effort.
Lots of useful functionality for Mercurial is provided in the form of extensions -- don't be afraid to use them.
As for your question, record provides what you call partial commits (it allows you to select which hunks of changes you want to commit). On the other hand, shelve allows to temporarily make your working copy clean, while keeping the changes locally. Once you commit the bug fix, you can unshelve the changes and continue working.
The canonical way to go around this (i.e. using only core) would probably be to make a clone (note that local clones are cheap as hardlinks are created instead of copies).
You would clone the repository (i.e. create a bug-fix branch in SVN terms) and do the fix from there.
Alternatively if it really is a quick fix you can use the -I option on commit to explicitly check-in individual files.
Like any DVCS, branching is your friend. Branching a repository multiple ways is the bread and butter of these system. Here's a git model you might consider adopting that works quite well with Mercurial, also.
In addition to what Santa said about branching being your friend...
Small-granularity commits are your friend. Rather than making lots of code changes in a single commit, make each logically self-contained code change in its own commit. Then it will be a lot easier to cherry-pick changes to merge between branches.
Don't use Mercurial without using the Mq Extension (it comes pre-packaged in the default installation). In addition to solving your specific problem, it solves a lot of other general problems and really should be the default way that you work (especially if you're using an IDE that doesn't integrate directly with Hg, making switching branches on the fly a difficult way to work).

Best Practices for version control with multiple projects

I have several projects with a very large over-lapping code-base. We've just recently started using SVN so I'm trying to figure out how I should be using it.
The problem is that as I'm finishing a task on one project, I'm starting a task on another, with some overlap. Often there's a lot of interrupt driven development as well. So, my code is never really in a completely stable state that I feel comfortable checking in.
The result is that we're not really using the VC system, which is a VERY bad thing, we all know... so, suggestions?
Check out a personal branch of the code and merge in changes. At least you will have some version control for your own changes, in case you need to roll back. Once you are comfortable with the state that your branch is in, merge that branch back into the trunk.
You can also check out a branch for each task, instead of one for each individual. You can also merge changes to your branch from the trunk if someone changes the trunk, and you want your branch to reflect the changes.
This is a common way to use SVN, although there are other workflows. I have worked on projects where I was afraid to commit(I would break the build possibly) because we did not effectively use branching.
Branching is really powerful in helping your workflow, use it until you're comfortable with the idea of merging.
Edit: 'Checking out a branch' refers to creating branch in your branches folder, and then checking out that branch. The standard svn repository structure consists of the folders trunk, tags, and branches at the root.
So, my code is never really in a completely stable state that I feel comfortable checking in.
Why is that ?
If your branch is appropriate for your work (with a good naming convention for instance), everyone will know its HEAD is not always stable.
In this kind of "working" branch, just put some tag along the way to indicate some "stable code points" (which can then be queried by any tester to be deployed).
Any other version on that working branch is just made to record changes, even though the current state is not stable.
Then later you merge all on a branch supposed to represent a stable state.
In TFS, you are able to create 'Shelf Sets' (I'm not sure what they'd be called in other source control providers). When you shelve some code, you are saving it to your repository, but not checking it in.
The reason this is important is that if you are working on Bug XXXX, and you fix half of the code, but it's not stable and not 'check-in-able', but you get assigned to NewFeature YYYY, you SHOULD NOT continue working with the same code base. You should 'Shelf' your Bug XXXX code, then return your local codebase to the latest checked-in code, and implement NewFeature YYYY.
This way you are keeping your check-ins atomic. You don't have to worry about losing your work, because it is still held by the repository (so if your computer bursts into flames, you don't have to burst into tears), and you aren't mixing your fixes for XXXX with your new code for YYYY.
Then, once you are asked to go back to XXXX (assuming you've checked in YYYY) you can just unshelve your 'shelf set' and jump right back into it where you left off.
Either accept that the code in SVN is not in a completely stable state and check it in anyway (and reserve time for stabilization and refactoring every X days/weeks so the code doesn't degrade too much).
Or force your team to work in a more structured way with minimal interruption based development so you can check in good code.
The first option is not ideal (but better then no source control), the second is probably impossible - there is no third option.
If you don't have time to get the code to a stable state you defiantly don't have the time to branch and merge all the time.
In distributed sourcecontrol systems like GIT, you commit to your local repository. Only when you push your code, it's 'committed' to the remote repository.
In this way, its much easier to 'safe' your work in between.