As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
When all you have is a pair of bolt cutters and a bottle of vodka, everything looks like the lock on the door of Wolf Blitzer's boathouse. (Replace that with a hammer and a nail if you don't read xkcd)
I currently program Clojure, Python, Java and PHP, so I am familiar with the C and LISP syntax as well as the whitespace thing. I know imperative, functional, immutable, OOP and a couple type systems and other things. Now I want more!
What are languages that take a different approach and would be useful for either practical tool choosing or theoretical understanding?
I don't feel like learning another functional language(Haskell) or another imperative OOP language(Ruby), nor do I want to practice impractical fun languages like Brainfuck.
One very interesting thing I found myself are monoiconic stack based languages like Factor.
Only when I feel I understand most concepts and have answers to all my questions, I want to start thinking about my own toy language to contain all my personal preferences.
Matters of practicality are highly subjective, so I will simply say that learning different language paradigms will only serve to make you a better programmer. What is more practical than that?
Functional, Haskell - I know you said that you didn't want to, but you should really really reconsider. You've gotten some functional exposure with Clojure and even Python, but you've not experienced it to its fullest without Haskell. If you're really against Haskell then good compromises are either ML or OCaml.
Declarative, Datalog - Many people would recommend Prolog in this slot, but I think Datalog is a cleaner example of a declarative language.
Array, J - I've only just discovered J, but I find it to be a stunning language. It will twist your mind into a pretzel. You will thank J for that.
Stack, Factor/Forth - Factor is very powerful and I plan to dig into it ASAP. Forth is the grand-daddy of the Stack languages, and as an added bonus it's simple to implement yourself. There is something to be said about learning through implementation.
Dataflow, Oz - I think the influence of Oz is on the upswing and will only continue to grow in the future.
Prototype-based, JavaScript / Io / Self - Self is the grand-daddy and highly influential on every prototype-based language. This is not the same as class-based OOP and shouldn't be treated as such. Many people come to a prototype language and create an ad-hoc class system, but if your goal is to expand your mind, then I think that is a mistake. Use the language to its full capacity. Read Organizing Programs without Classes for ideas.
Expert System, CLIPS - I always recommend this. If you know Prolog then you will likely have the upper-hand in getting up to speed, but it's a very different language.
Frink - Frink is a general purpose language, but it's famous for its system of unit conversions. I find this language to be very inspiring in its unrelenting drive to be the best at what it does. Plus... it's really fun!
Functional+Optional Types, Qi - You say you've experience with some type systems, but do you have experience with "skinnable* type systems? No one has... but they should. Qi is like Lisp in many ways, but its type system will blow your mind.
Actors+Fault-tolerance, Erlang - Erlang's process model gets a lot of the buzz, but its fault-tolerance and hot-code-swapping mechanisms are game-changing. You will not learn much about FP that you wouldn't learn with Clojure, but its FT features will make you wonder why more languages can't seem to get this right.
Enjoy!
What about Prolog (for unification/backtracking etc), Smalltalk (for "everything's a message"), Forth (reverse polish, threaded interpreters etc), Scheme (continuations)?
Not a language, but the Art of the Metaobject Protocol is mind-bending stuff
I second Haskell. Don't think "I know a Lisp, so I know functional programming". Ever heard of type classes? Algebraic data types? Monads? "Modern" (more or less - at least not 50 years old ;) ) functional languages, especially Haskell, have explored a plethora of very powerful useful new concepts. Type classes add ad-hoc polymorphism, but type inference (yet another thing the languages you already know don't have) works like a charm. Algebraic data types are simply awesome, especially for modelling trees-like data structures, but work fine for enums or simple records, too. And monads... well, let's just say people use them to make exceptions, I/O, parsers, list comprehensions and much more - in purely functional ways!
Also, the whole topic is deep enough to keep one busy for years ;)
I currently program Clojure, Python, Java and PHP [...] What are languages that take a different approach and would be useful for either practical tool choosing or theoretical understanding?
C
There's a lot of C code lying around---it's definitely practical. If you learn C++ too, there's a big lot of more code around (and the leap is short once you know C and Java).
It also gives you (or forces you to have) a great understanding of some theoretical issues; for instance, each running program lives in a 4 GB byte array, in some sense. Pointers in C are really just indices into this array---they're just a different kind of integer. No different in Java, Python, PHP, except hidden beneath a surface layer.
Also, you can write object-oriented code in C, you just have to be a bit manual about vtables and such. Simon Tatham's Portable Puzzle Collection is a great example of fairly accessible object-oriented C code; it's also fairly well designed and well worth a read to a beginner/intermediate C programmer. This is what happens in Haskell too---type classes are in some sense "just another vtable".
Another great thing about C: engaging in Q&A with skilled C programmers will get you a lot of answers that explain C in terms of lower-level constructs, which builds your closer-to-the-iron knowledge base.
I may be missing OP's point---I think I am, judging by the other answers---but I think it might be a useful answer to other people who have a similar question and read this thread.
From Peter Norvig's site:
"Learn at least a half dozen programming languages. Include one language that supports class abstractions (like Java or C++), one that supports functional abstraction (like Lisp or ML), one that supports syntactic abstraction (like Lisp), one that supports declarative specifications (like Prolog or C++ templates), one that supports coroutines (like Icon or Scheme), and one that supports parallelism (like Sisal). "
http://norvig.com/21-days.html
I'm amazed that after 6 months and hundreds of votes, noone has mentioned SQL ...
In the types as theorems / advanced type systems: Coq ( I think Agda comes in this category too).
Coq is a proof assistant embedded into a functional programing language.
You can write mathematical proofs and Coq helps to build a solution.
You can write functions and prove properties about it.
It has dependent types, that alone blew my mind. A simple example:
concatenate: forall (A:Set)(n m:nat), (array A m)->(array A n)->(array A (n+m))
is the signature of a function that concatenates two arrays of size n and m of elements of A and returns an array of size (n+m). It won't compile if the function doesn't return that!
Is based on the calculus of inductive constructions, and it has a solid theory behind it.
I'm not smart enough to understand it all, but I think is worth taking a look, specially if you trend towards type theory.
EDIT: I need to mention: you write a function in Coq and then you can PROVE it is correct for any input, that is amazing!
One of the languages which i am interested for have a very different point of view (including a new vocabulary to define the language elements and a radical diff syntax) is J. Haskell would be the obvious choice for me, although it is a functional lang, cause its type system and other unique features open your mind and makes you rethink you previous knowledge in (functional) programming.
Just like fogus has suggested it to you in his list, I advise you too to look at the language OzML/Mozart
Many paradigms, mainly targetted at concurrency/multi agent programming.
Concerning concurrency, and distributed calculus, the equivalent of Lambda calculus (which is behind functionnal programming) is called the Pi Calculus.
I have only started begining to look at some implementation of the Pi calculus. But they already have enlarged my conceptions of computing.
Pict
Nomadic Pict
FunLoft. (this one is pretty recent, conceived at INRIA)
Dataflow programming, aka flow-based programming is a good step ahead on the road. Some buzzwords: paralell processing, rapid prototyping, visual programming (not as bad as sounds first).
Wikipedia's articles are good:
In computer science, flow-based
programming (FBP) is a programming
paradigm that defines applications as
networks of "black box" processes,
which exchange data across predefined
connections by message passing, where
the connections are specified
externally to the processes. These
black box processes can be reconnected
endlessly to form different
applications without having to be
changed internally. FBP is thus
naturally component-oriented.
http://en.wikipedia.org/wiki/Flow-based_programming
http://en.wikipedia.org/wiki/Dataflow_programming
http://en.wikipedia.org/wiki/Actor_model
Read JPM's book: http://jpaulmorrison.com/fbp/
(We've written a simple implementation in C++ for home automation purposes, and we're very happy with it. Documentation is under construction.)
You've learned a lot of languages. Now is the time to focus on one language, and master it.
perhaps you might want to try LabView for it's visual programming, although it's for engineering purposes.
nevertheless, you seem pretty interested in all that's out there, hence the suggestion
also, you could try the android appinventor for visually building stuff
Bruce A. Tate, taking a page from The Pragmatic Programmer wrote a book on exactly that:
Seven Languages in Seven Weeks: A Pragmatic Guide to Learning Programming Languages
In the book, he covers Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Mercury: http://www.mercury.csse.unimelb.edu.au/
It's a typed Prolog, with uniqueness types and modes (i.e. specifying that the predicate append(X,Y,Z) meaning X appended to Y is Z yields one Z given an X and Y, but can yield multiple X/Ys for a given Z). Also, no cut or other extra-logical predicates.
If you will, it's to Prolog as Haskell is to Lisp.
Programming does not cover the task of programmers.
New things are always interesting, but there are some very cool old stuff.
The first database system was dBaseIII for me, I was spending about a month to write small examples (dBase/FoxPro/Clipper is a table-based db with indexes). Then, at my first workplace, I met MUMPS, and I got headache. I was young and fresh-brained, but it took 2 weeks to understand the MUMPS database model. There was a moment, like in comics: after 2 weeks, a button has been switched on, and the bulb has just lighten up in my mind. MUMPS is natural, low level, and very-very fast. (It's an unbalanced, unformalized btree without types.) Today's trends shows the way back to it: NoSQL, key-value db, multidimensional db - so there are only some steps left, and we reach Mumps.
Here's a presentation about MUMPS's advantages: http://www.slideshare.net/george.james/mumps-the-internet-scale-database-presentation
A short doc on hierarchical db: http://www.cs.pitt.edu/~chang/156/14hier.html
An introduction to MUMPS globals (in MUMPS, local variables, short: locals are the memory variables, and the global variables, short: globals are the "db variables", setting a global variable goes to the disk immediatelly):
http://gradvs1.mgateway.com/download/extreme1.pdf (PDF)
Say you want to write a love poem...
Instead of using a hammer just because there's one already in your hand, learn the proper tools for the task: learn to speak French.
Once you've reached near-native speaking level, you're ready to start your poem.
While learning new languages on an academical level is an interesting hobby, IMHO you can't really learn to use one until you try to apply it to a real world problem. So, rather than looking for a new language to learn, I'd in your place first look for a new things to build, and only then I'd look for the right language to use for that one specific project. First pick the problem, then the tool, not the other way around..
For anyone who hasn't been around since the mid 80's, I'd suggest learning 8-bit BASIC. It's very low-level, very primitive and it's an interesting exercise to program around its holes.
On the same line, I'd pick an HP-41C series calculator (or emulator, although nothing beats real hardware). It's hard to wrap your brain around it, but well worth it. A TI-57 will do, but will be a completely different experience. If you manage to solve second degree equations on a TI-55, you'll be considered a master (it had no conditionals and no branches except a RST, that jumped the program back to step 0).
And last, I'd pick FORTH (it was mentioned before). It has a nice "build your language" Lisp-ish thing, but is much more bare metal. It will teach you why Rails is interesting and when DSLs make sense and you'll have a glipse on what your non-RPN calculator is thinking while you type.
PostScript. It is a rather interesting language as it's stack based, and it's quite practical once you want to put things on paper and you want either to get it done or troubleshoot why isn't it getting done.
Erlang. The intrinsic parallelism gives it a rather unusual feel and you can again learn useful things from that. I'm not so sure about practicality, but it can be useful for some fast prototyping tasks and highly redundant systems.
Try programming GPUs - either CUDA or OpenCL. It's just C/C++ extensions, but the mental model of the architecture is again completely different from the classic approach, and it definitely gets practical once you need to get some real number crunching done.
Erlang, Forth and some embedded work with assembly language. Really; buy an Arduino kit or something similar, and create a polyphonic beep in assembly. You'll really learn something.
There's also anic:
https://code.google.com/p/anic/
From its site:
Faster than C, Safer than Java, Simpler than *sh
anic is the reference implementation compiler for the experimental, high-performance, implicitly parallel, deadlock-free general-purpose dataflow programming language ANI.
It doesn't seem to be under active development anymore, but it seems to have some interesting concepts (and that, after all, is what you seem to be after).
While not meeting your requirement of "different" - I'd wager that Fantom is a language that a professional programmer should look at. By their own admission, the authors of fantom call it a boring language. It merely shores up the most common use cases of Java and C#, with some borrowed closure syntax from ruby and similar newer languages.
And yet it manages to have its own bootstrapped compiler, provide a platform that has a drop in install with no external dependencies, gets packages right - and works on Java, C# and now the Web (via js).
It may not widen your horizons in terms of new ways of programming, but it will certainly show you better ways of programming.
One thing that I see missing from the other answers: languages based on term-rewriting.
You could take a look at Pure - http://code.google.com/p/pure-lang/ .
Mathematica is also rewriting based, although it's not so easy to figure out what's going on, as it's rather closed.
APL, Forth and Assembly.
Have some fun. Pick up a Lego Mindstorm robot kit and CMU's RobotC and write some robotics code. Things happen when you write code that has to "get dirty" and interact with the real world that you cannot possibly learn in any other way. Yes, same language, but a very different perspective.
I'm not an English speaker, and I'm not very good at English. I'm self thought. I have not worked together with others on a common codebase. I don't have any friends who program. I don't work with other programmers (at least nobody who cares about these things).
I guess this might explain some of my problems in finding good unambiguous class names. I have tried to find some sort of "Programmers dictionary" containing words often used and their meanings. When reading others code I have to look up words quite often, and as many use abbreviations this poses an additional challenge.
My very limited vocabulary "forces" me to use bad class names like xxManager, xxProvider, xxWhatever. It's usually less problematic choosing variable and method names.
Other non English people out here: How have you managed to cope with this? Have you studied English so well it's not a problem? Or have you read so much code naming comes natural? Or discussed a lot with English speakers? Found any good websites, articles or other publications? As I've never read anything regarding programming in my own language, I often have more problems trying to find the words in my language...
PS: All other posts I've found was regarding mixing native tongue and English... And I understand this might be a bit off topic and might be closed.
Edit: Some resources from the answers and other stuff I use:
Jargon / The New Hacker's Dictionary
Common design patterns
Google translate
Dictionary
The Jargon file will help with the more obscure references people will give in the industry.
http://catb.org/jargon/html/go01.html
Other than that..finding good names for your variables/classes/etc is hard. Often times, it's harder than actually solving the problem. Here's a good resource for some common design pattern names people like to use: http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
Examples:
AbcFactory
XyzBridge
Could be an unorthodox suggestion, but I would recommend studying English more deeply (I am also a non-native speaker).
Expose yourself to as much English as possible! Watch movies, read English fiction, listen to technical podcasts.
Mind you, if you really want to deepen your knowledge of English, you're probably not going to learn a lot watching "Transformers". On the other hand, diving into Ulysses probably is not a good strategy either.
If you're feeling adventurous, you could always get a subscription to the New Yorker magazine. It'll do things to you - yes this is flamebaiting. :P
Other non English people out here:
How have you managed to cope with this?
Good naming in code matters. Using English is the preferred, but if you don't know English very well the result could be counterproductive.
I had a friend who just guessed what the correct name would be and the result was horrible. ie
String employiiNeim; // employeeName
int eich; // age
The problem with English, is that is not pronounced as written ( french have this minor ... ehrm characteristic ) Other languages like Spanish, German, Dutch, and others, do type and pronounce every letter in the word.
This becomes particular relevant when what you are coding are business rules or business models. In this case it is much better to use your native language.
String nombreEmpleado;
int edad;
Way much better, specially when you work with others.
Have you studied English so well it's not a problem?
Yeap, there is no other way, and a lot of practice.
You can study English the same way you study programming languages though. You can have a teacher and attend to a class room and study an hour a day. Or ( what I did ) you can just grab something that is interesting to you and try to understand it. For instance, you have a small document describing something you care, you read blogs or read content here at StackOverflow, you translate a song you like, etc. etc.
All these are study forms. There is no other way, you won't wake up one day and say: "...I know kung fu" I mean, and say: ..."I know English"
Or have you read so much code naming comes natural?
Also helps, but if you don't understand what the code means, you ... well won't make any progress.
You'll learn the programming language, and that will help you to understand English bit better, but won't help you to learn it. That's because when we program we learn the programming language not the native language.
Or discussed a lot with English speakers?
Eerhh..nope. If you have that chance go ahead, it will improve your listening and speaking, but not necessarily your writting.
The most effective way to improve your English vocabulary and grammar is by READING ( reading in your native language also improves your own language btw )
So, I would say, read as much as you can. Use your native language while you gain more confidence, and keep studying.
The English will come with time.
If you can't find the "Programmer's Dictionary" you're looking for, start one. Post a new question: "What entries are missing from this Dictionary for English-as-a-Second-Language-Programmers?" and seed it with 10 or 20 words/definitions you've already discovered. Once posters have suggested enough additions, move it to a a wiki somewhere and keep accepting contributions. You might end up creating a valuable resource.
Documenting your code with excellent prose like your question above will go a long way!
If you stick to common design patterns endemic to the language, platform, and architecture for which you're working with, other engineers should understand your nomenclature fairly easily.
If you are worried about it in terms of naming your own objects, just think of what your native word is for what you want to do, then go get an english language translation dictionary, and use the english language version.
How about using your native language?
Of course (like for me as an Austrian) some letters may not be allowed - but who cares if there is Mörder or Moerder (Murder) in the class name :)
Or (as I do) use a dictionary like dict.cc or something else.
I do - think what the class does - it manages game session (for an example) so it will become GameSessionManager.
Abbreviations are (at least for me) a problem - but what I've learned from other code - event native speakers use different abbreviations.
And if the class is called GameSessionMgr or GameSessionMngr doesn't make a difference.
Your are not writing books or some kind of "english poem" where spelling, grammar and... counts.
You write code - and if you follow "your sepcial rules" - you and others will (after some time) be able to understand you code and class names.
It will come with time and experience. Above all attempt to (like #Mike A says) document things until the code becomes clearer and try to be consistent.
This is an issue that I run into as well, even as a native English speaker. As a programmer, I often find that I need to find a descriptive word for a class, variable, function, etc. I often find myself asking a friend or coworker what verbage they would use by explaining my idea, carefully excluding any words I myself have considered as a possible choice for the class/function/variable name so as not to inhibit their creativity.
It seems to me that the English Language & Usage site proposal over at Area51 is a good place to ask such questions as "What would you call a class (or thing) that does this, this and that, and has properties x, y, and z?
We all hear that math at least helps a little bit with programming. My question though, does English or other natural language skills help with programming? I know it has to help with technical documentation, but what about actual programming? Are certain constructs in a programming language also there in natural languages? Does knowing how to write a 20 page research paper help with writing a 20k loc programming project?
Dijkstra went so far as to say: "Besides a mathematical inclination, an exceptionally good mastery of one's native tongue is the most vital asset of a competent programmer."
Edit: yes, I'm reasonably certain he was talking about the programming part of the job. Here's a bit more complete quote:
The problems of business administration in general and database management in particular are much too difficult for people who think in IBMerese, compounded by sloppy English.
About the use of language: it is impossible to sharpen a pencil with a blunt axe. It is equally vain to try to do it with ten blunt axes instead.
Besides a mathematical inclination, an exceptionally good mastery of one's native tongue is the most vital asset of a competent programmer.
From EWD498.
I certainly can't speak for Dijkstra, but I think it's impossible to cleanly separate the part where you're doing actual programming from the part where you're interacting with people. Just for example, even when you're working alone, it's crucial that you're able to understand (clearly and unambiguously) notes you wrote down about what to do, the nature of a bug, etc. A good command of English is necessary even when nobody else is involved at all (and, of course, that's unusual except on trivial tasks).
I don't know about causality, but the skill set required to write well overlaps quite a bit with those required for programming: knowing how to plan, being able to keep a myriad of details consistent, being able to make things clear for a future reader, knowing how to organize your thoughts and the resultant product. That isn't to say that a successful author would make a good programmer, but a programmer with good language skills and the same logic/math/deductive skills is probably a better programmer than one with poor language skills -- at least the code has a greater chance of being understandable.
Yes. Strong natural language skills help you to organize your thoughts in a coherent way that can easily be understood by others. That can help improve your code in everything from naming variables, methods, classes, etc., to expressing the contexts of objects in your model. Practices such as pair programming require you to be able to communicate well with your partner in order to write good code. Techniques such as Domain Driving Design emphasize using the domain language of the business in your code. Natural language skills facilitate that. And there is a strong drive in the development industry toward more natural language-like tools, e.g. many of the newer testing tools like rspec, gherkin, etc., are moving toward more natural language-like syntax. One of the things many people like about dynamic languages like Ruby and Python are that the code tends to read more like a natural language.
Let me state what should be the obvious: every healthy person above 12 knows at least one natural language. Moreover, every healthy person above 12 is able to generate and parse natural language a complex and rich language, and express and understand an extremely large set of ideas. In general, people are not likely to be limited in their ability to discuss issues by their language, but by the type of things they experienced and learned.
Having said that, there are several language-related skills that you might have thought about.
Writing style. You mentioned those specifically. Written language is different from spoken language. Way less intuitive. This is one reason people have to get coached in writing through their years in the education system.
Coding doesn't really involve writing. I mean, there's comments, but they can be rather laconic. Of course the work of a programmer usually involves at least some writing of documents, and writing abilities to make a difference there.
Analytical skills. Analytical skills are a complicated (not to say fuzzy) concept. Analytical skills aren't really about language, but insomuch they are taught and tested at all, it's in the context of writing essays.
Analytical skills are obviously very important in programming. I am not sure that these are exactly the same skills required to write a good essay about Euthanasia or whatever, but as was previously suggested, they may be related.
Foreign language. For people whose native language isn't English, a certain command of English may be needed. Not in the coding itself (knowing what "while" means in English isn't really critical to understanding what it does in Java), but because much training and support material is available mainly in English (did anyone mention Stack Overflow?). The English requirement may differ on the country you are in, and the company you work for, though.
Communication Skills. Ahhm. I was never exactly sure what this means exactly. Maybe it's a cultural thing. I do suspect it's less about knowing a language and more about knowing people.
So to some up, Dijkstra is a venerable computer scientist, but I am not sure he knew that much about language.
Programming isn't just about writing code. On any programming project of any size there will be the need for:
initial project proposal documents
design and architectural documents
programmers manual
users manual
training materials
communication with third party suppliers
etc.
On every big project I've worked on I'd guess I spent at least 50% of my time on the English language documents. So yes, an ability to explain and express yourself well is extremely important. Does it lead to writing better code? Once again, I would say yes - the need to provide clear documentation spills over into the need to write better code, itnerfaces et al.
Many programming languages share generic and even fairly universal features. For example, if you compared Java, VB6, .NET, PHP, Python, then you would find common functions such as control structures, numeric and string manipulation, etc.
What has been done to define these features at a meta-language (or language-agnostic) level?
UML offers a descriptive reference of software in every aspect, but the real-world focus seems to be data processes. Is UML relevant?
I'm not asking "Why we don't have a single language that replaces the current plethora." We need many different tools (at least in this eon).
I'm not asking that all languages fit a template -- assembly vs. compiled languages are different enough to make that unfeasible (and some folks call HTML a language, though I wouldn't). Any attempt would start with a properly narrow scope. In line with this, I wouldn't expect the model to cover even a small selection with full validity.
I would expect however that such a model could be used to transpose from one language to another (with limited goals -- think jist translation).
There have been many attempts at this, but none have been very successful. The earliest I'm aware of is UNCOL more than 50 years ago.
You've given a list of languages that have a lot in common because they're pretty similar -- they're all procedural languages with common roots and some OO extensions thrown in, so that's not too suprising. If you start looking at different languages like LISP, haskell, erlang, prolog, or even SQL you start seeing very different things.
What you're describing sounds like the formal semantics of programming languages. There are a variety of approaches and each will give a way to formally specify the meaning of a program in some programming language. In some cases, this specification is essentially a translation into another language such as lambda calculus, or compilation for a formally specified abstract machine such as SECD.
There is so much work here it's hard to pick a specific reference. But I hope I've given you some useful keywords to continue your search.
UML is typically used to define algorithms/code in simpler terms before moving on to real code.
To answer what I am guessing to be your question, there is already a defined set of required parts of languages while,for,if,else... Will this ever be set as a standard, or made into a base library that is used by all languages: no, this is because the different developers of languages like to do it themselves.
I think the closest you can get to this without loss of generality is a Turing machine, which is not very useful for practical purposes. But if you allow Turing machine languages to be "labeled" and reused, you could build up the concepts you need, working from low- to high-level.
I think that MOF is the universal language.
You can for example create UML diagrams from MOF via a UML metamodel. If you save this metamodel information into xmi then you can save what ever information you need and even more than in any language. XMI semantic is so rich that there is no limit to its use. If you map UML to xmi on the top of a metamodel live synchronize with MOF then this is for me the universal language.
The author of Pattern Calculus seems to propose such a universal model. I expect that it will turn out to be just as useful as previous attempts to define a universal model, that is to say, good in parts but not the last word.