Handling "Exceptions" that have a high probability of becoming "Errors" - language-agnostic

In the project i'm currently working on, I am having a bit of trouble distinguishing Errors from Exceptions (to add to the confusion I'm not sure if my definition of Error and Exception are fully correct either).
The place I'm getting confused is how to stop an exception from becoming an error. Say I have a model class that holds a bunch of relationships. The model has a Model.AddRelationship() method that has the potential to create a circular reference in the model. If the user tries to add a relationship in the UI that creates a circular reference, they must be blocked from doing so and told why. So I've grappled with some options such as:
// In the UI when the user tries to add a relationship:
var newRelationship:Relationship = new Relationship();
if(Model.AddingThisWillCreateACircularReference(newRelationship))
{
this.warnUserAboutCircularReference();
}
else
{
Model.AddRelationship(relationship);
}
Part of me thinks it should be on the developer to validate the call before calling it. After all, adding the relationship isn't what would crash the program, it's when some other code performs an operation that results in an infinite loop. On the other hand, I feel obligated to keep the Model in a safe state at all times, and that I need to force developers to handle the bad circular reference situation by doing something like this:
// In the model itself:
public function AddRelationship(relationship:Relationship):Boolean
{
var success:Boolean = true;
if(this.AddingRelationshipWillCreateACircularReference(relationship))
{
success = false;
}
else
{
this.addRelationship(relationship);
}
return success;
}
That way they either know that it isn't possible to add, or the relationship simply doesn't get added. That also feels wrong. Can anyone give me some thoughts that might help give me some clarity? Thanks in advance.

By convention, "Errors" indicate situations that the application just cannot handle or recover from it cleanly (ie, Disk Crash). Exception are abnormal situations that the application may try to recover from, or even clean up itself before shutting down.
I have find useful to split Exceptions in two more types: Business Exceptions, which are conditions caused by misconfiguration or mishandling of the application (ie, Validation exceptions), and Technical Exception which are conditions not caused by the application itself (ie, lost connection to the Database, Socket timeout, etc).
Back to your question, pat of you is right: the model should be keep consistent at all times, and that should be enforced at the lowest level possible to promote reuse. Thus, put the validation in the model, try the operation and if it fails inform the user. If you don't have Exceptions as a native mechanism in your language, I would go as far as returning a "result code" indicating the resulting status of the operation (ie, 0 - Success, 1 - Circular Dependency, 2 - Some unknown reason, etc).

I usually use the rule that if the user can correct the "error", then don't throw an exception. If the "error" is something truly unexpected and the user cannot fix his or her input to get past it, then it should throw an Exception.
To go a level deeper, if you are actively checking for problems, such as writing code to make sure a file or folder path exists, then you should gracefully handle the situation and present it to the user without throwing an Exception.

Related

When is it right time to throw an exception in functional programming

Say I have a web application with UserController. Client sends a HTTP POST request that is about to be handled by the controller. That however first must parse the provided json to UserDTO. For this reason there exist a UserDTOConverter with a method toDTO(json): User.
Given I value functional programming practices for its benefits of referential transparency and pure function the question is. What is the best approach to deal with a possibly inparsable json? First option would be to throw an exception and have it handled in global error handler. Invalid json means that something went terrible wrong (eg hacker) and this error is unrecoverable, hence the exception is on point (even assuming FP). The second option would be to return Maybe<User> instead of User. Then in the controller we can based on the return type return HTTP success response or failure response. Ultimately both approaches results in the same failure/success response, which one is preferable though?
Another example. Say I have a web application that needs to retrieve some data from remote repository UserRepository. From a UserController the repository is called getUser(userId): User. Again, what is the best way to handle the error of possible non existent user under provided id? Instead of returning User I can again return Maybe<User>. Then in controller this result can be handled by eg returning "204 No Content". Or I could throw an exception. The code stays referentially transparent as again I am letting the exception to bubble all the way up to global error handler (no try catch blocks).
Whereas in the first example I would lean more towards throwing an exception in the latter one I would prefer returning a Maybe. Exceptions result in cleaner code as the codebase is not cluttered with ubiquitous Eithers, Maybes, empty collections, etc. However, returning these kinds of data structure ensure explicitness of the calls, and imo results in better discoverability of the error.
Is there a place for exceptions in functional programming? What is the biggest pitfall of using exceptions over returning Maybes or Eithers? Does it make sense to be throwing exceptions in FP based app? If so is there a rule of thumb for that?
TL;DR
If there are Maybes/Eithers all over the codebase, you generally have a problem with I/O being mixed promiscuously with business logic. This doesn't get any better if you replace them with exceptions (or vice versa).
Mark Seemann has already given a good answer, but I'd like to address one specific bit:
Exceptions result in cleaner code as the codebase is not cluttered with ubiquitous Eithers, Maybes, empty collections, etc.
This isn't necessarily true. Either part.
Problem with Exceptions
The problem with exceptions is that they circumvent the normal control flow, which can make the code difficult to reason about. This seems so obvious as to barely be worthy of mention, until you end up with an error thrown 20 calls deep in a call stack where it isn't clear what triggered the error in the first place: even though the stack trace might point you to the exact line in the code you might have a very hard time figuring out the application state that caused the error to happen. The fact that you can be undisciplined about state transitions in an imperative/procedural program is of course the whole thing that FP is trying to fix.
Maybe, Maybe not: It might be Either one
You shouldn't have ubiquitous Maybes/Eithers all over the codebase, and for the same reason that you shouldn't be throwing exceptions willy-nilly all over the codebase: it complicates the code too much. You should have files that are entry points to the system, and those I/O-concerned files will be full of Maybes/Eithers, but they should then delegate to normal functions that either get lifted or dispatched to through some other mechanism depending on language (you don't specify the language). At the very least languages with option types almost always support first-class functions, you can always use a callback.
It's kind of like testability as a proxy for code quality: if your code is hard to test it probably has structural problems. If your codebase is full of Maybes/Eithers in every file it probably has structural problems.
You're asking about a couple of different scenarios, and I'll try to address each one.
Input
The first question pertains to converting a UserDTO (or, in general, any input) into a stronger representation (User). Such a conversion is usually self-contained (has no external dependencies) so can be implemented as a pure function. The best way to view such a function is as a parser.
Usually, parsers will return Either values (AKA Result), such as Either<Error, User>. The Either monad is, however, short-circuiting, meaning that if there's more than one problem with the input, only the first problem will be reported as an error.
When validating input, you often want to collect and return a list of all problems, so that the client can fix all problems and try again. A monad can't do that, but an applicative functor can. In general, I believe that validation is a solved problem.
Thus, you'll need to model validation as a type that isomomorphic to Either, but has different applicative functor behaviour, and no monad interface. The above links already show some examples, but here's a realistic C# example: An applicative reservation validation example in C#.
Data access
Data access is different, because you'd expect the data to already be valid. Reading from a data store can, however, 'go wrong' for two different reasons:
The data is not there
The data store is unreachable
The first issue (querying for missing data) can happen for various reasons, and it's usually appropriate to plan for that. Thus, a database query for a user should return Maybe<User>, indicating to the client that it should be ready to handle both cases: the user is there, or the user is not there.
The other issue is that the data store may sometimes be unreachable. This can be caused by a network partition, or if the database server is experiencing problems. In such cases, there's usually not much client code can do about it, so I usually don't bother explicitly modelling those scenarios. In other words, I'd let the implementation throw an exception, and the client code would typically not catch it (other than to log it).
In short, only throw exceptions that are unlikely to be handled. Use sum types for expected errors.
I have seen code like below, where exceptions are wrapped in a generic error. What i don't like about this approach is that we need to write a handler to deal with this UnexpectedError, inspect it, extract the exception and log it. Not sure if this is the correct way to do it.
override suspend fun update(
reservation: Reservation,
history: ReservationHistory
): Either<ReservationError, Reservation> {
return Either.catch {
mongoClient.startSession().use { clientSession ->
clientSession.startTransaction()
mongoClient.getDatabase(database)
.getCollection<ReservationDocument>()
.updateOneById(reservation.reservationId.value, MapToReservationDocument.invoke(reservation))
mongoClient.getDatabase(database)
.getCollection<ReservationHistoryDocument>()
.insertOne(MapToReservationHistoryDocument.invoke(history))
reservation
}
}.mapLeft {
UnexpectedError(it)
}
}

n-layer using try catch

I'm working on an n-tier application, and doing try/catch only in my presentation layer. If an error occurs in the data layer or business layer, this error is captured by the try/catch in my presentation layer. Is this good, or should I work with try catch in every method of each layer?
In general, it is better to catch an exception as close to where it happens to allow for your code to potentially do something to fix/adapt/react to the issue. What this "do something" is depends upon the circumstance. For instance if you have a service layer call that fails, you may want to retry the call, because the service may have been too busy; whereas if your stored procedure is broken, then it does not matter how many times you retry, it will be broken until the logic is corrected in the database.
If all you want to do is log errors, then catching an error as close to where it happens is less useful.
Every project I have ever worked on had try-catch blocks in every layer of the application.
A corollary to try-catch is the concept of Fail Fast, which generally says that debugging productivity increases when a system immediately fails instead of failing slowly (read: after hours, days, weeks, months or even years of operation).
A good example of failing fast in the .NET Framework is the usage of Convert.ToInt32() versus a straight up cast using (int), like this:
int? settingValue = Convert.ToInt32(SomeSettingString);
if(settingValue == null)
{
// Do something here
}
else
{
// Do something else here
}
If SomeSettingString can be converted to an int, then the value is set to and Do something else logic is executed. Suppose a year from now, the setting changes and null is returned, because the conversion fails, now all of a sudden the Do something here logic executes and it is a debugging adventure to figure out that this condition happens, if you can find out at all. Most issues like this seem to only happen in PRODUCTION and not DEV.
Now let's look at the same thing, but by failing fast, like this:
try
{
int settingValue = (int)SomeSettingString;
}
catch(Exception ex)
{
// Fail fast and throw exception
throw new Exception("Fail fast");
}
Now the exception happens immediately when the setting string causes a conversion to int failure.
Note: Beware that failing fast can be sabotaged by empty catch blocks that "eat" exceptions. try blocks with empty catch blocks should be avoided, because they invariably lead to the "eaten" exception scenario.
Don't do this:
try
{
// Exception waiting to happen here
}
catch(Exception ex)
{
// Catch-all, because all exceptions derive from Exception class
// So this will eat exceptions and pretend like they never happened
}
Here's what you want to avoid at any level: a bunch of methods that all look like this:
void method()
{
try
{
// some code here that may potentially throw an exception
}
catch ( /* anything here */)
{
// code right here to handle that exception
}
}
If that's what you're doing, you may just as well go back to VB's old On Error Goto system, because you haven't gained anything. Exceptions provide two major advantages for error handling: the ability to easily handle different types of errors in different ways, and the ability for errors to be caught further up in the program's call stack. It's the second advantage that you're asking about here.
So we see that you do want to allow exceptions to "bubble up" to higher layers, as it's a big part of why we have exceptions at all... but do you always want to handle them at the presentation layer? No, we can do better. Sometimes, there may be business rules about how to respond to certain exceptions from the data layer. Sometimes, the data layer itself may be able to handle and recover from an exception without alerting the layer above it.
On the other hand, an advantage of exceptions is that it can leave you to write simpler code in the lowers layers, with fewer breaks from the normal flow of program execution for error handling code. That comes at the price of instead placing more of try/catch in the presentation tier. Again, this doesn't mean that the presentation tier is the only place to handle them, but this is the place to make the effort to ensure they don't get past your presentation layer un-caught. If you can't handle them anywhere else, do have a way to catch them in the presentation layer and show them to the user in a friendly way. It's also a good idea to use the the same mechanism to log or report your exceptions, so you can get good metrics on where you applications fails, and then use that information to make your application better.
When you do get to the point that you're inside an last-ditch exception handler, you may also want to consider terminating the application. If you really have unexpected things going on, such that unhandled exceptions make it through the presentation tier, there's a valid school of thought that suggests it may not be a good idea to continue running the program. But even in this case, you'll want to catch and try to report the exception, and then crash as gracefully as possible.

Conventions for exceptions or error codes [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 1 year ago.
Improve this question
Yesterday I was having a heated debate with a coworker on what would be the preferred error reporting method. Mainly we were discussing the usage of exceptions or error codes for reporting errors between application layers or modules.
What rules do you use to decide if you throw exceptions or return error codes for error reporting?
In high-level stuff, exceptions; in low-level stuff, error codes.
The default behaviour of an exception is to unwind the stack and stop the program, if I'm writing a script an and I go for a key that's not in a dictionary it's probably an error, and I want the program to halt and let me know all about that.
If, however, I'm writing a piece of code which I must know the behaviour of in every possible situation, then I want error codes. Otherwise I have to know every exception that can be thrown by every line in my function to know what it will do (Read The Exception That Grounded an Airline to get an idea of how tricky this is). It's tedious and hard to write code that reacts appropriately to every situation (including the unhappy ones), but that's because writing error-free code is tedious and hard, not because you're passing error codes.
Both Raymond Chen and Joel have made some eloquent arguments against using exceptions for everything.
I normally prefer exceptions, because they have more contextual information and can convey (when properly used) the error to the programmer in a clearer fashion.
On the other hand, error codes are more lightweight than exceptions but are harder to maintain. Error checking can inadvertently be omitted. Error codes are harder to maintain because you have to keep a catalog with all error codes and then switch on the result to see what error was thrown. Error ranges can be of help here, because if the only thing we are interested in is if we are in the presence of an error or not, it is simpler to check (e.g., an HRESULT error code greater or equal to 0 is success and less than zero is failure). They can inadvertently be omitted because there is no programmatic forcing that the developer will check for error codes. On the other hand, you cannot ignore exceptions.
To summarize I prefer exceptions over error codes in almost all situations.
I prefer exceptions because
they interupt the flow of logic
they benefit from class hierarchy which gives more features/functionality
when used properly can represent a wide range of errors (e.g. an InvalidMethodCallException is also a LogicException, as both occur when there's a bug in your code that should be detectable before runtime), and
they can be used to enhance the error (i.e. a FileReadException class definition can then contain code to check whether the file exists, or is locked, etc)
Error codes can be ignored (and often are!) by the callers of your functions. Exceptions at least force them to deal with the error in some way. Even if their version of dealing with it is to have an empty catch handler (sigh).
Exceptions over error codes, no doubt about it. You get much of the same benefits from exceptions as you do with error codes, but also much more, without the shortcomings of error codes. The only knock on exceptions is that it is slightly more overhead; but in this day and age, that overhead should be considered negligible for nearly all applications.
Here are some articles discussing, comparing and contrasting the two techniques:
Object Oriented Exception Handling in Perl
Exceptions vs. status returns
There are some good links in those that can give you further reading.
I would never mix the two models...it's too hard to convert from one to the other as you move from one part of the stack which is using error codes, to a higher piece that is using exceptions.
Exceptions are for "anything that stops or inhibits the method or subroutine from doing what you asked it to do" ... NOT to pass messages back about irregularities or unusual circumstances, or the state of the system, etc. Use return values or ref (or out) parameters for that.
Exceptions allow methods to be written (and utilized) with semantics that are dependent on the method's function, i.e. a method that returns an Employee object or List of Employees can be typed to do just that, and you can utilize it by calling.
Employee EmpOfMonth = GetEmployeeOfTheMonth();
With error codes, all methods return an error code, so, for those that need to return something else to be used by the calling code, you have to pass a reference variable to be populated with that data, and test the return value for the error code, and handle it, on every function or method call.
Employee EmpOfMonth;
if (getEmployeeOfTheMonth(ref EmpOfMonth) == ERROR)
// code to Handle the error here
If you code so that each method does one and only one simple thing, then you should throw an exception whenever the method cannot accomplish the method's desired objective. Exceptions are much richer and easier to use in this way than error codes. Your code is much cleaner - The standard flow of the "normal" code path can be devoted strictly to the case where the method IS able to accomplish what you wanted it to do... And then the code to clean up, or handle the "exceptional" circumstances when something bad happens that prevents the method from completing successfully can be siloed away from the normal code. Additionally, if you can't handle the exception where it occurred, and must pass it up the stack to a UI, (or worse, across the wire from a mid-tier component to a UI), then with the exception model, you don't need to code every intervening method in your stack to recognize and pass the exception up the stack... The exception model does this for you automagically.... With error codes, this piece of the puzzle can get onerous very rapidly.
You should use both. The thing is to decide when to use each one.
There are a few scenarios where exceptions are the obvious choice:
In some situations you can't do anything with the error code, and you just need to handle it in an upper level in the call stack, usually just log the error, display something to the user or close the program. In these cases, error codes would require you to bubble up the error codes manually level by level which is obviously much easier to do with exceptions. The point is that this is for unexpected and unhandleable situations.
Yet about situation 1 (where something unexpected and unhandleable happens you just wan't to log it), exceptions can be helpful because you might add contextual information. For example if I get a SqlException in my lower-level data helpers, I will want to catch that error in the low-level (where I know the SQL command that caused the error) so I can capture that information and rethrow with additional information. Please note the magic word here: rethrow, and not swallow.
The first rule of exception handling: do not swallow exceptions. Also, note that my inner catch doesn't need to log anything because the outer catch will have the whole stack trace and may log it.
In some situations you have a sequence of commands, and if any of them fail you should cleanup/dispose resources(*), whether or not this is an unrecoverable situation (which should be thrown) or a recoverable situation (in which case you can handle locally or in the caller code but you don't need exceptions). Obviously it's much easier to put all those commands in a single try, instead of testing error codes after each method, and cleanup/dispose in the finally block. Please note that if you want the error to bubble up (which is probably what you want), you don't even need to catch it - you just use the finally for cleanup/dispose - you should only use catch/retrow if you want to add contextual information (see bullet 2).
One example would be a sequence of SQL statements inside a transaction block. Again, this also a "unhandleable" situation, even if you decide to catch it early (treat it locally instead of bubbling up to the top) it's still a fatal situation from where the best outcome is to abort everything or at least abort a large part of the process.
(*) This is like the on error goto that we used in old Visual Basic
In constructors you can only throw exceptions.
Having said that, in all other situations where you're returning some information on which the caller CAN/SHOULD take some action, using return codes is probably a better alternative. This includes all expected "errors", because probably they should be handled by the immediate caller, and will hardly need to be bubbled up too many levels up in the stack.
Of course it's always possible to treat expected errors as exceptions, and catch then immediately one level above, and it's also possible to encompass every line of code in a try catch and take actions for each possible error. IMO, this is bad design, not only because it's much more verbose, but specially because the possible exceptions that might be thrown are not obvious without reading the source code - and exceptions could be thrown from any deep method, creating invisible gotos. They break code structure by creating multiple invisible exit points that make code hard to read and inspect. In other words, you should never use exceptions as flow-control, because that would be hard for others to understand and maintain. It can get even difficult to understand all possible code flows for testing.
Again: for correct cleanup/dispose you can use try-finally without catching anything.
The most popular criticism about return codes is that "someone could ignore the error codes, but in the same sense someone can also swallow exceptions. Bad exception handling is easy in both methods. But writing good error-code-based program is still much easier than writing an exception-based program. And if one by any reason decides to ignore all errors (the old on error resume next), you can easily do that with return codes and you can't do that without a lot of try-catchs boilerplate.
The second most popular criticism about return codes is that "it's difficult to bubble up" - but that's because people don't understand that exceptions are for non-recoverable situations, while error-codes are not.
Deciding between exceptions and error codes is a gray area. It's even possible that you need to get an error code from some reusable business method, and then you decide to wrap that into an exception (possibly adding information) and let it bubble up. But it's a design mistake to assume that ALL errors should be thrown as exceptions.
To sum it up:
I like to use exceptions when I have an unexpected situation, in which there's not much to do, and usually we want to abort a large block of code or even the whole operation or program. This is like the old "on error goto".
I like to use return codes when I have expected situations in which the caller code can/should take some action. This includes most business methods, APIs, validations, and so on.
This difference between exceptions and error codes is one of the design principles of the GO language, which uses "panic" for fatal unexpected situations, while regular expected situations are returned as errors.
Yet about GO, it also allows multiple return values , which is something that helps a lot on using return codes, since you can simultaneously return an error and something else. On C#/Java we can achieve that with out parameters, Tuples, or (my favorite) Generics, which combined with enums can provide clear error codes to the caller:
public MethodResult<CreateOrderResultCodeEnum, Order> CreateOrder(CreateOrderOptions options)
{
....
return MethodResult<CreateOrderResultCodeEnum>.CreateError(CreateOrderResultCodeEnum.NO_DELIVERY_AVAILABLE, "There is no delivery service in your area");
...
return MethodResult<CreateOrderResultCodeEnum>.CreateSuccess(CreateOrderResultCodeEnum.SUCCESS, order);
}
var result = CreateOrder(options);
if (result.ResultCode == CreateOrderResultCodeEnum.OUT_OF_STOCK)
// do something
else if (result.ResultCode == CreateOrderResultCodeEnum.SUCCESS)
order = result.Entity; // etc...
If I add a new possible return in my method, I can even check all callers if they are covering that new value in a switch statement for example. You really can't do that with exceptions. When you use return codes, you'll usually know in advance all possible errors, and test for them. With exceptions you usually don't know what might happen. Wrapping enums inside exceptions (instead of Generics) is an alternative (as long as it's clear the type of exceptions that each method will throw), but IMO it's still bad design.
EDIT 2020-10-11:
Since C# 7.0 (March 2017) instead of Generics I prefer to use the new Tuples syntax which allows multiple return values (so we can use GO-like syntax where methods return a result OR an error).
public enum CreateUserResultCodeEnum
{
[Description("Username not available")]
NOT_AVAILABLE,
}
public (User user, CreateUserResultCodeEnum? error) CreateUser(string userName)
// (try to create user, check if not available...)
if (notAvailable)
return (null, CreateUserResultCodeEnum.NOT_AVAILABLE);
return (user, null);
}
// How to call and deconstruct tuple:
(var user, var error) = CreateUser("john.doe");
if (user != null) ...
if (error == CreateUserResultCodeEnum.NOT_AVAILABLE) ...
// Or returning a single object (named tuple):
var result = CreateUser("john.doe");
if (result.user != null) ...
if (result.error == CreateUserResultCodeEnum.NOT_AVAILABLE) ...
EDIT 2021-01-09:
A few days ago I wrote this blog post about how we can (in some cases!) use multiple returns instead of exceptions (like golang convention explained above, not supposed to replace all your exceptions but supposed to give you arsenal to decide between when to use exceptions and when to use return codes).
By the end of the post I'm mixing two models - basically I'm using the ValueTuple syntax (which is very concise and elegant) but yet using Generics as the underlying structure.
Basically I use implicit conversion operator and type deconstructors to convert back and forth between ValueTuple and CommandResult<TEntity, TError>.
In the past I joined the errorcode camp (did too much C programming). But now I have seen the light.
Yes exceptions are a bit of a burden on the system. But they simplify the code, reducing the number of errors (and WTF's).
So use exception but use them wise. And they will be your friend.
As a side note. I have learned to document which exception can be thrown by which method. Unfortunately this is not required by most languages. But it increases the chance of handling the right exceptions at the right level.
There may be a few situations where using exceptions in a clean, clear, correct way is cumbersome, but the vast majority of the time exceptions are the obvious choice. The biggest benefit exception handling has over error codes is that it changes the flow of execution, which is important for two reasons.
When an exception occurs, the application is no longer following it's 'normal' execution path. The first reason why this is so important is that unless the author of the code goes well and truly out of their way to be bad, the program will halt and not continue doing unpredictable things. If an error code doesn't get checked and appropriate actions aren't taken in response to a bad error code, the program will keep on doing what it's doing and who knows what the result of that action will be. There are lots of situations where having the program do 'whatever' could wind up being very expensive. Consider a program that retrieves performance information for various financial instruments a company sells, and delivers that information to brokers/wholesalers. If something goes wrong and the program keeps going, it could ship erroneous performance data to the brokers and wholesalers. I don't know about anybody else, but I don't want to be the one sitting in a VPs office explaining why my code caused the company to get 7-figures worth of regulatory fines. Delivering an error message to customers is generally preferable to delivering wrong data that could look to be 'real', and the latter situation is much easier to run into with a much less aggressive approach like error codes.
The second reason why I like exceptions and their breaking of the normal execution is that it makes it much, much easier to keep the 'normal things are happening' logic separate from the 'something went wrong logic'. To me, this:
try {
// Normal things are happening logic
catch (// A problem) {
// Something went wrong logic
}
...is preferable to this:
// Some normal stuff logic
if (errorCode means error) {
// Some stuff went wrong logic
}
// Some normal stuff logic
if (errorCode means error) {
// Some stuff went wrong logic
}
// Some normal stuff logic
if (errorCode means error) {
// Some stuff went wrong logic
}
There are other little things about exceptions that are nice, as well. Having a bunch of conditional logic to keep track of whether any of the methods being called in a function had an error code returned, and return that error code higher up is a lot of boiler plate. In fact, it's a lot of boiler plate that can go wrong. I have a lot more faith in the exception system of most languages than I do a rats nest of if-else-if-else statements that 'Fresh-out-of-college' Fred wrote, and I have a lot better things to do with my time than code reviewing said rat's nest.
My reasoning would be if you are writing a low-level driver that really needs performance, then use error codes. But if you're using that code in a higher-level application and it can handle a bit of overhead, then wrap that code with an interface which checks those error codes and raises exceptions.
In all other cases, exceptions are probably the way to go.
My approach is that we can use both, i.e. Exceptions and Errors codes at the same time.
I'm used to define several types of Exceptions (ex: DataValidationException or ProcessInterruptExcepion) and inside each exception define a more detailed description of each problem.
A Simple Example in Java:
public class DataValidationException extends Exception {
private DataValidation error;
/**
*
*/
DataValidationException(DataValidation dataValidation) {
super();
this.error = dataValidation;
}
}
enum DataValidation{
TOO_SMALL(1,"The input is too small"),
TOO_LARGE(2,"The input is too large");
private DataValidation(int code, String input) {
this.input = input;
this.code = code;
}
private String input;
private int code;
}
In this way i use Exceptions to define category errors, and error codes to define more detailed info about the problem.
I may be sitting on the fence here, but...
It depends on the language.
Whichever model you choose, be consistent about how you use it.
In Python, use of exceptions is standard practice, and I'm quite happy to define my own exceptions. In C you don't have exceptions at all.
In C++ (in the STL at least), exceptions are typically only thrown for truly exceptional errors (I virtually never see them myself). I see no reason to do anything different in my own code. Yes it's easy to ignore return values, but C++ doesn't force you to catch exceptions either. I think you just have to get into the habit of doing it.
The code base I work on is mostly C++ and we use error codes almost everywhere, but there's one module that raises exceptions for any error, including very unexceptional ones, and all the code that uses that module is pretty horrible. But that might just be because we've mixed exceptions and error codes. The code that consistently uses error codes is much easier to work with. If our code consistently used exceptions, maybe it wouldn't be as bad. Mixing the two doesn't seem to work so well.
Since I work with C++, and have RAII to make them safe to use, I use exceptions almost exclusively. It pulls error handling out of the normal program flow and makes the intent more clear.
I do leave exceptions for exceptional circumstances though. If I'm expecting that a certain error is going to happen a lot I'll check that the operation will succeed before performing it, or call a version of the function that uses error codes instead (Like TryParse())
Method signatures should communicate to you what the method does. Something like
long errorCode = getErrorCode();
might be fine, but
long errorCode = fetchRecord();
is confusing.
Exceptions are for exceptional circumstances - ie, when they are not part of the normal flow of the code.
It's quite legitimate to mix Exceptions and error codes, where error codes represent the status of something, rather than an error in the running of the code per se (e.g. checking the return code from a child process).
But when an exceptional circumstance occurs I believe Exceptions are the most expressive model.
There are cases where you might prefer, or have, to use error codes in place of Exceptions, and these have been adequately covered already (other than other obvious constrains such as compiler support).
But going in the other direction, using Exceptions allows you to build even higher level abstractions to your error handling, that can make your code even more expressive and natural. I would highly recommend reading this excellent, yet underrated, article by C++ expert Andrei Alexandrescu on the subject of what he calls, "Enforcements": http://www.ddj.com/cpp/184403864. Although it's a C++ article the principles are generally applicable, and I have translated the enforcements concept to C# quite successfully.
First, I agree with Tom's answer that for high-level stuff use exceptions, and for low-level stuff use error codes, as long as it is not Service Oriented Architecture (SOA).
In SOA, where methods may be called across different machines, exceptions may not be passed over the wire, instead, we use success/failure responses with a structure like below (C#):
public class ServiceResponse
{
public bool IsSuccess => string.IsNullOrEmpty(this.ErrorMessage);
public string ErrorMessage { get; set; }
}
public class ServiceResponse<TResult> : ServiceResponse
{
public TResult Result { get; set; }
}
And use like this:
public async Task<ServiceResponse<string>> GetUserName(Guid userId)
{
var response = await this.GetUser(userId);
if (!response.IsSuccess) return new ServiceResponse<string>
{
ErrorMessage = $"Failed to get user."
};
return new ServiceResponse<string>
{
Result = user.Name
};
}
When these are used consistently in your service responses it creates a very nice pattern of handling success/failures in the application. This allows easier error handling in async calls within services as well as across services.
I would prefer Exceptions for all error cases, except when a failure is an expectable bug-free result of a function that returns a primitive datatype. E.g. finding the index of a substring within a larger string would usually return -1 if not found, instead of raising a NotFoundException.
Returning invalid pointers that might be dereferenced (e.g. causing NullPointerException in Java) is not acceptable.
Using multiple different numerical error codes (-1, -2) as return values for the same function is usually bad style, as clients might do a "== -1" check instead of "< 0".
One thing to keep in mind here is the evolution of APIs over time. A good API allows to change and extend failure behavior in several ways without breaking clients. E.g. if a client error handle checked for 4 error cases, and you add a fifth error value to your function, the client handler may not test this and break. If you raise Exceptions, this will usually make it easier for clients to migrate to a newer version of a library.
Another thing to consider is when working in a team, where to draw a clear line for alldevelopers to make such a decision. E.g. "Exceptions for high-level stuff, error codes for low-level stuff" is very subjective.
In any case, where more than one trivial type of error is possible, the source code should never use the numeric literal to return an error code or to handle it (return -7, if x == -7 ...), but always a named constant (return NO_SUCH_FOO, if x == NO_SUCH_FOO) .
If you work under big project, you can't use only exceptions or only error codes. In different cases you should use different approaches.
For example, you decide to use exceptions only. But once you decide to use async event processing. It is bad idea to use exceptions for error handling in this situations. But use error codes everywhere in application is tedious.
So my opinion that it is normal to use both exceptions and error codes simultaneous.
For most applications, exceptions are better. The exception is when the software has to communicate with other devices. The domain I work in is industrial controls. Here errors codes are preferred and expected. So my answer is that it does depend on the situation.
I think it also depends on whether you really need information like stack trace from the result. If yes, you definitely go for Exception which provide object full with lots of information about problem. However, if you are just interested in result and don't care why that result then go for error code.
e.g. When you are processing file and face IOException, client might interested in knowing from where this was triggered, in opening file or parsing file etc. So better you return IOException or its specific subclass. However, scenario like you have login method and you want to know it was successful or not, there either you just return boolean or to show correct message, return error code. Here Client is not interested in knowing which part of logic caused that error code. He just know if its Credential invalid or account lock etc.
Another usecase I can think of is when data travels on network. Your remote method can return just error code instead of Exception to minimize data transfer.
My general rule is:
Only one error could appear in a function: use error code (as parameter of the function)
More than one specific error could appear: throw exception
Error codes also don't work when your method returns anything other than a numeric value...

When to rethrow an exception, when to return FALSE?

I am developing a wrapper for a third party function library that is interfacing with some special hardware. So basically, I want to encapsulate the dll functions (bool Connect(), void Disconnect() etc) in a MyHardwareObject with connect- and disconnect methods.
The Connect function from the dll can throw some specific exceptions, for example when the hardware is not present. For the application, the information on why the connect method failed is considered unimportant, so the additional information contained in the exception is not needed.
What is the best way of handling those exceptions, returning false, or leaving the exception unhandled here and catch it on the level that would otherwise handle the fact that the connect method returnded false?
bool MyHardwareObject.Connect()
{
try
{
ThirdPartyLibrary.Connect();
}
catch (SomeException)
{
return false;
}
return true;
}
As opposed to
bool MyHardwareObject.Connect()
{
ThirdPartyLibrary.Connect();
return true;
}
(or in the second case better void MyHardwareObject.Connect(), since we either return true, or throw an exception?)
Or what else would you do? And most important: Why?
In my opinion the first case is certainly better than the second. You want your hardware library to wrap around the third-party library in a way that your users don't have to know exactly what's in it.
If you need more detail in the error handling besides true or false, you could consider rethrowing your own exception, translating the exception from the third party library to something more consistent with your own code.
It's really difficult to choose wisely between exceptions and return codes. It depends on a lot of things, and how errors are handled in the rest of your codebase would be the most important one - stay consistent.
Lately, I'm leaning more towards the "don't throw an exception if it's not worth it". Our exceptions do a lot of work: they log stuff, they create stack traces, etc. If I just want to convert a string to an integer, throwing an exception if the input string has the wrong format is probably not worth it. On the other hand, I have objects that I simply don't want in my system if they can't be constructed from proper data, and in that case their constructors throw exceptions.
If the rest of the codebase does not give you any hint on how to do it, I like this rule of thumb: imagine that throwing an exception makes your computer emit a loud beep. As long as you can put up with it, throwing is fine.
I would pass on the exceptions. If you don't you are masking potentially important information that could be useful later. I know that you aren't using it now, but what if you decide in the future to handle recovery differently based on the type of error. At that point you will have to undo all the code that you've written to mask out the exception. While I disagree with #MadKeithV on making it true/false, I think he has a point on wrapping the exception in your own exception that has, possibly, better semantics for your applicaiton.
Read this: http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html
In short:
Does the caller have any use for the return value? Can it recover or is an error the end of the world? If it's just a minor issue, use a return code. If the various states happen equally often (50% of the time it fails, 50% it works), use a return code because the caller must handle the situation anyway and an exception doesn't help.
Do you want to pass up additional information (like the setup of the third party thingy so someone has a chance to debug what happened later)? Use an exception.
I would suggest the second one. It will be the caller responsibility to handle the exception and take the right action according to the exception.
Suppose Connect throws AccountExpiredException, NetworkUnavailableException, InvalidCredentialsException, etc (these are just examples) I can prompt the user to "fix" the exception (Contact the Administrator, Check you network cable, Check Username/Password).
I would even suggest to remove the return value(indicator) and just make it void. Take a look at SqlConnection Open method - it's like you Connect - it doesn't return a value instead it throws an exception.
To swallow the exception like this
bool MyHardwareObject.Connect()
{
try
{
ThirdPartyLibrary.Connect();
}
catch (SomeException)
{
return false;
}
return true;
}
isn't a good idea IMHO. I would recommend you to implement IDisposable pattern.
Just my 2 cents.
Is this third-party library required for your program to run, or does it just add a little extra functionality, which, while nice, is not required? Also, is it likely that the hardware will fail. Finally, how many types of exceptions can the hardware throw at you?
If the library is not actually needed for your program to run, you certainly need to catch the exception at some point, but you may want to do it higher up.
If the hardware can throw multiple types of exceptions, it is more likely that you would want to rethrow the exception since simply returning a value will cause you to lose some of the information. However, you did say that the client doesn't care why it failed, just that it did, so this shouldn't be an issue.
Finally, if the hardware failure is commonplace, you might be more likely to want to return an error code (or false in this case) than if failure is commonplace.
I think in your case it really comes down to the first question. If you don't really need this library, return false and make sure that it is very clearly documented that the operation may fail for completely arbitrary reasons and that they need to check the return value. If you need it to work, rethrow the exception and let it propogate to wherever you can gracefully exit.
I believe the principle behind the exception mechanism is the "fail fast" theory.
Do you want your client's application to "fail fast" is the connection is unsuccessful ?
If yes, just throw back the exception or encapsulate the exception in an applicative exception of your own.
If the client ignore that exception, his application will stop.
Return false means the client might ignore the problem, his application might still crash, but "later"...

When to throw an exception?

I have exceptions created for every condition that my application does not expect. UserNameNotValidException, PasswordNotCorrectException etc.
However I was told I should not create exceptions for those conditions. In my UML those ARE exceptions to the main flow, so why should it not be an exception?
Any guidance or best practices for creating exceptions?
My personal guideline is: an exception is thrown when a fundamental assumption of the current code block is found to be false.
Example 1: say I have a function which is supposed to examine an arbitrary class and return true if that class inherits from List<>. This function asks the question, "Is this object a descendant of List?" This function should never throw an exception, because there are no gray areas in its operation - every single class either does or does not inherit from List<>, so the answer is always "yes" or "no".
Example 2: say I have another function which examines a List<> and returns true if its length is more than 50, and false if the length is less. This function asks the question, "Does this list have more than 50 items?" But this question makes an assumption - it assumes that the object it is given is a list. If I hand it a NULL, then that assumption is false. In that case, if the function returns either true or false, then it is breaking its own rules. The function cannot return anything and claim that it answered the question correctly. So it doesn't return - it throws an exception.
This is comparable to the "loaded question" logical fallacy. Every function asks a question. If the input it is given makes that question a fallacy, then throw an exception. This line is harder to draw with functions that return void, but the bottom line is: if the function's assumptions about its inputs are violated, it should throw an exception instead of returning normally.
The other side of this equation is: if you find your functions throwing exceptions frequently, then you probably need to refine their assumptions.
Because they're things that will happen normally. Exceptions are not control flow mechanisms. Users often get passwords wrong, it's not an exceptional case. Exceptions should be a truly rare thing, UserHasDiedAtKeyboard type situations.
My little guidelines are heavily influenced by the great book "Code complete":
Use exceptions to notify about things that should not be ignored.
Don't use exceptions if the error can be handled locally
Make sure the exceptions are at the same level of abstraction as the rest of your routine.
Exceptions should be reserved for what's truly exceptional.
It is NOT an exception if the username is not valid or the password is not correct. Those are things you should expect in the normal flow of operation. Exceptions are things that are not part of the normal program operation and are rather rare.
I do not like using exceptions because you can not tell if a method throws an exception just by looking at the call. Thats why exceptions should only be used if you can't handle the situation in a decent manner (think "out of memory" or "computer is on fire").
One rule of thumb is to use exceptions in the case of something you couldn't normally predict. Examples are database connectivity, missing file on disk, etc. For scenarios that you can predict, ie users attempting to log in with a bad password you should be using functions that return booleans and know how to handle the situation gracefully. You don't want to abruptly end execution by throwing an exception just because someone mistyped their password.
Others propose that exceptions should not be used because the bad login is to be expected in a normal flow if the user mistypes. I disagree and I don't get the reasoning. Compare it with opening a file.. if the file doesn't exist or is not available for some reason then an exception will be thrown by the framework. Using the logic above this was a mistake by Microsoft. They should have returned an error code. Same for parsing, webrequests, etc., etc..
I don't consider a bad login part of a normal flow, it's exceptional. Normally the user types the correct password, and the file does exist. The exceptional cases are exceptional and it's perfectly fine to use exceptions for those. Complicating your code by propagating return values through n levels up the stack is a waste of energy and will result in messy code. Do the simplest thing that could possibly work. Don't prematurely optimize by using error codes, exceptional stuff by definition rarely happens, and exceptions don't cost anything unless you throw them.
I think you should only throw an exception when there's nothing you can do to get out of your current state. For example if you are allocating memory and there isn't any to allocate. In the cases you mention you can clearly recover from those states and can return an error code back to your caller accordingly.
You will see plenty of advice, including in answers to this question, that you should throw exceptions only in "exceptional" circumstances. That seems superficially reasonable, but is flawed advice, because it replaces one question ("when should I throw an exception") with another subjective question ("what is exceptional"). Instead, follow the advice of Herb Sutter (for C++, available in the Dr Dobbs article When and How to Use Exceptions, and also in his book with Andrei Alexandrescu, C++ Coding Standards): throw an exception if, and only if
a precondition is not met (which typically makes one of the following
impossible) or
the alternative would fail to meet a post-condition or
the alternative would fail to maintain an invariant.
Why is this better? Doesn't it replace the question with several questions about preconditions, postconditions and invariants? This is better for several connected reasons.
Preconditions, postconditions and invariants are design characteristics of our program (its internal API), whereas the decision to throw is an implementation detail. It forces us to bear in mind that we must consider the design and its implementation separately, and our job while implementing a method is to produce something that satisfies the design constraints.
It forces us to think in terms of preconditions, postconditions and invariants, which are the only assumptions that callers of our method should make, and are expressed precisely, enabling loose coupling between the components of our program.
That loose coupling then allows us to refactor the implementation, if necessary.
The post-conditions and invariants are testable; it results in code that can be easily unit tested, because the post-conditions are predicates our unit-test code can check (assert).
Thinking in terms of post-conditions naturally produces a design that has success as a post-condition, which is the natural style for using exceptions. The normal ("happy") execution path of your program is laid out linearly, with all the error handling code moved to the catch clauses.
Exceptions are a somewhat costly effect, if for example you have a user that provides an invalid password, it is typically a better idea to pass back a failure flag, or some other indicator that it is invalid.
This is due to the way that exceptions are handled, true bad input, and unique critical stop items should be exceptions, but not failed login info.
I would say there are no hard and fast rules on when to use exceptions. However there are good reasons for using or not using them:
Reasons to use exceptions:
The code flow for the common case is clearer
Can return complex error information as an object (although this can also be achieved using error "out" parameter passed by reference)
Languages generally provide some facility for managing tidy cleanup in the event of the exception (try/finally in Java, using in C#, RAII in C++)
In the event no exception is thrown, execution can sometimes be faster than checking return codes
In Java, checked exceptions must be declared or caught (although this can be a reason against)
Reasons not to use exceptions:
Sometimes it's overkill if the error handling is simple
If exceptions are not documented or declared, they may be uncaught by calling code, which may be worse than if the the calling code just ignored a return code (application exit vs silent failure - which is worse may depend on the scenario)
In C++, code that uses exceptions must be exception safe (even if you don't throw or catch them, but call a throwing function indirectly)
In C++, it is hard to tell when a function might throw, therefore you must be paranoid about exception safety if you use them
Throwing and catching exceptions is generally significantly more expensive compared to checking a return flag
In general, I would be more inclined to use exceptions in Java than in C++ or C#, because I am of the opinion that an exception, declared or not, is fundamentally part of the formal interface of a function, since changing your exception guarantee may break calling code. The biggest advantage of using them in Java IMO, is that you know that your caller MUST handle the exception, and this improves the chance of correct behaviour.
Because of this, in any language, I would always derive all exceptions in a layer of code or API from a common class, so that calling code can always guarantee to catch all exceptions. Also I would consider it bad to throw exception classes that are implementation-specific, when writing an API or library (i.e. wrap exceptions from lower layers so that the exception that your caller receives is understandable in the context of your interface).
Note that Java makes the distinction between general and Runtime exceptions in that the latter need not be declared. I would only use Runtime exception classes when you know that the error is a result of a bug in the program.
If it's code running inside a loop that will likely cause an exception over and over again, then throwing exceptions is not a good thing, because they are pretty slow for large N. But there is nothing wrong with throwing custom exceptions if the performance is not an issue. Just make sure that you have a base exception that they all inherite, called BaseException or something like that. BaseException inherits System.Exception, but all of your exceptions inherit BaseException. You can even have a tree of Exception types to group similar types, but this may or may not be overkill.
So, the short answer is that if it doesn't cause a significant performance penalty (which it should not unless you are throwing a lot of exceptions), then go ahead.
Exception classes are like "normal" classes. You create a new class when it "is" a different type of object, with different fields and different operations.
As a rule of thumb, you should try balance between the number of exceptions and the granularity of the exceptions. If your method throws more than 4-5 different exceptions, you can probably merge some of them into more "general" exceptions, (e.g. in your case "AuthenticationFailedException"), and using the exception message to detail what went wrong. Unless your code handles each of them differently, you needn't creates many exception classes. And if it does, may you should just return an enum with the error that occured. It's a bit cleaner this way.
the rule of thumb for throwing exceptions is pretty simple. you do so when your code has entered into an UNRECOVERABLE INVALID state. if data is compromised or you cannot wind back the processing that occurred up to the point then you must terminate it. indeed what else can you do? your processing logic will eventually fail elsewhere. if you can recover somehow then do that and do not throw exception.
in your particular case if you were forced to do something silly like accept money withdrawal and only then check user/pasword you should terminate the process by throwing an exception to notify that something bad has happened and prevent further damage.
I agree with japollock way up there--throw an acception when you are uncertain about the outcome of an operation. Calls to APIs, accessing filesystems, database calls, etc. Anytime you are moving past the "boundaries" of your programming languages.
I'd like to add, feel free to throw a standard exception. Unless you are going to do something "different" (ignore, email, log, show that twitter whale picture thingy, etc), then don't bother with custom exceptions.
I'd say that generally every fundamentalism leads to hell.
You certainly wouldn't want to end up with exception driven flow, but avoiding exceptions altogether is also a bad idea. You have to find a balance between both approaches. What I would not do is to create an exception type for every exceptional situation. That is not productive.
What I generally prefer is to create two basic types of exceptions which are used throughout the system: LogicalException and TechnicalException. These can be further distinguished by subtypes if needed, but it is not generally not necessary.
The technical exception denotes the really unexpected exception like database server being down, the connection to the web service threw the IOException and so on.
On the other hand the logical exceptions are used to propagate the less severe erroneous situation to the upper layers (generally some validation result).
Please note that even the logical exception is not intended to be used on regular basis to control the program flow, but rather to highlight the situation when the flow should really end. When used in Java, both exception types are RuntimeException subclasses and error handling is highly aspect oriented.
So in the login example it might be wise to create something like AuthenticationException and distinguish the concrete situations by enum values like UsernameNotExisting, PasswordMismatch etc. Then you won't end up in having a huge exception hierarchy and can keep the catch blocks on maintainable level. You can also easily employ some generic exception handling mechanism since you have the exceptions categorized and know pretty well what to propagate up to the user and how.
Our typical usage is to throw the LogicalException during the Web Service call when the user's input was invalid. The Exception gets marshalled to the SOAPFault detail and then gets unmarshalled to the exception again on the client which is resulting in showing the validation error on one certain web page input field since the exception has proper mapping to that field.
This is certainly not the only situation: you don't need to hit web service to throw up the exception. You are free to do so in any exceptional situation (like in the case you need to fail-fast) - it is all at your discretion.
In general you want to throw an exception for anything that can happen in your application that is "Exceptional"
In your example, both of those exceptions look like you are calling them via a password / username validation. In that case it can be argued that it isn't really exceptional that someone would mistype a username / password.
They are "exceptions" to the main flow of your UML but are more "branches" in the processing.
If you attempted to access your passwd file or database and couldn't, that would be an exceptional case and would warrant throwing an exception.
Firstly, if the users of your API aren't interested in specific, fine-grained failures, then having specific exceptions for them isn't of any value.
Since it's often not possible to know what may be useful to your users, a better approach is to have the specific exceptions, but ensure they inherit from a common class (e.g., std::exception or its derivatives in C++). That allows your client to catch specific exceptions if they choose, or the more general exception if they don't care.
Exceptions are intended for events that are abnormal behaviors, errors, failures, and such. Functional behavior, user error, etc., should be handled by program logic instead. Since a bad account or password is an expected part of the logic flow in a login routine, it should be able to handle those situations without exceptions.
The simple answer is, whenever an operation is impossible (because of either application OR because it would violate business logic). If a method is invoked and it impossible to do what the method was written to do, throw an Exception. A good example is that constructors always throw ArgumentExceptions if an instance cannot be created using the supplied parameters. Another example is InvalidOperationException, which is thrown when an operation cannot be performed because of the state of another member or members of the class.
In your case, if a method like Login(username, password) is invoked, if the username is not valid, it is indeed correct to throw a UserNameNotValidException, or PasswordNotCorrectException if password is incorrect. The user cannot be logged in using the supplied parameter(s) (i.e. it's impossible because it would violate authentication), so throw an Exception. Although I might have your two Exceptions inherit from ArgumentException.
Having said that, if you wish NOT to throw an Exception because a login failure may be very common, one strategy is to instead create a method that returns types that represent different failures. Here's an example:
{ // class
...
public LoginResult Login(string user, string password)
{
if (IsInvalidUser(user))
{
return new UserInvalidLoginResult(user);
}
else if (IsInvalidPassword(user, password))
{
return new PasswordInvalidLoginResult(user, password);
}
else
{
return new SuccessfulLoginResult();
}
}
...
}
public abstract class LoginResult
{
public readonly string Message;
protected LoginResult(string message)
{
this.Message = message;
}
}
public class SuccessfulLoginResult : LoginResult
{
public SucccessfulLogin(string user)
: base(string.Format("Login for user '{0}' was successful.", user))
{ }
}
public class UserInvalidLoginResult : LoginResult
{
public UserInvalidLoginResult(string user)
: base(string.Format("The username '{0}' is invalid.", user))
{ }
}
public class PasswordInvalidLoginResult : LoginResult
{
public PasswordInvalidLoginResult(string password, string user)
: base(string.Format("The password '{0}' for username '{0}' is invalid.", password, user))
{ }
}
Most developers are taught to avoid Exceptions because of the overhead caused by throwing them. It's great to be resource-conscious, but usually not at the expense of your application design. That is probably the reason you were told not to throw your two Exceptions. Whether to use Exceptions or not usually boils down to how frequently the Exception will occur. If it's a fairly common or an fairly expectable result, this is when most developers will avoid Exceptions and instead create another method to indicate failure, because of the supposed consumption of resources.
Here's an example of avoiding using Exceptions in a scenario like just described, using the Try() pattern:
public class ValidatedLogin
{
public readonly string User;
public readonly string Password;
public ValidatedLogin(string user, string password)
{
if (IsInvalidUser(user))
{
throw new UserInvalidException(user);
}
else if (IsInvalidPassword(user, password))
{
throw new PasswordInvalidException(password);
}
this.User = user;
this.Password = password;
}
public static bool TryCreate(string user, string password, out ValidatedLogin validatedLogin)
{
if (IsInvalidUser(user) ||
IsInvalidPassword(user, password))
{
return false;
}
validatedLogin = new ValidatedLogin(user, password);
return true;
}
}
for me Exception should be thrown when a required technical or business rule fails.
for instance if a car entity is associated with array of 4 tires ... if one tire or more are null ... an exception should be Fired "NotEnoughTiresException" , cuz it can be caught at different level of the system and have a significant meaning through logging.
besides if we just try to flow control the null and prevent the instanciation of the car .
we might never never find the source of the problem , cuz the tire isn't supposed to be null in the first place .
the main reason for avoiding throwing an exception is that there is a lot of overhead involved with throwing an exception.
One thing the article below states is that an exception is for an exceptional conditions and errors.
A wrong user name is not necessarily a program error but a user error...
Here is a decent starting point for exceptions within .NET:
http://msdn.microsoft.com/en-us/library/ms229030(VS.80).aspx
Throwing exceptions causes the stack to unwind, which has some performance impacts (admitted, modern managed environments have improved on that). Still repeatedly throwing and catching exceptions in a nested situation would be a bad idea.
Probably more important than that, exceptions are meant for exceptional conditions. They should not be used for ordinary control flow, because this will hurt your code's readability.
I have three type of conditions that I catch.
Bad or missing input should not be an exception. Use both client side js and server side regex to detect, set attributes and forward back to the same page with messages.
The AppException. This is usually an exception that you detect and throw with in your code. In other words these are ones you expect (the file does not exist). Log it, set the message, and forward back to the general error page. This page usually has a bit of info about what happened.
The unexpected Exception. These are the ones you don't know about. Log it with details and forward them to a general error page.
Hope this helps
Security is conflated with your example: You shouldn't tell an attacker that a username exists, but the password is wrong. That's extra information you don't need to share. Just say "the username or password is incorrect."
I have philosophical problems with the use of exceptions. Basically, you are expecting a specific scenario to occur, but rather than handling it explicitly you are pushing the problem off to be handled "elsewhere." And where that "elsewhere" is can be anyone's guess.
To my mind, the fundamental question should be whether one would expect that the caller would want to continue normal program flow if a condition occurs. If you don't know, either have separate doSomething and trySomething methods, where the former returns an error and the latter does not, or have a routine that accepts a parameter to indicate whether an exception should be thrown if it fails). Consider a class to send commands to a remote system and report responses. Certain commands (e.g. restart) will cause the remote system to send a response but then be non-responsive for a certain length of time. It is thus useful to be able to send a "ping" command and find out whether the remote system responds in a reasonable length of time without having to throw an exception if it doesn't (the caller would probably expect that the first few "ping" attempts would fail, but one would eventually work). On the other hand, if one has a sequence of commands like:
exchange_command("open tempfile");
exchange_command("write tempfile data {whatever}");
exchange_command("write tempfile data {whatever}");
exchange_command("write tempfile data {whatever}");
exchange_command("write tempfile data {whatever}");
exchange_command("close tempfile");
exchange_command("copy tempfile to realfile");
one would want failure of any operation to abort the whole sequence. While one could check each operation to ensure it succeeded, it's more helpful to have the exchange_command() routine throw an exception if a command fails.
Actually, in the above scenario it may be helpful to have a parameter to select a number of failure-handling modes: never throw exceptions, throw exceptions for communication errors only, or throw exceptions in any cases where a command does not return a "success" indication.
You may use a little bit generic exceptions for that conditions. For e.g. ArgumentException is meant to be used when anything goes wrong with the parameters to a method (with the exception of ArgumentNullException). Generally you would not need exceptions like LessThanZeroException, NotPrimeNumberException etc. Think of the user of your method. The number of the conditions that she will want to handle specifically is equal to the number of the type of the exceptions that your method needs to throw. This way, you can determine how detailed exceptions you will have.
By the way, always try to provide some ways for users of your libraries to avoid exceptions. TryParse is a good example, it exists so that you don't have to use int.Parse and catch an exception. In your case, you may want to provide some methods to check if user name is valid or password is correct so your users (or you) will not have to do lots of exception handling. This will hopefully result in more readble code and better performance.
Ultimately the decision comes down to whether it is more helpful to deal with application-level errors like this using exception handling, or via your own home-rolled mechanism like returning status codes. I don't think there's a hard-and-fast rule about which is better, but I would consider:
Who's calling your code? Is this a public API of some sort or an internal library?
What language are you using? If it's Java, for example, then throwing a (checked) exception puts an explicit burden on your caller to handle this error condition in some way, as opposed to a return status which could be ignored. That could be good or bad.
How are other error conditions in the same application handled? Callers won't want to deal with a module that handles errors in an idiosyncratic way unlike anything else in the system.
How many things can go wrong with the routine in question, and how would they be handled differently? Consider the difference between a series of catch blocks that handle different errors and a switch on an error code.
Do you have structured information about the error you need to return? Throwing an exception gives you a better place to put this information than just returning a status.
Some useful things to think about when deciding whether an exception is appropriate:
what level of code you want to have run after the exception candidate occurs - that is, how many layers of the call stack should unwind. You generally want to handle an exception as close as possible to where it occurs. For username/password validation, you would normally handle failures in the same block of code, rather than letting an exception bubble up. So an exception is probably not appropriate. (OTOH, after three failed login attempts, control flow may shift elsewhere, and an exception may be appropriate here.)
Is this event something you would want to see in an error log? Not every exception is written to an error log, but it's useful to ask whether this entry in an error log would be useful - i.e., you would try to do something about it, or would be the garbage you ignore.
"PasswordNotCorrectException" isn't a good example for using exceptions. Users getting their passwords wrong is to be expected, so it's hardly an exception IMHO. You probably even recover from it, showing a nice error message, so it's just a validity check.
Unhandled exceptions will stop the execution eventually - which is good. If you're returning false, null or error codes, you will have to deal with the program's state all by yourself. If you forget to check conditions somewhere, your program may keep running with wrong data, and you may have a hard time figuring out what happened and where.
Of course, you could cause the same problem with empty catch statements, but at least spotting those is easier and doesn't require you to understand the logic.
So as a rule of thumb:
Use them wherever you don't want or simply can't recover from an error.
I would say that exceptions should be thrown if an unexpected behaviour is occuring that wasnt meant to be.
Like trying to update or delete a non existing entity. And it should be catched where the Exception can be handled and has meaning. For working in an alternative way to continue, add logging or returning a specific result on Api level.
If you expect something to be the case, you should build code to check and ensure it.