How to dynamically wrap existing functions, such as for a profiler? - function

I am new at Lisp, and am trying different things out to improve my skills. I want to write a macro that wraps existing functions so that I can set up before and after forms for these functions, kind of like CLOS's auxilliary methods or Elisp's advice package. The trace function's ability to wrap code dynamically has intrigued me, and it seems useful to be able to do this myself.
How can I do this?
Please note that I am using SBCL, and that, for the purposes of this question, I am not interested so much in the "right" way of doing this as I am in adding to my Lisp trick bag.

I don't know of any built-in support for this outside of CLOS. But you could just redefine the original function, like this:
(defmacro add-post (fun-name &body body)
(let ((orig (gensym)))
`(let ((,orig (fdefinition ,fun-name)))
(setf (fdefinition ,fun-name) (lambda (&rest args)
(apply ,orig args)
,#body)))))

Related

Working with Constructed (non-toplevel) Functions in Common Lisp

I'm unsure of the best way to work with functions that are not defined at the top level.
I've created a list of workhorse lambda expressions, call it *lambdas*, that are derived from a user's input specifications. There is also an *args* list that provides the appropriate arguments for each lambda. I would like to turn each lambda into a function, compile it, apply it to its respective arguments, and collect the results.
Currently, I am doing (setf (symbol-value *dummy-fn-name*) (compile nil lambda)) as a temporary place to hold each function, followed by (apply (symbol-value *dummy-fn-name*) args) to get each result, but this probably qualifies as a hack. Is there a more direct way of working with the lambdas? The functions do not need to hang around after they are apply-ed.
You don't need to put it into a global variable if it's just temporary:
(let ((func (compile nil lambda)))
(apply func args))
or simply
(apply (compile nil lambda) args)

Clojure/Clojurescript: Argument to resolve must be a quoted symbol

I'm attempting to use a string saved in a variable to call a function like so:
(defn update-product-list [] "Test")
(defn handle-state-change [action]
((resolve (symbol action))))
(handle-state-change "update-product-list")
However, this gives me the following error: Assert failed: Argument to resolve must be a quoted symbol
I've also tried changing the above line to:
((resolve (quote (symbol action))))
But this still gives an error. I also tried changing it just to:
((resolve 'action))
But this gives a different error I don't quite understand: js/action is shadowed by a local. I don't want to override the function just call it. Not sure where I'm going wrong. I've looked at a few examples, but can't see to pin it down.
ClojureScript supports :advanced optimization, in which Google Closure Compiler will rename, inline, or eliminate (unused) functions in order to implement minification. In short, the name of the function you want to look up will, in general, simply no longer exist under :advanced.
Because of this, ClojureScript's resolve is a compile-time facility (a macro requiring a literal quoted symbol).
If you are using :simple or self-hosted ClojureScript, more options are available to you because the support needed persists into runtime. For example Planck has a planck.core/resolve that behave's like Clojure's resolve. A similar approach is possible in Lumo, and similar facilities can be fashioned if using :simple.
In general though, given :advanced, if you need to map strings to a set of functions, you need to somehow arrange to have a static mapping constructed at compile time to support this (the set of functions must be known a priori, at compile time).
If you have a namespace (the name of which is statically known at compile time) which defines functions that need to be dynamically called via strings, you could consider making use of ns-publics:
cljs.user=> (ns foo.core)
foo.core=> (defn square [x] (* x x))
#'foo.core/square
foo.core=> (in-ns 'cljs.user)
nil
cljs.user=> (when-some [fn-var ((ns-publics 'foo.core) (symbol "square"))]
(fn-var 3))
9
This will work under :advanced. The mapping constructed by ns-publics is static; built at compile-time. If you have multiple namespaces that need such treatment, you could merge several calls to ns-publics to build a larger map.
The advantage of this approach is that the code involved is pretty short and requires little maintenance. The disadvantage is that it dumps all of the public vars of the namespace (foo.core in this example) into your generated code (and the generated code for vars is somewhat verbose). Another disadvantage is that you need to statically know the namespace(s) involved at compile time.
If you need to further minimize generated code size, you could just build / maintain a simple static map from string to function value as in
(def fns {"square" foo.core/square})
and use it appropriately, keeping it up to date as your codebase evolves.
Another option would be to mark the functions that you need to access using ^:export meta, and then to call those functions using JavaScript interop. For example if you define the function this way
(defn ^:export square [x] (* x x))
then you can use strings / interop to lookup the function and call it at runtime. Here's an example:
((goog.object/getValueByKeys js/window #js ["foo" "core" "square"]) 3)
The use of ^:export and :advanced is covered here. If you know that you are using :simple or less, then you can simply use JavaScript interop to call the functions of interest, without needn't to use ^:export.
Note that there is no general solution that would let you look up a function by name at runtime under :advanced without somehow putting some aspect of that function into your code at compile time. (In fact, if a function is not referenced in a way that Google Closure Compiler can statically, see, the function implementation will be completely eliminated as dead code.) In the above, ns-publics grabs all the vars for a namespace at compile time, rolling your own lookup map sets up static code to refer to the function value, and using ^:export statically arranges to make the name of the function persist into runtime.
You need to use it like this:
((resolve 'inc) 5)) => 6
or, deconstructed a bit:
(let [the-fn (resolve 'inc)]
(the-fn 7))
=> 8
If you have the function name as a string, use the symbol function to convert from string => symbol (from clojuredocs.org):
user=> ((-> "first" symbol resolve) [1 2 3])
1
And, never forget the Clojure CheatSheet!

Can name munging be avoided for an interop call in ClojureScript?

In advanced compilation
(js/console.log "HELLO"
js/window.navigator.msSaveBlob
(.. js/window -navigator -msSaveBlob)
(aget js/window "navigator" "msSaveBlob")
js/console.log)
=>
HELLO undefined undefined function function
I think this means that js/console has some provided externs, but navigator does not (or at least not the ms specific stuff).
AFAIK the only way to avoid this is to create some externs? But this seems unnecessarily obtuse; why would you ever want js/anything to be munged?? Wouldn't it make make more sense to never munge js/anything interop?
System functions are not munged; only your own functions are. You probably want (.log js/console ...) ?
For de-munging your own functions, place ^:export between the defn and the function name to export its name intact.
Here is more information.
All see the section called "munging" here.

Is the Macro argument a function?

I am trying to determine whether a given argument within a macro is a function, something like
(defmacro call-special? [a b]
(if (ifn? a)
`(~a ~b)
`(-> ~b ~a)))
So that the following two calls would both generate "Hello World"
(call-special #(println % " World") "Hello")
(call-special (println " World") "Hello")
However, I can't figure out how to convert "a" into something that ifn? can understand. Any help is appreciated.
You might want to ask yourself why you want to define call-special? in this way. It doesn't seem particularly useful and doesn't even save you any typing - do you really need a macro to do this?
Having said that, if you are determined to make it work then one option would be to look inside a and see if it is a function definition:
(defmacro call-special? [a b]
(if (#{'fn 'fn*} (first a))
`(~a ~b)
`(-> ~b ~a)))
This works because #() function literals are expanded into a form as follows:
(macroexpand `#(println % " World"))
=> (fn* [p1__2609__2610__auto__]
(clojure.core/println p1__2609__2610__auto__ " World"))
I still think this solution is rather ugly and prone to failure once you start doing more complicated things (e.g. using nested macros to generate your functions)
First, a couple of points:
Macros are simply functions that receive as input [literals, symbols, or collections of literals and symbols], and output [literals, symbols, or collections of literals and symbols]. Arguments are never functions, so you could never directly check the function the symbol maps to.
(call-special #(println % " World") "Hello") contains reader macro code. Since reader macros are executed before regular macros, you should expand this before doing any more analysis. Do this by applying (read-string "(call-special #(println % \" World\") \"Hello\")") which becomes (call-special (fn* [p1__417#] (println p1__417# "world")) "Hello").
While generally speaking, it's not obvious when you would want to use something when you should probably use alternative methods, here's how I would approach it.
You'll need to call macroexpand-all on a. If the code eventually becomes a (fn*) form, then it is guaranteed to be a function. Then you can safely emit (~a ~b). If it macroexpands to eventually be a symbol, you can also emit (~a ~b). If the symbol wasn't a function, then an error would throw at runtime. Lastly, if it macroexpands into a list (a function call or special form call), like (println ...), then you can emit code that uses the thread macro ->.
You can also cover the cases such as when the form macroexpands into a data structure, but you haven't specified the desired behavior.
a in your macro is just a clojure list data structure (it is not a function yet). So basically you need to check whether the data structure a will result is a function or not when it is evaluated, which can be done like show below:
(defmacro call-special? [a b]
(if (or (= (first a) 'fn) (= (first a) 'fn*))
`(~a ~b)
`(-> ~b ~a)))
By checking whether the first element of the a is symbol fn* or fn
which is used to create functions.
This macro will only work for 2 cases: either you pass it a anonymous function or an expression.

find about about the type of function parameters

can i somehow find all functions/macros that take a specific type of parameter ?
for example, what function accepts a Namespace object as parameter ?
(this is because i can create a namespace and store it in a var, but i don't know where i could use that var; what function might i pass that var to ?)
here is some code:
user=> (def working-namespace (create-ns 'my-namespace))
#'user/working-namespace
;i created a namspace and want to use it later
user=> (class working-namespace)
clojure.lang.Namespace
; out of curiosity i found out that "working-namespace" is a Namespace object
user=> (ns working-namespace)
nil
working-namespace=>
; but how do i switch to it ? this didn't do what i wanted...
user=> (refer working-namespace)
java.lang.ClassCastException: clojure.lang.Namespace cannot be cast to clojure.lang.Symbol (NO_SOURCE_FILE:0)
; this did not work either as my expectations
user=> (the-ns working-namespace)
#<Namespace my-namespace>
user=> (class (the-ns working-namespace))
clojure.lang.Namespace
; great, this gave me the same thing, a Namespace
hence the question: how do i use it dynamically (that's why i had put my namespace into a var) ? how do i get something useful for me from a var that points to a namespace ?
i can try look around for functions that make use of a Namespace object or that convert it to something else. i did and only found "intern". searching by hand not seems not that promising
what if i have this problem a million time ? is there an automated way to get me what i'm looking for without having to ask around each time ?
In Clojure 1.2 and previous function arguments dont have types. every function argument is an object. So the question really becomes "how do i find functions that will cast the object I pass them into this type. so searching for type hints will find some of them, though it wont get you everything. I wish it where more possible to answer this in general.
starting with 1.3 (current dev branch 9/2010) function paramerters and return types can have a defined type and will be passed/returned as that type instead of being cast to object and then cast on the other side. This drops one of the zeros from the exacution time of numerical functions with the important limitation that it only works for :static functions and only with direct calls (ie: not through map/reduce/filter/etc.) There is not a lot published on this change yet though it has the important breaking change that integers are no longer boxed by default and integer (actually Long) overflow throws an exception. you can read more here
(defn ^:static fib ^long [^long n]
(if (<= n 1)
1
(+ (fib (dec n)) (fib (- n 2)))))
so after 1.3 is released and widely adopted you will see code with more commonly defined types because they will offer a big speed benefit and then you will be able to find more functions by argument type though still not all of them.
At the same lecture where I learned about function argument types, Rich mentioned plans in the distant Clojure future (after 'Clojure in Clojure') about better support for exposing the compiler internals to tools such as IDEs. So there is hope that someday you will get a real answer to this question.
Dynamic languages make this slightly more difficult in practice and a lot harder in theory.
You already got a good answer from Arthur, so I'll only answer the "how do i get something useful for me from a var that points to a namespace ?". From (doc ns), note that it says unevaluated:
user=> (doc ns)
-------------------------
clojure.core/ns
([name docstring? attr-map? references*])
Macro
Sets *ns* to the namespace named by name (unevaluated), creating it
Now there's something you could do with in-ns if you want (the whole namespace object -> string -> symbol conversion is probably stupid, but enough to illustrate my point):
user=> (in-ns (symbol (str working-namespace)))
#<Namespace my-namespace>
my-namespace=>
I don't think you can do that without a lot of hackery in a dynamic language. If you want to now what function that take namespaces look at the documentation of the namespace stuff.
For example cleaning namespaces or reload them.
You wrote:
user=> (ns working-namespace)
nil
working-namespace=>
; but how do i switch to it ? this didn't do what i wanted...
But you did switch to the working-namespace namespace (that's why the prompt changed), so I'm not clear as to what "you wanted".
As I noted earlier, you need to present the ultimate problem are you trying to solve. It's entirely likely that messing with namespace objects won't be the solution.