Are idempotent functions the same as pure functions? - function

I read Wikipedia's explanation of idempotence.
I know it means a function's output is determined by it's input.
But I remember that I heard a very similar concept: pure function.
I Google them but can't find their difference...
Are they equivalent?

An idempotent function can cause idempotent side-effects.
A pure function cannot.
For example, a function which sets the text of a textbox is idempotent (because multiple calls will display the same text), but not pure.
Similarly, deleting a record by GUID (not by count) is idempotent, because the row stays deleted after subsequent calls. (additional calls do nothing)

A pure function is a function without side-effects where the output is solely determined by the input - that is, calling f(x) will give the same result no matter how many times you call it.
An idempotent function is one that can be applied multiple times without changing the result - that is, f(f(x)) is the same as f(x).
A function can be pure, idempotent, both, or neither.

No, an idempotent function will change program/object/machine state - and will make that change only once (despite repeated calls). A pure function changes nothing, and continues to provide a (return) result each time it is called.

Functional purity means that there are no side effects. On the other hand, idempotence means that a function is invariant with respect to multiple calls.
Every pure function is side effect idempotent because pure functions never produce side effects even if they are called more then once. However, return value idempotence means that f(f(x)) = f(x) which is not effected by purity.

A large source of confusion is that in computer science, there seems to be different definitions for idempotence in imperative and functional programming.
From wikipedia (https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning)
In computer science, the term idempotent is used more comprehensively to describe an operation that will produce the same results if executed once or multiple times. This may have a different meaning depending on the context in which it is applied. In the case of methods or subroutine calls with side effects, for instance, it means that the modified state remains the same after the first call. In functional programming, though, an idempotent function is one that has the property f(f(x)) = f(x) for any value x.
Since a pure function does not produce side effects, i am of the opinion that idempotence has nothing to do with purity.

I've found more places where 'idempotent' is defined as f(f(x)) = f(x) but I really don't believe that's accurate.
Instead I think this definition is more accurate (but not totally):
describing an action which, when performed multiple times on the same
subject, has no further effect on its subject after the first time it
is performed. A projection operator is idempotent.
The way I interpret this, if we apply f on x (the subject) twice like:
f(x);f(x);
then the (side-)effect is the same as
f(x);
Because pure functions dont allow side-effects then pure functions are trivially also 'idempotent'.
A more general (and more accurate) definition of idempotent also includes functions like
toggle(x)
We can say the degree of idempotency of a toggle is 2, because after applying toggle every 2 times we always end up with the same State

Related

Guidelines for listing the order of function arguments

Are there any rules that you follow to determine the order of function arguments? For example, float pow(float x, float exponent) vs float pow(float exponent, float x). For concreteness, C++ could be used, but the question is valid for all programming languages.
My main concern is from the usability point of view, not runtime performance.
Edit:
Some possible bases for ordering could be:
Inputs versus Output
The way a "formula" is usually written, i.e., arguments from left-to-write.
Specificity to the argument to the context of the function, i.e., whether it is a "general" argument, e.g., a singleton object of the system, or specific.
In the example you cite, I think the order was decided on the basis of the mathematical notation xexponent, in which the base is written before the exponent and becomes the left parameter.
I'm not aware of any really sound general principle other than to try to imagine what your users will expect and/or easily remember. People aren't even wholly agreed whether you should write (source, destination) or (destination, source) when copying (compare std::copy with std::memcpy), although I'm pretty sure that the former is now much more common.
There are a whole lot of general conventions, though, followed to different extents by different people:
if the function is considered primarly to act upon a particular object, put it first
parameters that are considered to "configure" the operation of the function come after parameters that are considered the main subject of the function.
out-params come last (but I suspect some people follow the reverse)
To some extent it doesn't really matter -- namely the extent to which your users have IDEs that tell them the parameter order as they type the function name.

What is the difference between a subroutine and a function? [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
What is the difference between a ‘function’ and a ‘procedure’?
I searched online for an answer to this question, and the answer I got was that a function can return a value, modify a value, etc., but a subroutine cannot. But I am not satisfied with this explanation and it seems to me that the difference ought to be more than just a matter of terminology.
So I am looking for a more conceptual answer to the question.
A function mirrors the mathematical definition of a function, which is a mapping from 1 or more inputs to a value.1
A subroutine is a general-purpose term for any chunk of code that has a definite entry point and exit point.
However, the precise meaning of these terms will vary from context to context.
1. Obviously, this is not the formal mathematical definition of a function.
A generic definition of function in programming languages is a piece of code that accepts zero or more input values and returns zero or one output value.
The most common definition of subroutine is a function that does not return anything and normally does not accept anything. It is only a piece of code with a name.
Actually in most languages functions do not differ in the way you declare them. So a subroutine may be called a function, but a function not necessarily may be called a subroutine.
Also there is people that consider functions and subroutines the same thing with a different name.
Subroutine - Wikipedia
It's worth noting as an addendum to #Oli's answer that in the mathematical sense a function must be "well-defined", which is to say its output is uniquely determined by its inputs, while this often isn't the case in programming languages.
Those that do make this guarantee (and also that their functions not cause side-effects) are called pure functional languages, an example of which being Haskell. They have the advantage (among others) of their functions being provably correct in their behaviour, which is generally not possible if functions rely on external state and/or have side-effects.
A function must return some value and must not change a global variable or a variable declared outside of the function's body. Under this situation, a function can only mimic it's mathematical counter part (the thing which maps a mathematical object to another mathematical object)
A subroutine doesn't return anything and usually is impure as it has to change some global state or variable otherwise there is no point in calling it. There is no mathematical parallel for a subroutine.

Purity vs Referential transparency

The terms do appear to be defined differently, but I've always thought of one implying the other; I can't think of any case when an expression is referentially transparent but not pure, or vice-versa.
Wikipedia maintains separate articles for these concepts and says:
From Referential transparency:
If all functions involved in the
expression are pure functions, then
the expression is referentially
transparent. Also, some impure
functions can be included in the
expression if their values are
discarded and their side effects are
insignificant.
From Pure expressions:
Pure functions are required to
construct pure expressions. [...] Pure
expressions are often referred to as
being referentially transparent.
I find these statements confusing. If the side effects from a so-called "impure function" are insignificant enough to allow not performing them (i.e. replace a call to such a function with its value) without materially changing the program, it's the same as if it were pure in the first place, isn't it?
Is there a simpler way to understand the differences between a pure expression and a referentially transparent one, if any? If there is a difference, an example expression that clearly demonstrates it would be appreciated.
If I gather in one place any three theorists of my acquaintance, at least two of them disagree on the meaning of the term "referential transparency." And when I was a young student, a mentor of mine gave me a paper explaining that even if you consider only the professional literature, the phrase "referentially transparent" is used to mean at least three different things. (Unfortunately that paper is somewhere in a box of reprints that have yet to be scanned. I searched Google Scholar for it but I had no success.)
I cannot inform you, but I can advise you to give up: Because even the tiny cadre of pointy-headed language theorists can't agree on what it means, the term "referentially transparent" is not useful. So don't use it.
P.S. On any topic to do with the semantics of programming languages, Wikipedia is unreliable. I have given up trying to fix it; the Wikipedian process seems to regard change and popular voting over stability and accuracy.
All pure functions are necessarily referentially transparent. Since, by definition, they cannot access anything other than what they are passed, their result must be fully determined by their arguments.
However, it is possible to have referentially transparent functions which are not pure. I can write a function which is given an int i, then generates a random number r, subtracts r from itself and places it in s, then returns i - s. Clearly this function is impure, because it is generating random numbers. However, it is referentially transparent. In this case, the example is silly and contrived. However, in, e.g., Haskell, the id function is of type a - > a whereas my stupidId function would be of type a -> IO a indicating that it makes use of side effects. When a programmer can guarantee through means of an external proof that their function is actually referentially transparent, then they can use unsafePerformIO to strip the IO back away from the type.
I'm somewhat unsure of the answer I give here, but surely somebody will point us in some direction. :-)
"Purity" is generally considered to mean "lack of side-effects". An expression is said to be pure if its evaluation lacks side-effects. What's a side-effect then? In a purely functional language, side-effect is anything that doesn't go by the simple beta-rule (the rule that to evaluate function application is the same as to substitute actual parameter for all free occurrences of the formal parameter).
For example, in a functional language with linear (or uniqueness, this distinction shouldn't bother at this moment) types some (controlled) mutation is allowed.
So I guess we have sorted out what "purity" and "side-effects" might be.
Referential transparency (according to the Wikipedia article you cited) means that variable can be replaced by the expression it denotes (abbreviates, stands for) without changing the meaning of the program at hand (btw, this is also a hard question to tackle, and I won't attempt to do so here). So, "purity" and "referential transparency" are indeed different things: "purity" is a property of some expression roughly means "doesn't produce side-effects when executed" whereas "referential transparency" is a property relating variable and expression that it stands for and means "variable can be replaced with what it denotes".
Hopefully this helps.
These slides from one ACCU2015 talk have a great summary on the topic of referential transparency.
From one of the slides:
A language is referentially transparent if (a)
every subexpression can be replaced by any other
that’s equal to it in value and (b) all occurrences of
an expression within a given context yield the
same value.
You can have, for instance, a function that logs its computation to the program standard output (so, it won't be a pure function), but you can replace calls for this function by a similar function that doesn't log its computation. Therefore, this function have the referential transparency property. But... the above definition is about languages, not expressions, as the slides emphasize.
[...] it's the same as if it were pure in the first place, isn't it?
From the definitions we have, no, it is not.
Is there a simpler way to understand the differences between a pure expression and a referentially transparent one, if any?
Try the slides I mentioned above.
The nice thing about standards is that there are so many of them to choose
from.
Andrew S. Tanenbaum.
...along with definitions of referential transparency:
from page 176 of Functional programming with Miranda by Ian Holyer:
8.1 Values and Behaviours
The most important property of the semantics of a pure functional language is that the declarative and operational views of the language coincide exactly, in the following way:
Every expression denotes a value, and there are valuescorresponding to all possible program behaviours. Thebehaviour produced by an expression in any context is completely determined by its value, and vice versa.
This principle, which is usually rather opaquely called referential transparency, can also be pictured in the following way:
and from Nondeterminism with Referential Transparency in Functional Programming Languages by F. Warren Burton:
[...] the property that an expression always has the same value in the same environment [...]
...for various other definitions, see Referential Transparency, Definiteness and Unfoldability by Harald Søndergaard and Peter Sestoft.
Instead, we'll begin with the concept of "purity". For the three of you who didn't know it already, the computer or device you're reading this on is a solid-state Turing machine, a model of computing intrinsically connected with effects. So every program, functional or otherwise, needs to use those effects To Get Things DoneTM.
What does this mean for purity? At the assembly-language level, which is the domain of the CPU, all programs are impure. If you're writing a program in assembly language, you're the one who is micro-managing the interplay between all those effects - and it's really tedious!
Most of the time, you're just instructing the CPU to move data around in the computer's memory, which only changes the contents of individual memory locations - nothing to see there! It's only when your instructions direct the CPU to e.g. write to video memory, that you observe a visible change (text appearing on the screen).
For our purposes here, we'll split effects into two coarse categories:
those involving I/O devices like screens, speakers, printers, VR-headsets, keyboards, mice, etc; commonly known as observable effects.
and the rest, which only ever change the contents of memory.
In this situation, purity just means the absence of those observable effects, the ones which cause a visible change to the environment of the running program, maybe even its host computer. It is definitely not the absence of all effects, otherwise we would have to replace our solid-state Turing machines!
Now for the question of 42 life, the Universe and everything what exactly is meant by the term "referential transparency" - instead of herding cats trying to bring theorists into agreement, let's just try to find the original meaning given to the term. Fortunately for us, the term frequently appears in the context of I/O in Haskell - we only need a relevant article...here's one: from the first page of Owen Stephen's Approaches to Functional I/O:
Referential transparency refers to the ability to replace a sub-expression with one of equal value, without changing the value of the outer expression. Originating from Quine the term was introduced to Computer Science by Strachey.
Following the references:
From page 9 of 39 in Christopher Strachey's Fundamental Concepts in Programming Languages:
One of the most useful properties of expressions is that called by Quine referential transparency. In essence this means that if we wish to find the value of an expression which contains a sub-expression, the only thing we need to know about the sub-expression is its value. Any other features of the sub-expression, such as its internal structure, the number and nature of its components, the order in which they are evaluated or the colour of the ink in which they are written, are irrelevant to the value of the main expression.
From page 163 of 314 in Willard Van Ormond Quine's Word and Object:
[...] Quotation, which thus interrupts the referential force of a term, may be said to fail of referential transparency2. [...] I call a mode of confinement Φ referentially transparent if, whenever an occurrence of a singular term t is purely referential in a term or sentence ψ(t), it is purely referential also in the containing term or sentence Φ(ψ(t)).
with the footnote:
2 The term is from Whitehead and Russell, 2d ed., vol. 1, p. 665.
Following that reference:
From page 709 of 719 in Principa Mathematica by Alfred North Whitehead and Bertrand Russell:
When an assertion occurs, it is made by means of a particular fact, which is an instance of the proposition asserted. But this particular fact is, so to speak, "transparent"; nothing is said about it, bit by means of it something is said about something else. It is the "transparent" quality which belongs to propositions as they occur in truth-functions.
Let's try to bring all that together:
Whitehead and Russell introduce the term "transparent";
Quine then defines the qualified term "referential transparency";
Strachey then adapts Quine's definition in defining the basics of programming languages.
So it's a choice between Quine's original or Strachey's adapted definition. You can try translating Quine's definition for yourself if you like - everyone who's ever contested the definition of "purely functional" might even enjoy the chance to debate something different like what "mode of containment" and "purely referential" really means...have fun! The rest of us will just accept that Strachey's definition is a little vague ("In essence [...]") and continue on:
One useful property of expressions is referential transparency. In essence this means that if we wish to find the value of an expression which contains a sub-expression,
the only thing we need to know about the sub-expression is its value. Any other features of the sub-expression, such as its internal structure, the number and nature of
its components, the order in which they are evaluated or the colour of the ink in which they are written, are irrelevant to the value of the main expression.
(emphasis by me.)
Regarding that description ("that if we wish to find the value of [...]"), a similar, but more concise statement is given by Peter Landin in The Next 700 Programming Languages:
the thing an expression denotes, i.e., its "value", depends only on the values of its sub-expressions, not on other properties of them.
Thus:
One useful property of expressions is referential transparency. In essence this means the thing an expression denotes, i.e., its "value", depends only on the values of its sub-expressions, not on other properties of them.
Strachey provides some examples:
(page 12 of 39)
We tend to assume automatically that the symbol x in an expression such as 3x2 + 2x + 17 stands for the same thing (or has the same value) on each occasion it occurs. This is the most important consequence of referential transparency and it is only in virtue of this property that we can use the where-clauses or λ-expressions described in the last section.
(and on page 16)
When the function is used (or called or applied) we write f[ε] where ε can be an expression. If we are using a referentially transparent language all we require to know about the expression ε in order to evaluate f[ε] is its value.
So referential transparency, by Strachey's original definition, implies purity - in the absence of an order of evaluation, observable and other effects are practically useless...
I'll quote John Mitchell Concept in programming language. He defines pure functional language has to pass declarative language test which is free from side-effects or lack of side effects.
"Within the scope of specific deceleration of x1,...,xn , all occurrence of an expression e containing only variables x1,...,xn have the same value."
In linguistics a name or noun phrase is considered referentially transparent if it may be replaced with the another noun phrase with same referent without changing the meaning of the sentence it contains.
Which in 1st case holds but in 2nd case it gets too weird.
Case 1:
"I saw Walter get into his new car."
And if Walter own a Centro then we could replace that in the given sentence as:
"I saw Walter get into his Centro"
Contrary to first :
Case #2 : He was called William Rufus because of his read beard.
Rufus means somewhat red and reference was to William IV of England.
"He was called William IV because of his read beard." looks too awkward.
Traditional way to say is, a language is referentially transparent if we may replace one expression with another of equal value anywhere in the program without changing the meaning of the program.
So, referential transparency is a property of pure functional language.
And if your program is free from side effects then this property will hold.
So give it up is awesome advice but get it on might also look good in this context.
Pure functions are those that return the same value on every call, and do not have side effects.
Referential transparency means that you can replace a bound variable with its value and still receive the same output.
Both pure and referentially transparent:
def f1(x):
t1 = 3 * x
t2 = 6
return t1 + t2
Why is this pure?
Because it is a function of only the input x and has no side-effects.
Why is this referentially transparent?
You could replace t1 and t2 in f1 with their respective right hand sides in the return statement, as follows
def f2(x):
return 3 * x + 6
and f2 will still always return the same result as f1 in every case.
Pure, but not referentially transparent:
Let's modify f1 as follows:
def f3(x):
t1 = 3 * x
t2 = 6
x = 10
return t1 + t2
Let us try the same trick again by replacing t1 and t2 with their right hand sides, and see if it is an equivalent definition of f3.
def f4(x):
x = 10
return 3 * x + 6
We can easily observe that f3 and f4 are not equivalent on replacing variables with their right hand sides / values. f3(1) would return 9 and f4(1) would return 36.
Referentially transparent, but not pure:
Simply modifying f1 to receive a non-local value of x, as follows:
def f5:
global x
t1 = 3 * x
t2 = 6
return t1 + t2
Performing the same replacement exercise from before shows that f5 is still referentially transparent. However, it is not pure because it is not a function of only the arguments passed to it.
Observing carefully, the reason we lose referential transparency moving from f3 to f4 is that x is modified. In the general case, making a variable final (or those familiar with Scala, using vals instead of vars) and using immutable objects can help keep a function referentially transparent. This makes them more like variables in the algebraic or mathematical sense, thus lending themselves better to formal verification.

What's that CS "big word" term for the same action always having the same effect

There's a computer science term for this that escapes my head, one of those words that ends with "-icity".
It means something like a given action will always produce the same result, IE there won't be any hysteresis, or the action will not alter the functioning of the system...
Ring a bell, anyone? Thanks.
Apologies for the tagging, I'm only tagging it Java b/c I learned about this in a Java class back in school and I figure that crowd tends to have more CS background...
This could mean two different things:
deterministic - meaning that given the same initial state, the same operation (with exactly the same data) will always produce the same resulting state (and optional output.) - http://en.wikipedia.org/wiki/Deterministic_algorithm
i.e. same action has the same effect - assuming you start from the same place in the same system. (Nothing random about it, nothing fed in from the outside that could effect the result...)
idempotent - meaning applying a function to a value once e.g. f(x) = v produces the same result as applying the function multiple times e.g. f(f(f(x))) = v - http://en.wikipedia.org/wiki/Idempotence
i.e. one or more function applications yields the same value given the same initial value
you mean idempotent ??
Referential transparency is also used in some CS circles.
Nullipotent?
deterministic ,.,-=
Are you looking for invariant?
http://en.wikipedia.org/wiki/Invariant_%28computer_science%29
In computer science, a predicate is
called an invariant to a sequence of
operations if the predicate always
evaluates at the end of the sequence
to the same value as before starting
the sequence.
side effect-free?
In math, a function 'f' is idempotent if multiple applications do not change the result.
you mean idempotence?
or the action will not alter the functioning of the system...
Are you looking for ‘idempotence’?
The "ends with -icity" part of your question makes me think you might be looking for monotonicity, even though it does not quite match description/definition of the word. From the Wikipedia article:
In mathematics, a monotonic function (or monotone function) is a function which preserves the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.
In the following illustrations (also borrowed from the Wikipedia article) three functions are drawn:
A:
B:
C:
A and B and both monotonic (increasing and decreasing respectively), while C is not monotonic.
You mean an atomic block of code?
The A in ACID.
Atomicity - states that database modifications must follow an “all or nothing” rule. Each transaction is said to be “atomic.” If one part of the transaction fails, the entire transaction fails.
It sounds like what you're describing would be a memoryless function. Although the term memorylessness is usually used for stochastic distributions, I don't quite remember if it has a programming equivalent...

Can every recursion be converted into iteration?

A reddit thread brought up an apparently interesting question:
Tail recursive functions can trivially be converted into iterative functions. Other ones, can be transformed by using an explicit stack. Can every recursion be transformed into iteration?
The (counter?)example in the post is the pair:
(define (num-ways x y)
(case ((= x 0) 1)
((= y 0) 1)
(num-ways2 x y) ))
(define (num-ways2 x y)
(+ (num-ways (- x 1) y)
(num-ways x (- y 1))
Can you always turn a recursive function into an iterative one? Yes, absolutely, and the Church-Turing thesis proves it if memory serves. In lay terms, it states that what is computable by recursive functions is computable by an iterative model (such as the Turing machine) and vice versa. The thesis does not tell you precisely how to do the conversion, but it does say that it's definitely possible.
In many cases, converting a recursive function is easy. Knuth offers several techniques in "The Art of Computer Programming". And often, a thing computed recursively can be computed by a completely different approach in less time and space. The classic example of this is Fibonacci numbers or sequences thereof. You've surely met this problem in your degree plan.
On the flip side of this coin, we can certainly imagine a programming system so advanced as to treat a recursive definition of a formula as an invitation to memoize prior results, thus offering the speed benefit without the hassle of telling the computer exactly which steps to follow in the computation of a formula with a recursive definition. Dijkstra almost certainly did imagine such a system. He spent a long time trying to separate the implementation from the semantics of a programming language. Then again, his non-deterministic and multiprocessing programming languages are in a league above the practicing professional programmer.
In the final analysis, many functions are just plain easier to understand, read, and write in recursive form. Unless there's a compelling reason, you probably shouldn't (manually) convert these functions to an explicitly iterative algorithm. Your computer will handle that job correctly.
I can see one compelling reason. Suppose you've a prototype system in a super-high level language like [donning asbestos underwear] Scheme, Lisp, Haskell, OCaml, Perl, or Pascal. Suppose conditions are such that you need an implementation in C or Java. (Perhaps it's politics.) Then you could certainly have some functions written recursively but which, translated literally, would explode your runtime system. For example, infinite tail recursion is possible in Scheme, but the same idiom causes a problem for existing C environments. Another example is the use of lexically nested functions and static scope, which Pascal supports but C doesn't.
In these circumstances, you might try to overcome political resistance to the original language. You might find yourself reimplementing Lisp badly, as in Greenspun's (tongue-in-cheek) tenth law. Or you might just find a completely different approach to solution. But in any event, there is surely a way.
Is it always possible to write a non-recursive form for every recursive function?
Yes. A simple formal proof is to show that both µ recursion and a non-recursive calculus such as GOTO are both Turing complete. Since all Turing complete calculi are strictly equivalent in their expressive power, all recursive functions can be implemented by the non-recursive Turing-complete calculus.
Unfortunately, I’m unable to find a good, formal definition of GOTO online so here’s one:
A GOTO program is a sequence of commands P executed on a register machine such that P is one of the following:
HALT, which halts execution
r = r + 1 where r is any register
r = r – 1 where r is any register
GOTO x where x is a label
IF r ≠ 0 GOTO x where r is any register and x is a label
A label, followed by any of the above commands.
However, the conversions between recursive and non-recursive functions isn’t always trivial (except by mindless manual re-implementation of the call stack).
For further information see this answer.
Recursion is implemented as stacks or similar constructs in the actual interpreters or compilers. So you certainly can convert a recursive function to an iterative counterpart because that's how it's always done (if automatically). You'll just be duplicating the compiler's work in an ad-hoc and probably in a very ugly and inefficient manner.
Basically yes, in essence what you end up having to do is replace method calls (which implicitly push state onto the stack) into explicit stack pushes to remember where the 'previous call' had gotten up to, and then execute the 'called method' instead.
I'd imagine that the combination of a loop, a stack and a state-machine could be used for all scenarios by basically simulating the method calls. Whether or not this is going to be 'better' (either faster, or more efficient in some sense) is not really possible to say in general.
Recursive function execution flow can be represented as a tree.
The same logic can be done by a loop, which uses a data-structure to traverse that tree.
Depth-first traversal can be done using a stack, breadth-first traversal can be done using a queue.
So, the answer is: yes. Why: https://stackoverflow.com/a/531721/2128327.
Can any recursion be done in a single loop? Yes, because
a Turing machine does everything it does by executing a single loop:
fetch an instruction,
evaluate it,
goto 1.
Yes, using explicitly a stack (but recursion is far more pleasant to read, IMHO).
Yes, it's always possible to write a non-recursive version. The trivial solution is to use a stack data structure and simulate the recursive execution.
In principle it is always possible to remove recursion and replace it with iteration in a language that has infinite state both for data structures and for the call stack. This is a basic consequence of the Church-Turing thesis.
Given an actual programming language, the answer is not as obvious. The problem is that it is quite possible to have a language where the amount of memory that can be allocated in the program is limited but where the amount of call stack that can be used is unbounded (32-bit C where the address of stack variables is not accessible). In this case, recursion is more powerful simply because it has more memory it can use; there is not enough explicitly allocatable memory to emulate the call stack. For a detailed discussion on this, see this discussion.
All computable functions can be computed by Turing Machines and hence the recursive systems and Turing machines (iterative systems) are equivalent.
Sometimes replacing recursion is much easier than that. Recursion used to be the fashionable thing taught in CS in the 1990's, and so a lot of average developers from that time figured if you solved something with recursion, it was a better solution. So they would use recursion instead of looping backwards to reverse order, or silly things like that. So sometimes removing recursion is a simple "duh, that was obvious" type of exercise.
This is less of a problem now, as the fashion has shifted towards other technologies.
Recursion is nothing just calling the same function on the stack and once function dies out it is removed from the stack. So one can always use an explicit stack to manage this calling of the same operation using iteration.
So, yes all-recursive code can be converted to iteration.
Removing recursion is a complex problem and is feasible under well defined circumstances.
The below cases are among the easy:
tail recursion
direct linear recursion
Appart from the explicit stack, another pattern for converting recursion into iteration is with the use of a trampoline.
Here, the functions either return the final result, or a closure of the function call that it would otherwise have performed. Then, the initiating (trampolining) function keep invoking the closures returned until the final result is reached.
This approach works for mutually recursive functions, but I'm afraid it only works for tail-calls.
http://en.wikipedia.org/wiki/Trampoline_(computers)
I'd say yes - a function call is nothing but a goto and a stack operation (roughly speaking). All you need to do is imitate the stack that's built while invoking functions and do something similar as a goto (you may imitate gotos with languages that don't explicitly have this keyword too).
Have a look at the following entries on wikipedia, you can use them as a starting point to find a complete answer to your question.
Recursion in computer science
Recurrence relation
Follows a paragraph that may give you some hint on where to start:
Solving a recurrence relation means obtaining a closed-form solution: a non-recursive function of n.
Also have a look at the last paragraph of this entry.
It is possible to convert any recursive algorithm to a non-recursive
one, but often the logic is much more complex and doing so requires
the use of a stack. In fact, recursion itself uses a stack: the
function stack.
More Details: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
tazzego, recursion means that a function will call itself whether you like it or not. When people are talking about whether or not things can be done without recursion, they mean this and you cannot say "no, that is not true, because I do not agree with the definition of recursion" as a valid statement.
With that in mind, just about everything else you say is nonsense. The only other thing that you say that is not nonsense is the idea that you cannot imagine programming without a callstack. That is something that had been done for decades until using a callstack became popular. Old versions of FORTRAN lacked a callstack and they worked just fine.
By the way, there exist Turing-complete languages that only implement recursion (e.g. SML) as a means of looping. There also exist Turing-complete languages that only implement iteration as a means of looping (e.g. FORTRAN IV). The Church-Turing thesis proves that anything possible in a recursion-only languages can be done in a non-recursive language and vica-versa by the fact that they both have the property of turing-completeness.
Here is an iterative algorithm:
def howmany(x,y)
a = {}
for n in (0..x+y)
for m in (0..n)
a[[m,n-m]] = if m==0 or n-m==0 then 1 else a[[m-1,n-m]] + a[[m,n-m-1]] end
end
end
return a[[x,y]]
end