We use MongoDB to store daily logs of statistics about 10s of thousands of items in our database--the collection is currently approaching 100 million records. This data is useful for data mining, but is accessed infrequently. We recently moved it from our main MySQL database to a Mongo database; this turned out not to be ideal--Mongo is optimized for fast reads, keeping all of its indexes in memory, and the index on this table is very large.
What is a good way to store large amounts of data for daily large writes, but infrequent reads? We are considering a separate MySQL installation on a separate system. Another possibility might be a NoSQL solution that did not require an index kept in memory.
You are correct, a nosql is good for fast reads of simple data. Since will need to query and possibly do relational operations on this data, I'd recommend a separate mysql installation for this.
You will want to minimize the sql indexes for fast writes.
Related
MySQL temporary table are stored in memory as long as computer has enough RAM (and MySQL was set up accordingly). One can created any indexes for any fields.
Redis stores data in memory indexed by one key at time and in my understanding MySQL can do this job too.
Are there any things that make Redis better for storing big amount(100-200k rows) of volatile data? I can only explain the appearance of Redis that not every project has mysql inside and probably some other databases don't support temporary tables.
If I already have MySql in my project, does it make sense to put up with Redis?
Redis is like working with indexes directly. There's no ACID, SQL parser and many other things between you and the data.
It provides some basic data structures and they're specifically optimized to be held in memory, and they also have specific operations to read and modify them.
In the other hand, Redis isn't designed to query data (but you can implement very powerful and high-performant filters with SORT, SCAN, intersections and other operations) but to store the data as you're going to be consumed later. If you want to get, for example, customers sorted by 3 different criterias, you'll need to work to fill 3 different sorted sets. There're a lot of use cases with other data structures, but I would end up writing a book in an answer...
Also, one of most powerful features found in Redis is how easy can be replicated, and since its 3.0 version, it supports data sharding out-of-the-box.
About why you would need to use Redis instead of temporary tables on MySQL (and other engines which have them too) is up to you. You need to study your case and check if caching or storing data in a NoSQL storage like Redis can both outperform your actual approach and it provides you a more elegant data architecture.
By using Redis alongside the other database, you're effectively reducing the load on it. Also, when Redis is running on a different server, scaling can be performed independently on each tier.
I am looking for a free SQL database able to handle my data model. The project is a production database working in a local network not connected to the internet without any replication. The number of application connected at the same times would be less than 10.
The data volume forecast for the next 5 years are:
3 tables of 100 millions rows
2 tables of 500 millions rows
20 tables with less than 10k rows
My first idea was to use MySQL, but I have found around the web several articles saying that MySQL is not designed for big database. But, what is the meaning of big in this case?
Is there someone to tell me if MySQL is able to handle my data model?
I read that Postgres would be a good alternative, but require a lot of hours for tuning to be efficient with big tables.
I don't think so that my project would use NOSQL database.
I would know if someone has some experience to share with regarding MySQL.
UPDATE
The database will be accessed by C# software (max 10 at the same times) and web application (2-3 at the same times),
It is important to mention that only few update will be done on the big tables, only insert query. Delete statements will be only done few times on the 20 small tables.
The big tables are very often used for select statement, but the most often in the way to know if an entry exists, not to return grouped and ordered batch of data.
I work for Percona, a company that provides consulting and other services for MySQL solutions.
For what it's worth, we have worked with many customers who are successful using MySQL with very large databases. Terrabytes of data, tens of thousands of tables, tables with billions of rows, transaction load of tens of thousands of requests per second. You may get some more insight by reading some of our customer case studies.
You describe the number of tables and the number of rows, but nothing about how you will query these tables. Certainly one could query a table of only a few hundred rows in a way that would not scale well. But this can be said of any database, not just MySQL.
Likewise, one could query a table that is terrabytes in size in an efficient way. It all depends on how you need to query it.
You also have to set specific goals for performance. If you want queries to run in milliseconds, that's challenging but doable with high-end hardware. If it's adequate for your queries to run in a couple of seconds, you can be a lot more relaxed about the scalability.
The point is that MySQL is not a constraining factor in these cases, any more than any other choice of database is a constraining factor.
Re your comments.
MySQL has referential integrity checks in its default storage engine, InnoDB. The claim that "MySQL has no integrity checks" is a myth often repeated over the years.
I think you need to stop reading superficial or outdated articles about MySQL, and read some more complete and current documentation.
MySQLPerformanceBlog.com
High Performance MySQL, 3rd edition
MySQL 5.6 manual
MySQL has a two important (and significantly different) database engines - MyISAM and InnoDB. A limits depends on usage - MyISAM is nontransactional - there is relative fast import, but it is too simple (without own memory cache) and JOINs on tables higher than 100MB can be slow (due too simple MySQL planner - hash joins is supported from 5.6). InnoDB is transactional and is very fast on operations based on primary key - but import is slower.
Current versions of MySQL has not good planner as Postgres has (there is progress) - so complex queries are usually much better on PostgreSQL - and really simple queries are better on MySQL.
Complexity of PostgreSQL configuration is myth. It is much more simple than MySQL InnoDB configuration - you have to set only five parameters: max_connection, shared_buffers, work_mem, maintenance_work_mem and effective_cache_size. Almost all is related to available memory for Postgres on server. Usually work for 5 minutes. On my experience a databases to 100GB is usually without any problems on Postgres (probably on MySQL too). There are two important factors - how speed you expect and how much memory and how fast IO you have.
With large databases you have to have a experience and knowledges for any database technology. All is fast when you are in memory, and when ratio database size/memory is higher, then much more work you have to do to get good results.
First of all, MySQLs table size is only limited by the allowed file size limit of your OS which is I. The terra bytes on any modern OS. That would pose no problems. Most important are questions like this:
What kind of queries will you run?
Are the large table records updated frequently or basically archives for history data?
What is your hardware budget?
What is the kind of query speed you need?
Are you familiar with table partitioning, archive tables, config tuning?
How fast do you need to write (expected inserts per second)
What language will you use to connect to the db (Java, .net, Ruby etc)
What platform are you most familiar with?
Will you run queries which might cause table scans such like '%something%' which would have to go through every single row and take forever
MySQL is used by Facebook, google, twitter and others with large tables and 100,000,000 is not much in the age of social media. MySQL has very little drawbacks (even though I prefer postgresql in most cases) like altering large tables by adding a new index for example. That might send your company in a couple days forced vacation if you don't have a replica in the meantime. Is there a reason why NoSQL is not an option? Sometimes hybrid approaches are a good choice like having your relational business logic in MySQL and huge statistical tables in a NoSQL database like MongoDb which can scale by adding new servers in minutes (MySQL can too but it's more complicated). Now MongoDB can have a indexed column which can be searched by in blistering speed.
Bejond the bottom line: you need to answer the above questions first to make a very informed decision. If you have huge tables and only search on indexed keys almost any database will do - if you expect many changes to the structure down the road you want to use a different approach.
Edit:
Based on your update you just posted I doubt you would run into problems.
Our server (several Java applications on Debian) handles incoming data (GNSS observations) that should be:
immediately (delay <200ms) delivered to other applications,
stored for further use.
Sometimes (several times a day maybe) about million of archived records will be fetched from the database. Record size is about 12 double precision fields + timestamp and some ids. There are no UPDATEs; DELETEs are very rare but massive. Incoming flow is up to hundred records per second. So I had to choose storage engine for this data.
I tried using MySQL (InnoDB). One application inserts, others constantly check last record id and if it is updated, fetch new records. This part works fine. But I've met following issues:
Records are quite large (about 200-240 bytes per record).
Fetching million of archived records is unacceptable slow (tens of minutes or more).
File-based storage will work just fine (since there are no inserts in the middle of DB and selections are mostly like 'WHERE ID=1 AND TIME BETWEEN 2000 AND 3000', but there are other problems:
Looking for new data might be not so easy.
Other data like logs and configs are stored in same database and I prefer to have one database for everything.
Can you advice some suitable database engine (SQL preferred, but not necessary)? Maybe it is possible to fine-tune MySQL to reduce record size and fetch time for continious strips of data?
MongoDB is not acceptable since DB size is limited on 32-bit machines. Any engine that does not provide quick access for recently inserted data is not acceptable too.
I'd recommend using TokuDB storage engine for MySQL. It's free for up to 50GB of user data, and it's pricing model isn't terrible, making it a great choice for storing large amounts of data.
It's got higher insert speed compared to InnoDB and MyISAM and scales much better as the dataset grows (InnoDB tends to deteriorate once working dataset doesn't fit the RAM making its performance dependant on the I/O of the HDD subsystem).
It's also ACID compliant and supports multiple clustered indexes (which would be a great choice for massive DELETEs you're planning to do). Also, hot schema changes are supported (ALTER TABLE doesn't lock the tables, and changes are quick on huge tables - I'm talking gigabyte-sized tables being altered in mere seconds).
From my personal use, I experienced about 5 - 10 times less disk usage due to TokuDB's compression, and it's much, much faster than MyISAM or InnoDB.
Even though it sounds like I'm trying to advertise this product - I'm not, it's just simply amazing since you can use monolithic data-store without expensive scaling plans like partitioning across nodes to scale the writes.
There really is no getting around how long it takes to load millions of records from disk. Your 32-bit requirement means you are limited in how much RAM you can use for memory based data structures. But, if you want to use MySQL, you may be able to get good performance using multiple table types.
If you need really fast non-blocking inserts. You can use the black hole table type and replication. The server where the inserts occur has a black hole table type that replicates to another server where the table is Innodb or MyISAM.
Since you don't do UPDATEs, I think MyISAM would be better than Innodb in this scenario. You can use the MERGE table type for MyISAM (not available for Innodb). Not sure what your data set is like, but you could have 1 table per day (hour, week?), your MERGE table would then be a superset of those tables. Assuming you want to delete old data by day, just redeclare the MERGE table to not include the old tables. This action is instantaneous. Dropping old tables is also extremely fast.
To check for new data, you can look at "todays" table directly rather than going through the MERGE table.
I'm developing a database that holds large scientific datasets. Typical usage scenario is that on the order of 5GB of new data will be written to the database every day; 5GB will also be deleted each day. The total database size will be around 50GB. The server I'm running on will not be able to store the entire dataset in memory.
I've structured the database such that the main data table is just a key/value store consisting of a unique ID and a Value.
Queries are typically for around 100 consecutive values,
eg. SELECT Value WHERE ID BETWEEN 7000000 AND 7000100;
I'm currently using MySQL / MyISAM, and these queries take on the order of 0.1 - 0.3 seconds, but recently I've come to realize that MySQL is probably not the optimal solution for what is basically a large key/value store.
Before I start doing lots of work installing the new software and rewriting the whole database I wanted to get a rough idea of whether I am likely to see a significant performance boost when using a NoSQL DB (e.g. Tokyo Tyrant, Cassandra, MongoDB) instead of MySQL for these types of retrievals.
Thanks
Please consider also OrientDB. It uses indexes with RB+Tree algorithm. In my tests with 100GB of database reads of 100 items took 0.001-0.015 seconds on my laptop, but it depends how the key/value are distributed inside the index.
To make your own test with it should take less than 1 hour.
One bad news is that OrientDB not supports a clustered configuration yet (planned for September 2010).
I use MongoDB in production for a write intensive operation where I do well over the rates you are referring to for both WRITE and READ operations, the size of the database is around 90GB and a single instance (amazon m1.xlarge) does 100QPS I can tell you that a typical key->value query takes about 1-15ms on a database with 150M entries, with query times reaching the 30-50ms time under heavy load.
at any rate 200ms is way too much for a key/value store.
If you only use a single commodity server I would suggest mongoDB as it quite efficient and easy to learn
if you are looking for a distributed solution you can try any Dynamo clone:
Cassandra (Facebook) or Project Volemort (LinkedIn) being the most popular.
keep in mind that looking for strong consistency slows down these systems quite a bit.
I would expect Cassandra to do better where the dataset does not fit in memory than a b-tree based system like TC, MySQL, or MongoDB. Of course, Cassandra is also designed so that if you need more performance, it's trivial to add more machines to support your workload.
I have an application where I receive each data 40.000 rows. I have 5 million rows to handle (500 Mb MySQL 5.0 database).
Actually, those rows are stored in the same table => slow to update, hard to backup, etc.
Which kind of scheme is used in such application to allow long term accessibility to the data without problems with too big tables, easy backup, fast read/write ?
Is postgresql better than mysql for such purpose ?
1 - 40000 rows / day is not that big
2 - Partition your data against the insert date : you can easily delete old data this way.
3 - Don't hesitate to go through a datamart step. (compute often asked metrics in intermediary tables)
FYI, I have used PostgreSQL with tables containing several GB of data without any problem (and without partitioning). INSERT/UPDATE time was constant
We're having log tables of 100-200million rows now, and it is quite painful.
backup is impossible, requires several days of down time.
purging old data is becoming too painful - it usually ties down the database for several hours
So far we've only seen these solutions:
backup , set up a MySQL slave. Backing up the slave doesn't impact the main db. (We havn't done this yet - as the logs we load and transform are from flat files - we back up these files and can regenerate the db in case of failures)
Purging old data, only painless way we've found is to introduce a new integer column that identifies the current date, and partition the tables(requires mysql 5.1) on that key, per day. Dropping old data is a matter of dropping a partition, which is fast.
If in addition you need to do continuously transactions on these tables(as opposed to just load data every now and then and mostly query that data), you probably need to look into InnoDB and not the default MyISAM tables.
The general answer is: you probably don't need all that detail around all the time.
For example, instead of keeping every sale in a giant Sales table, you create records in a DailySales table (one record per day), or even a group of tables (DailySalesByLocation = one record per location per day, DailySalesByProduct = one record per product per day, etc.)
First, huge data volumes are not always handled well in a relational database.
What some folks do is to put huge datasets in files. Plain old files. Fast to update, easy to back up.
The files are formatted so that the database bulk loader will work quickly.
Second, no one analyzes huge data volumes. They rarely summarize 5,000,000 rows. Usually, they want a subset.
So, you write simple file filters to cut out their subset, load that into a "data mart" and let them query that. You can build all the indexes they need. Views, everything.
This is one way to handle "Data Warehousing", which is that your problem sounds like.
First, make sure that your logging table is not over-indexed. By that i mean that every time you insert/update/delete from a table any indexes that you have also need to be updated which slows down the process. If you have a lot of indexes specified on your log table you should take a critical look at them and decide if they are indeed necessary. If not, drop them.
You should also consider an archiving procedure such that "old" log information is moved to a separate database at some arbitrary interval, say once a month or once a year. It all depends on how your logs are used.
This is the sort of thing that NoSQL DBs might be useful for, if you're not doing the sort of reporting that requires complicated joins.
CouchDB, MongoDB, and Riak are document-oriented databases; they don't have the heavyweight reporting features of SQL, but if you're storing a large log they might be the ticket, as they're simpler and can scale more readily than SQL DBs.
They're a little easier to get started with than Cassandra or HBase (different type of NoSQL), which you might also look into.
From this SO post:
http://carsonified.com/blog/dev/should-you-go-beyond-relational-databases/