NOsql Vs Mysql - Going schemaless with Cassandra - mysql

Here are the facts:
We have a lot (L O T) of data coming in everyday.
Each file we receive is in a csv format and while there are a couple of headers that reoccur more often than others, there is not really a standard.
The normalization of each file to be uploaded into a mySQL database is highly time consuming and often pushes us to change the schema (new field appeared in on file that was not existing before..).
While the primary key is unique, anything else can be duplicated
These are customers records (i.e.: email,firstname,lastname,city,state,address...etc)
We could have multiple emails for the same individual ..
We read 70% of the time and we write 30% of the time
Scalability could be a concern but it is not right now, though availability is key
Speed is what we are looking for. Mysql is too slow to answer queries where tables are over 50 million records. Even well optimized we have too many speed issue. Breaking down the tables has become an organizational concern. Schema less noSQL seemed attractive. What would you recommend, what did you implement? (Please do not answer to optimize mysql .. pointless and off topic)
--

Let's go over the points:
We have a lot (L O T) of data coming in everyday.
NoSQL solutions are basically all created to scale to large numbers (Riak, MongoDB, Cassandra, etc.)
... headers that reoccur more often than others, there is not really a standard... The normalization of each file to be uploaded into a mySQL database is highly time consuming and often pushes us to change the schema
NoSQL definitely fits this model many of them are "schema-less" so it's easy to store those extra fields. This will however cost you extra space as the field names are typically stored with the document.
While the primary key is unique, anything else can be duplicated
"Document-oriented" and "Key-Value" databases are a good fit for this as long as the key is provided. If you have to run duplicate checks, then most key-value database are ill-equipped. The "document-oriented" database might be slightly better equipped, but not by much.
We could have multiple emails for the same individual
Most of these databases have some notion of "arrays as a basic type". CouchDB and MongoDB both store objects as JSON, so it's easy to see how a customer could have an array of e-mails without the need for a "join table". MongoDB also provides "atomic update" features like "$addToSet" that plays nicely with arrays.
We read 70% of the time and we write 30% of the time
Scalability could be a concern but it is not right now, though availability is key
The major NoSQL DBs are all designed to scale. (both reads and writes)
The only way to availability is through hardware and locational redundancy (no different that MySQL or other databases). Despite their low version numbers, many of these Databases are being used in production environments by very big companies, so many of the simple cases are covered. It's still virgin territory, but we're also past the "randomly crashes when nothing has changed" phase.
Speed is what we are looking for... Schema less noSQL seemed attractive. What would you recommend, what did you implement?
We have 100s of M of flexible user records in MongoDB. Performance on individual seeks is really awesome.
However, you have to wary about the type of queries you're running.
If you need to run queries that bring back several Users at once, you're going to have speed issues with basically any of these Key-Value or Document-Oriented database. You may want to look at Graph database or some other fancy solution. However, if your use cases all center around one user at a time then take a look at MongoDB.
MongoDB also supports native map-reduce so you'll be able to scale "non-real time" queries.

Related

How to handle a table with billion of rows with lots of read and write operations

Please guide me through my problem
I receive data at every 1 sec at my server from different sources.My data is structured i parse it and now i have to store this parsed data into single table around 5 lacs of records in a day. Also daily i do lots of read operation on this table.After some time this table will have billions of record.
How should i solve this problem? I want to know should i go with RDBMS or HBase or any other option.
My question is regarding what sort of database repository you wish to use: RAM? Flash? Disk?
RAM responds in nanoseconds.
Flash in microseconds.
Disk in milliseconds.
And, of course, you might want to create a hybrid of all three, especially if some keys were "hotter" than others -- more likely to be read over and over.
If you want to do a lot of fast processing, and scale it "wide" (many CPUs in a cluster for faster read performance), you are a likely candidate for a NoSQL database. I'd need to know more about your data model to know whether it would work as a key-value store, and how it might require more internal structure such as JSON/BSON.
Caveat: I am biased towards Aerospike, my employer. Yet you should do some kicking-of-the-tires with us or any other key-value stores you're considering to see if it would work with your data before betting the farm. Obviously, each NoSQL vendor would claim itself to be "the best," but much depends on your use case. A vendor's "solution" will only work well for certain data models. We tend to be best for fast in-memory RAM/Flash or hybrid implementations.
If in case your table would reach billions of records, RDBMS definitely won't scale.
Regarding HBASE, it depends on your requirements whether it would be a good solution or not.
If you are looking for real time reads, Hbase would only help if you are only looking for a specific key. If you want to do random reads on different columns, Hbase won't be an ideal solution here. Hbase would scale really well in case of updates.
I would suggest you to design your Hbase schema efficiently and store your data in way which suits your querying.
However if you are interested in running aggregation queries you can also map your hbase table to an external table in Hive and run sql type queries on your data.
You can use HBase as a NoSQL database in this case. To make search more customized and faster use ElasticSearch along with Hbase.
If you writes are at 1/second, most of the available databases should be able to support this. Since you are looking for longer term/persistent store, you should consider a database that provides you horizontal scale so that you could add more nodes as and when you would like to increase the capacity. Databases with auto-sharding abilities would be great fit for you (cassandra, aerospike ...). Make sure you choose a auto-sharding database that doesn't require client/application to manage which data is stored where. In-memory databases would not fit the bill in this case.
When your storage is a few tera-bytes, you may have to worry about the database scale, throughput so that your infra cost doesn't bogg you down.
Your query patterns would be very crucial in choosing the right solution. You may not want to index everything, but fine-tune what you index so that you could query on the keys and/or only those data elements from within your records so that index storage overhead doesn't become too much, and hence you keep the cost under control. You should also look for time-range query ability for the database solutions, which seems to be part of your typical query pattern.
Last but not the least, you would want to have your queries processes in fastest possible time. You should try out Cassandra (good for horizontal scaling, less on the throughput) and aerospike (good for horizontal scaling, pretty good on throughput).

MySQL Normalize or Denormalize

I'm building a PHP app to prefill third party PDF account forms with client data, and am getting stuck on the database design.
The current form has about 70 fields, which seems like far too many to set up as individual columns, especially as some (ie company/trust information) are not relevant depending on the type of account the client requires.
I've tried to normalize but it seems like there would be a lot of joins, and also require several sub queries for things like multiple addresses.
It also means a ton of extra queries to check if rows exist or not when updating to decide if the script needs to do an INSERT, a DELETE or an UPDATE, whereas if it was all in one row, it would basically just be an UPDATE each time.
Not sure if this helps but here is a list of most of the fields:
id, account_type, account_phone, account_email, account_designation, account_adviser, account_source, account_complete,
account_residential_unit_number, account_residential_street_number, account_residential_street_name, account_residential_street_type, account_residential_suburb, account_residential_state, account_residential_postcode,
account_postal_unit_number, account_postal_street_number, account_postal_street_name, account_postal_street_type, account_postal_suburb, account_postal_state, account_postal_postcode,
individual_1_title, individual_1_firstname, individual_1_middlename, individual_1_lastname, individual_1_dob, individual_1_occupation, individual_1_email, individual_1_phone,
individual_1_unit_number, individual_1_street_number, individual_1_street_name, individual_1_street_type, individual_1_suburb, individual_1_state, individual_1_postcode,
individual_2_title, individual_2_firstname, individual_2_middlename, individual_2_lastname, individual_2_dob, individual_2_occupation, individual_2_email, individual_2_phone,
individual_2_unit_number, individual_2_street_number, individual_2_street_name, individual_2_street_type, individual_2_suburb, individual_2_state, individual_2_postcode,
company_name, company_date,
company_unit_number, company_street_number, company_street_name, company_street_type, company_suburb, company_state, company_postcode,
trust_name, trust_date,
settlement_bank, settlement_account, settlement_bsb
The most this will need to handle is around 200,000 applications, and once the data is in the database, it won't change very often, if at all - not sure if that is relevant?
So really just wanted to figure out the smartest way to do design this, even if it's just a name or topic to research further.
Generally speaking you can divide a database into two broad categories:
OLTP Systems
Online Transaction Processing Systems are normally write intensive i.e. a lot of updates compared to the reads of the data. This system is typically a day to day application used by a business users of all scopes i.e. data capture, admin etc. These databases are usually normalized to the extreme and then certain demoralized for performance gains in certain areas.
OLAP/DSS system:
On Line Analytic Processing are database that are normally large data warehouse like systems. Used to support Analytic activities such as data mining, data cubes etc. Typically the information is used by a more limited set of users than OLTP. These database are normally very denormalised.
Go read here for a short description of these and the main differences.
OLTP VS OLAP
Regarding your INSERT/UPDATE/DELETE point go read about the MySQL ON DUPLICATE KEY UPDATE statement which will resolve that issue for you easily. It is called a MERGE operation in most database systems.
Now I dont understand why you are worried about JOINS. I have had tables with millions (500 000 000+) rows that I joined with other tables also large in size and the queries ran very fast. So designing a database to eliminate joins is NOT a good idea.
My suggestion is:
If designing a OLTP system normalise as much as possible then denormalise to increase performance where needed. For A OLAP system look at star schemas etc and dont even bother with normalizing it first. Oh by the way most of the OLAP systems normally use a OLTP system as a data source.
Usually I normalise and then denormalise for performance. However
If I didn't have too much validation to do e.g Valid address, duplicated indivual
And I didn't want to reuse parts of the data for another version of the form, e.g select an existing individual , Name and address etc
And I didn't want to analyse it e.g Find all mentions of Fred Bloggs
And my user's were happy with entering all of this one form ( I wouldn't be)
Then I'd go with denormalise from the get go.
Thing is if you normalise, then denormalising if required is fairly trivial and low risk, normalising denormalised data usually means de-duplication which is likely to be really painful data and design wise.
Normalize your input, de-normalize the output. Meaning, for reporting, extract your data into a de-normalized format like Mongo and use that for querying. Or, create rollups of some sort. I have found, with large datasets, to extract the reporting data from the input data for best efficiency.
I find denormalized data extremely painful to work with at a very basic level. What if I want a tally of the number of people who live in Georgia. In your denormalized structure I would have to count where ind_1_state = GA or ind_2_state = GA.
This is not too bad I guess, but to anywho who has seen the ease of querying that normalization provides, it is quite painful.
Normalization establishing the foundation for more and more complex queries. Without it, you will find it increasingly difficult to implement richer data analysis.
Normalization also provides the basis for integrity and consistency in your database. If you have all the occurrences of a particular thing ( state abbreviations ) in one place ( one column ) you can easily check and constrain those values to not allow nonexistent codes.
The rationale for normalization goes on and on, but I hope I hit a few no brainers.
This is no brainer - all you have now is a noun-soup which you have shoved in a single table-storage-shoebox and glued some ID at the beginning of each row.
Create some kind of schema. If this is more like a OLAP -- and you decide for star schema -- it will have dimensions in 2-5 NF and facts in 2-6 NF. For OLTP (or different warehouse models) aim for BCNF - 6NF.
I would argue that you do not even have 1NF here, gluing that ID at the beginning does not count as preventing duplicates. Therefore, you can not de-normalize from this point even if you wanted to :) -- ok, maybe you could put some comma-separated list somewhere to make things definitely not in 1NF.
Joins are what relational databases do, so do not worry about that.

Redis vs MySQL for Financial Data?

I realize that this question is pretty well discussed, however I would like to get your input in the context of my specific needs.
I am developing a realtime financial database that grabs stock quotes from the net multiple times a minute and stores it in a database. I am currently working with SQLAlchemy over MySQL, but I came across Redis and it looks interesting. It looks good especially because of its performance, which is crucial in my application. I know that MySQL can be fast too, I just feel like implementing heavy caching is going to be a pain.
The data I am saving is by far mostly decimal values. I am also doing a significant amount of divisions and multiplications with these decimal values (in a different application).
In terms of data size, I am grabbing about 10,000 symbols multiple times a minute. This amounts to about 3 TB of data a year.
I am also concerned by Redis's key quantity limitation (2^32). Is Redis a good solution here? What other factors can help me make the decision either toward MySQL or Redis?
Thank you!
Redis is an in-memory store. All the data must fit in memory. So except if you have 3 TB of RAM per year of data, it is not the right option. The 2^32 limit is not really an issue in practice, because you would probably have to shard your data anyway (i.e. use multiple instances), and because the limit is actually 2^32 keys with 2^32 items per key.
If you have enough memory and still want to use (sharded) Redis, here is how you can store space efficient time series: https://github.com/antirez/redis-timeseries
You may also want to patch Redis in order to add a proper time series data structure. See Luca Sbardella's implementation at:
https://github.com/lsbardel/redis
http://lsbardel.github.com/python-stdnet/contrib/redis_timeseries.html
Redis is excellent to aggregate statistics in real time and store the result of these caclulations (i.e. DIRT applications). However, storing historical data in Redis is much less interesting, since it offers no query language to perform offline calculations on these data. Btree based stores supporting sharding (MongoDB for instance) are probably more convenient than Redis to store large time series.
Traditional relational databases are not so bad to store time series. People have dedicated entire books to this topic:
Developing Time-Oriented Database Applications in SQL
Another option you may want to consider is using a bigdata solution:
storing massive ordered time series data in bigtable derivatives
IMO the main point (whatever the storage engine) is to evaluate the access patterns to these data. What do you want to use these data for? How will you access these data once they have been stored? Do you need to retrieve all the data related to a given symbol? Do you need to retrieve the evolution of several symbols in a given time range? Do you need to correlate values of different symbols by time? etc ...
My advice is to try to list all these access patterns. The choice of a given storage mechanism will only be a consequence of this analysis.
Regarding MySQL usage, I would definitely consider table partitioning because of the volume of the data. Depending on the access patterns, I would also consider the ARCHIVE engine. This engine stores data in compressed flat files. It is space efficient. It can be used with partitioning, so despite it does not index the data, it can be efficient at retrieving a subset of data if the partition granularity is carefully chosen.
You should consider Cassandra or Hbase. Both allow contiguous storage and fast appends, so that when it comes to querying, you get huge performance. Both will easily ingest tens of thousands of points per second.
The key point is along one of your query dimensions (usually by ticker), you're accessing disk (ssd or spinning), contiguously. You're not having to hit indices millions of times. You can model things in Mongo/SQL to get similar performance, but it's more hassle, and you get it "for free" out of the box with the columnar guys, without having to do any client side shenanigans to merge blobs together.
My experience with Cassandra is that it's 10x faster than MongoDB, which is already much faster than most relational databases, for the time series use case, and as data size grows, its advantage over the others grows too. That's true even on a single machine. Here is where you should start.
The only negative on Cassandra at least is that you don't have consistency for a few seconds sometimes if you have a big cluster, so you need either to force it, slowing it down, or you accept that the very very latest print sometimes will be a few seconds old. On a single machine there will be zero consistency problems, and you'll get the same columnar benefits.
Less familiar with Hbase but it claims to be more consistent (there will be a cost elsewhere - CAP theorem), but it's much more of a commitment to setup the Hbase stack.
You should first check the features that Redis offers in terms of data selection and aggregation. Compared to an SQL database, Redis is limited.
In fact, 'Redis vs MySQL' is usually not the right question, since they are apples and pears. If you are refreshing the data in your database (also removing regularly), check out MySQL partitioning. See e.g. the answer I wrote to What is the best way to delete old rows from MySQL on a rolling basis?
>
Check out MySQL Partitioning:
Data that loses its usefulness can often be easily removed from a partitioned table by dropping the partition (or partitions) containing only that data. Conversely, the process of adding new data can in some cases be greatly facilitated by adding one or more new partitions for storing specifically that data.
See e.g. this post to get some ideas on how to apply it:
Using Partitioning and Event Scheduler to Prune Archive Tables
And this one:
Partitioning by dates: the quick how-to

handling large dataset using MySQL

I am trying to apply for a job, which asks for the experiences on handling large scale data sets using relational database, like mySQL.
I would like to know which specific skill sets are required for handling large scale data using MySQL.
Handling large scale data with MySQL isn't just a specific set of skills, as there are a bazillion ways to deal with a large data set. Some basic things to understand are:
Column Indexes, how, why, and when they're used, and the pros and cons of using them.
Good database structure to balance between fast writes and easy reads.
Caching, leveraging several layers of caching and different caching technologies (memcached, redis, etc)
Examining MySQL queries to identify bottlenecks and understanding the MySQL internals to see how queries get planned an executed by the database server in order to increase query performance
Configuring the MySQL server to be able to handle a lot of concurrent connections, and access it's data fast. Hardware bottlenecks, and the advantages to using different technologies to speed up your hardware (for example, storing your MySQL data on a RAID5 Array to increase IO performance))
Leveraging built-in MySQL technology (like Replication) to off-load read traffic
These are just a few things that get thought about in regards to big data in MySQL. There's a TON more, which is why the company is looking for experience in the area. Knowing what to do, or having experience with things that have worked or failed for you is an absolutely invaluable asset to bring to a company that deals with high traffic, high availability, and high volume services.
edit
I would be remis if I didn't mention a source for more information. Check out High Performance MySQL. This is an incredible book, and has a plethora of information on how to make MySQL perform in all scenarios. Definitely worth the money, and the time spent reading it.
edit -- good structure for balanced writes and reads
With this point, I was referring to the topic of normalization / de-normalization. If you're familiar with DB design, you know that normalization is the separation of data as to reduce (eliminate) the amount of duplicate data you have about any single record. This is generally a fantastic idea, as it makes tables smaller, faster to query, easier to index (individually) and reduces the number of writes you have to do in order to create/update a new record.
There are different levels of normalization (as #Adam Robinson pointed out in the comments below) which are referred to as normal forms. Almost every web application I've worked with hasn't had much benefit beyond the 3NF (3rd Normal Form). Which the definition of, if you were to read that wikipedia link above, will probably make your head hurt. So in lamens (at the risk of dumbing it down too far...) a 3NF structure satisfies the following rules:
No duplicate columns within the same table.
Create different tables for each set related data. (Example: a Companies table which has a list of companies, and an Employees table which has a list of each companies' employees)
No sub-sets of columns which apply to multiple rows in a table. (Example: zip_code, state, and city is a sub-set of data which can be identified uniquely by zip_code. These 3 columns could be put in their own table, and referenced by the Employees table (in the previous example) by the zip_code). This eliminates large sets of duplication within your tables, so any change that is required to the city/state for any zip code is a single write operation instead of 1 write for every employee who lives in that zip code.
Each sub-set of data is moved to it's own table and is identified by it's own primary key (this is touched/explained in the example for #3).
Remove columns which are not fully dependent on the primary key. (An example here might be if your Employees table has start_date, end_date, and years_employed columns. The start_date and end_date are both unique and dependent on any single employee row, but the years_employed can be derived by subtracting start_date from end_date. This is important because as end-date increases, so does years_employed so if you were to update end_date you'd also have to update years_employed (2 writes instead of 1)
A fully normalized (3NF) database table structure is great, if you've got a very heavy write-load. If your server is doing a lot of writes, it's very easy to write small bits of data, especially when you're running fewer of them. The drawback is, all your reads become much more expensive, because you have to (typically) run a lot of JOIN queries when you're pulling data out. JOINs are typically expensive and harder to create proper indexes for when you're utilizing WHERE clauses that span the relationship and when sorting the result-sets If you have to perform a lot of reads (SELECTs) on your data-set, using a 3NF structure can cause you some performance problems. This is because as your tables grow you're asking MySQL to cram more and more table data (and indexes) into memory. Ideally this is what you want, but with big data-sets you're just not going to have enough memory to fit all of this at once. This is when MySQL starts to create temporary tables, and has to use the disk to load data and manipulate it. Once MySQL becomes reliant on the hard disk to serve up query results you're going to see a significant performance drop. This is less-so the case with solid state disks, but they are super expensive, and (imo) are not mature enough to use on mission critical data sets yet (i mean, unless you're prepared for them to fail and have a very fast backup recovery system in place...then use them and gonuts!).
This is the balancing part. You have to decide what kind of traffic the data you're reading/writing is going to be serving more of, and design that to be fast. In some instances, people don't mind writes being slow because they happen less frequently. In other cases, writes have to be very fast, and the reads don't have to be fast because the data isn't accessed that often (or at all, or even in real time).
Workloads that require a lot of reads benefit the most from a middle-tier caching layer. The idea is that your writes are still fast (because you're 'normal') and your reads can be slow because you're going to cache it (in memcached or something competitive to it), so you don't hit the database very frequently. The drawback here is, if your cache gets invalidated quickly, then the cache is not reducing the read load by a meaningful amount and that results in no added performance (and possibly even more overhead to check/invalidate the caches).
With workloads that have the requirement for high throughput in writes, with data that is read frequently, and can't be cached (constantly changes), you have to come up with another strategy. This could mean that you start to de-normalize your tables, by removing some of the normalization requirements you choose to satisfy, or something else. Instead of making smaller tables with less repetitive data, you make larger tables with more repetitive / redundant data. The advantage here is that your data is all in the same table, so you don't have to perform as many (or, any) JOINs to pull the data out. The drawback...writes are more expensive because you have to write in multiple places.
So with any given situation the developer(s) have to identify what kind of use the data structure is going to have to serve, and balance between any number of technologies and paradigms to achieve an acceptable solution that meets their needs. No two systems or solutions are the same which is why the employer is looking for someone with experience on how to deal with these large datasets. Finding these solutions is not something that can really be learned out of a book, it typically takes some experience in the field and experience with how different solutions performed.
I hope that helps. I know I rambled a bit, but it's really a lot of information. This is why DBAs make the big dollars (:
You need to know how to process the data in "chunks". That means instead of simply trying to manipulate the entire data set, you need to break it into smaller more manageable pieces. For example, if you had a table with 1 Billion records, a single update statement against the entire table would likely take a long time to complete, and may possibly bring the server to it's knees.
You could, however, issue a series of update statements within a loop that would update 20,000 records at a time. Each iteration of the loop you would increment your range/counters/whatever to identify the next set of records.
Also, you commit your changes at the end of each loop, thereby allowing you to stop the process and continue where you left off.
This is just one aspect of managing large data sets. You still need to know:
how to perform backups
proper indexing
database maintenance
You can raed/learn how to handle large dataset with MySQL But it is not equivalent to having actual experiences.
Straight and simple answer: Study about partitioned database and find appropriate MySQL data structure types for large scale datasets similar with the partitioned database architecture.

Database design for very large amount of data

I am working on a project involving large amount of data from the delicious website. The data available is "Date, UserId, Url, Tags" (for each bookmark).
I normalized my database to a 3NF, and because of the nature of the queries that we wanted to use in combination, I came down to 6 tables... The design looks fine, however, now that a large amount of data is in the database, most of the queries need to join at least 2 tables together to get the answer, sometimes 3 or 4. At first, we didn't have any performance issues, because for testing matters we had not added too much data to the database. Now that we have a lot of data, simply joining extremely large tables takes a lot of time and for our project, which has to be real-time, this is a disaster.
I was wondering how big companies solve these issues. Looks like normalizing tables just adds complexity, but how does the big company handle large amounts of data in their databases, don't they use normalization?
Thanks.
Since you asked about how big companies (generally) approaches this:
They usually have a dba(database administrator) who lives and breathes the database the company uses.
This means they have people that know everything from how to design the tables optimally, profile and tune the queries/indexes/OS/server to knowing what firmware revision of the RAID controller that can cause problems for the database.
You don't talk much about what kind of tuning you've done, e.g.
Are you using MyISAM or InnoDB tables ? Their performance(and not the least their features) is radically different for different workloads.
Are the tables properly indexed according to the queries you run ?
run EXPLAIN on all your queries - which will help you identify keys that could be added/removed, wether the proper keys are selected, compare queries(SQL leaves you with lots of way to accomplish the same things)
Have you tuned the query-cache ? For some workloads the query cache(default on) can cause considerable slowdown.
How much memory do your box have , and is mysql tuned to take advantage of this ?
Do you use a file system and raid setup geared towards the database ?
Sometimes a little de-normalization is needed.
Different database products will have different charasteristics, MySQL might be blazingly fast for some worlkoads, and slow for others.