Here is a function I would like to write but am unable to do so. Even if you
don't / can't give a solution I would be grateful for tips. For example,
I know that there is a correlation between the ordered represantions of the
sum of an integer and ordered set partitions but that alone does not help me in
finding the solution. So here is the description of the function I need:
The Task
Create an efficient* function
List<int[]> createOrderedPartitions(int n_1, int n_2,..., int n_k)
that returns a list of arrays of all set partions of the set
{0,...,n_1+n_2+...+n_k-1} in number of arguments blocks of size (in this
order) n_1,n_2,...,n_k (e.g. n_1=2, n_2=1, n_3=1 -> ({0,1},{3},{2}),...).
Here is a usage example:
int[] partition = createOrderedPartitions(2,1,1).get(0);
partition[0]; // -> 0
partition[1]; // -> 1
partition[2]; // -> 3
partition[3]; // -> 2
Note that the number of elements in the list is
(n_1+n_2+...+n_n choose n_1) * (n_2+n_3+...+n_n choose n_2) * ... *
(n_k choose n_k). Also, createOrderedPartitions(1,1,1) would create the
permutations of {0,1,2} and thus there would be 3! = 6 elements in the
list.
* by efficient I mean that you should not initially create a bigger list
like all partitions and then filter out results. You should do it directly.
Extra Requirements
If an argument is 0 treat it as if it was not there, e.g.
createOrderedPartitions(2,0,1,1) should yield the same result as
createOrderedPartitions(2,1,1). But at least one argument must not be 0.
Of course all arguments must be >= 0.
Remarks
The provided pseudo code is quasi Java but the language of the solution
doesn't matter. In fact, as long as the solution is fairly general and can
be reproduced in other languages it is ideal.
Actually, even better would be a return type of List<Tuple<Set>> (e.g. when
creating such a function in Python). However, then the arguments wich have
a value of 0 must not be ignored. createOrderedPartitions(2,0,2) would then
create
[({0,1},{},{2,3}),({0,2},{},{1,3}),({0,3},{},{1,2}),({1,2},{},{0,3}),...]
Background
I need this function to make my mastermind-variation bot more efficient and
most of all the code more "beautiful". Take a look at the filterCandidates
function in my source code. There are unnecessary
/ duplicate queries because I'm simply using permutations instead of
specifically ordered partitions. Also, I'm just interested in how to write
this function.
My ideas for (ugly) "solutions"
Create the powerset of {0,...,n_1+...+n_k}, filter out the subsets of size
n_1, n_2 etc. and create the cartesian product of the n subsets. However
this won't actually work because there would be duplicates, e.g.
({1,2},{1})...
First choose n_1 of x = {0,...,n_1+n_2+...+n_n-1} and put them in the
first set. Then choose n_2 of x without the n_1 chosen elements
beforehand and so on. You then get for example ({0,2},{},{1,3},{4}). Of
course, every possible combination must be created so ({0,4},{},{1,3},{2}),
too, and so on. Seems rather hard to implement but might be possible.
Research
I guess this
goes in the direction I want however I don't see how I can utilize it for my
specific scenario.
http://rosettacode.org/wiki/Combinations
You know, it often helps to phrase your thoughts in order to come up with a solution. It seems that then the subconscious just starts working on the task and notifies you when it found the solution. So here is the solution to my problem in Python:
from itertools import combinations
def partitions(*args):
def helper(s, *args):
if not args: return [[]]
res = []
for c in combinations(s, args[0]):
s0 = [x for x in s if x not in c]
for r in helper(s0, *args[1:]):
res.append([c] + r)
return res
s = range(sum(args))
return helper(s, *args)
print partitions(2, 0, 2)
The output is:
[[(0, 1), (), (2, 3)], [(0, 2), (), (1, 3)], [(0, 3), (), (1, 2)], [(1, 2), (), (0, 3)], [(1, 3), (), (0, 2)], [(2, 3), (), (0, 1)]]
It is adequate for translating the algorithm to Lua/Java. It is basically the second idea I had.
The Algorithm
As I already mentionend in the question the basic idea is as follows:
First choose n_1 elements of the set s := {0,...,n_1+n_2+...+n_n-1} and put them in the
first set of the first tuple in the resulting list (e.g. [({0,1,2},... if the chosen elements are 0,1,2). Then choose n_2 elements of the set s_0 := s without the n_1 chosen elements beforehand and so on. One such a tuple might be ({0,2},{},{1,3},{4}). Of
course, every possible combination is created so ({0,4},{},{1,3},{2}) is another such tuple and so on.
The Realization
At first the set to work with is created (s = range(sum(args))). Then this set and the arguments are passed to the recursive helper function helper.
helper does one of the following things: If all the arguments are processed return "some kind of empty value" to stop the recursion. Otherwise iterate through all the combinations of the passed set s of the length args[0] (the first argument after s in helper). In each iteration create the set s0 := s without the elements in c (the elements in c are the chosen elements from s), which is then used for the recursive call of helper.
So what happens with the arguments in helper is that they are processed one by one. helper may first start with helper([0,1,2,3], 2, 1, 1) and in the next invocation it is for example helper([2,3], 1, 1) and then helper([3], 1) and lastly helper([]). Of course another "tree-path" would be helper([0,1,2,3], 2, 1, 1), helper([1,2], 1, 1), helper([2], 1), helper([]). All these "tree-paths" are created and thus the required solution is generated.
Related
I am trying to find out the maximum value of a function (here it is T(n)) through this code:
for i in range(2, imax-1):
Q=q(i-1)-q(i)
Tn=T(i)+(Dt/(rho*cp*0.1))*Q
y=max(Tn)
But I am getting an error "float' object is not iterable". Any suggestion on this would be helpful to me.
Please note that, "q" and "T(i)" have been defined as functions of "i", and all the other terms are constants.
The max function returns the maximum values among several ones, so you logically need to pass at least 2 values as parameters, inside a list or a tuple for example.
I suggest you this solution based on your current code to be easily understood:
y = None
for i in range(2, imax-1):
Q=q(i-1)-q(i)
Tn=T(i)+(Dt/(rho*cp*0.1))*Q
if y is None:
y=Tn
else:
y=max(Tn,y)
To go further (and maybe better), list comprehension is well adapted in this case, as detailed by Andrea in his answer.
max takes an iterable (e.g. a list, dict, str, etc), so it might look something like, max([1, 2, 3]) #=> 3. A common pattern is to use a comprehension: max(f(x) for x in range(10)). The thing about comprehensions is that they require a single expression, so you can't use the original definition of Tn.
If you expand the definition of Tn so that it's a single expression, we get Tn = T(i) + (Dt/(rho*cp*0.1)) * (q(i-1) - q(1)). Use that in the comprehension and we get max(T(i) + (Dt/(rho*cp*0.1)) * (q(i-1) - q(1)) for i in range(2, imax-1)).
I know that "a powerset is simply any number between 0 and 2^N-1 where N is number of set members and one in binary presentation denotes presence of corresponding member".
(Hynek -Pichi- Vychodil)
I would like to generate a powerset using this mapping from the binary representation to the actual set elements.
How can I do this with Erlang?
I have tried to modify this, but with no success.
UPD: My goal is to write an iterative algorithm that generates a powerset of a set without keeping a stack. I tend to think that binary representation could help me with that.
Here is the successful solution in Ruby, but I need to write it in Erlang.
UPD2: Here is the solution in pseudocode, I would like to make something similar in Erlang.
First of all, I would note that with Erlang a recursive solution does not necessarily imply it will consume extra stack. When a method is tail-recursive (i.e., the last thing it does is the recursive call), the compiler will re-write it into modifying the parameters followed by a jump to the beginning of the method. This is fairly standard for functional languages.
To generate a list of all the numbers A to B, use the library method lists:seq(A, B).
To translate a list of values (such as the list from 0 to 2^N-1) into another list of values (such as the set generated from its binary representation), use lists:map or a list comprehension.
Instead of splitting a number into its binary representation, you might want to consider turning that around and checking whether the corresponding bit is set in each M value (in 0 to 2^N-1) by generating a list of power-of-2-bitmasks. Then, you can do a binary AND to see if the bit is set.
Putting all of that together, you get a solution such as:
generate_powerset(List) ->
% Do some pre-processing of the list to help with checks later.
% This involves modifying the list to combine the element with
% the bitmask it will need later on, such as:
% [a, b, c, d, e] ==> [{1,a}, {2,b}, {4,c}, {8,d}, {16,e}]
PowersOf2 = [1 bsl (X-1) || X <- lists:seq(1, length(List))],
ListWithMasks = lists:zip(PowersOf2, List),
% Generate the list from 0 to 1^N - 1
AllMs = lists:seq(0, (1 bsl length(List)) - 1),
% For each value, generate the corresponding subset
lists:map(fun (M) -> generate_subset(M, ListWithMasks) end, AllMs).
% or, using a list comprehension:
% [generate_subset(M, ListWithMasks) || M <- AllMs].
generate_subset(M, ListWithMasks) ->
% List comprehension: choose each element where the Mask value has
% the corresponding bit set in M.
[Element || {Mask, Element} <- ListWithMasks, M band Mask =/= 0].
However, you can also achieve the same thing using tail recursion without consuming stack space. It also doesn't need to generate or keep around the list from 0 to 2^N-1.
generate_powerset(List) ->
% same preliminary steps as above...
PowersOf2 = [1 bsl (X-1) || X <- lists:seq(1, length(List))],
ListWithMasks = lists:zip(PowersOf2, List),
% call tail-recursive helper method -- it can have the same name
% as long as it has different arity.
generate_powerset(ListWithMasks, (1 bsl length(List)) - 1, []).
generate_powerset(_ListWithMasks, -1, Acc) -> Acc;
generate_powerset(ListWithMasks, M, Acc) ->
generate_powerset(ListWithMasks, M-1,
[generate_subset(M, ListWithMasks) | Acc]).
% same as above...
generate_subset(M, ListWithMasks) ->
[Element || {Mask, Element} <- ListWithMasks, M band Mask =/= 0].
Note that when generating the list of subsets, you'll want to put new elements at the head of the list. Lists are singly-linked and immutable, so if you want to put an element anywhere but the beginning, it has to update the "next" pointers, which causes the list to be copied. That's why the helper function puts the Acc list at the tail instead of doing Acc ++ [generate_subset(...)]. In this case, since we're counting down instead of up, we're already going backwards, so it ends up coming out in the same order.
So, in conclusion,
Looping in Erlang is idiomatically done via a tail recursive function or using a variation of lists:map.
In many (most?) functional languages, including Erlang, tail recursion does not consume extra stack space since it is implemented using jumps.
List construction is typically done backwards (i.e., [NewElement | ExistingList]) for efficiency reasons.
You generally don't want to find the Nth item in a list (using lists:nth) since lists are singly-linked: it would have to iterate the list over and over again. Instead, find a way to iterate the list once, such as how I pre-processed the bit masks above.
I have bumped into this problem several times on the type of input data declarations mathematica understands for functions.
It Seems Mathematica understands the following types declarations:
_Integer,
_List,
_?MatrixQ,
_?VectorQ
However: _Real,_Complex declarations for instance cause the function sometimes not to compute. Any idea why?
What's the general rule here?
When you do something like f[x_]:=Sin[x], what you are doing is defining a pattern replacement rule. If you instead say f[x_smth]:=5 (if you try both, do Clear[f] before the second example), you are really saying "wherever you see f[x], check if the head of x is smth and, if it is, replace by 5". Try, for instance,
Clear[f]
f[x_smth]:=5
f[5]
f[smth[5]]
So, to answer your question, the rule is that in f[x_hd]:=1;, hd can be anything and is matched to the head of x.
One can also have more complicated definitions, such as f[x_] := Sin[x] /; x > 12, which will match if x>12 (of course this can be made arbitrarily complicated).
Edit: I forgot about the Real part. You can certainly define Clear[f];f[x_Real]=Sin[x] and it works for eg f[12.]. But you have to keep in mind that, while Head[12.] is Real, Head[12] is Integer, so that your definition won't match.
Just a quick note since no one else has mentioned it. You can pattern match for multiple Heads - and this is quicker than using the conditional matching of ? or /;.
f[x:(_Integer|_Real)] := True (* function definition goes here *)
For simple functions acting on Real or Integer arguments, it runs in about 75% of the time as the similar definition
g[x_] /; Element[x, Reals] := True (* function definition goes here *)
(which as WReach pointed out, runs in 75% of the time
as g[x_?(Element[#, Reals]&)] := True).
The advantage of the latter form is that it works with Symbolic constants such as Pi - although if you want a purely numeric function, this can be fixed in the former form with the use of N.
The most likely problem is the input your using to test the the functions. For instance,
f[x_Complex]:= Conjugate[x]
f[x + I y]
f[3 + I 4]
returns
f[x + I y]
3 - I 4
The reason the second one works while the first one doesn't is revealed when looking at their FullForms
x + I y // FullForm == Plus[x, Times[ Complex[0,1], y]]
3 + I 4 // FullForm == Complex[3,4]
Internally, Mathematica transforms 3 + I 4 into a Complex object because each of the terms is numeric, but x + I y does not get the same treatment as x and y are Symbols. Similarly, if we define
g[x_Real] := -x
and using them
g[ 5 ] == g[ 5 ]
g[ 5. ] == -5.
The key here is that 5 is an Integer which is not recognized as a subset of Real, but by adding the decimal point it becomes Real.
As acl pointed out, the pattern _Something means match to anything with Head === Something, and both the _Real and _Complex cases are very restrictive in what is given those Heads.
This discussion came up in a previous question and I'm interested in knowing the difference between the two. Illustration with an example would be nice.
Basic Example
Here is an example from Leonid Shifrin's book Mathematica programming: an advanced introduction
It is an excellent resource for this kind of question. See: (1) (2)
ClearAll[a, b]
a = RandomInteger[{1, 10}];
b := RandomInteger[{1, 10}]
Table[a, {5}]
{4, 4, 4, 4, 4}
Table[b, {5}]
{10, 5, 2, 1, 3}
Complicated Example
The example above may give the impression that once a definition for a symbol is created using Set, its value is fixed, and does not change. This is not so.
f = ... assigns to f an expression as it evaluates at the time of assignment. If symbols remain in that evaluated expression, and later their values change, so does the apparent value of f.
ClearAll[f, x]
f = 2 x;
f
2 x
x = 7;
f
14
x = 3;
f
6
It is useful to keep in mind how the rules are stored internally. For symbols assigned a value as symbol = expression, the rules are stored in OwnValues. Usually (but not always), OwnValues contains just one rule. In this particular case,
In[84]:= OwnValues[f]
Out[84]= {HoldPattern[f] :> 2 x}
The important part for us now is the r.h.s., which contains x as a symbol. What really matters for evaluation is this form - the way the rules are stored internally. As long as x did not have a value at the moment of assignment, both Set and SetDelayed produce (create) the same rule above in the global rule base, and that is all that matters. They are, therefore, equivalent in this context.
The end result is a symbol f that has a function-like behavior, since its computed value depends on the current value of x. This is not a true function however, since it does not have any parameters, and triggers only changes of the symbol x. Generally, the use of such constructs should be discouraged, since implicit dependencies on global symbols (variables) are just as bad in Mathematica as they are in other languages - they make the code harder to understand and bugs subtler and easier to overlook. Somewhat related discussion can be found here.
Set used for functions
Set can be used for functions, and sometimes it needs to be. Let me give you an example. Here Mathematica symbolically solves the Sum, and then assigns that to aF(x), which is then used for the plot.
ClearAll[aF, x]
aF[x_] = Sum[x^n Fibonacci[n], {n, 1, \[Infinity]}];
DiscretePlot[aF[x], {x, 1, 50}]
If on the other hand you try to use SetDelayed then you pass each value to be plotted to the Sum function. Not only will this be much slower, but at least on Mathematica 7, it fails entirely.
ClearAll[aF, x]
aF[x_] := Sum[x^n Fibonacci[n], {n, 1, \[Infinity]}];
DiscretePlot[aF[x], {x, 1, 50}]
If one wants to make sure that possible global values for formal parameters (x here) do not interfere and are ignored during the process of defining a new function, an alternative to Clear is to wrap Block around the definition:
ClearAll[aF, x];
x = 1;
Block[{x}, aF[x_] = Sum[x^n Fibonacci[n], {n, 1, \[Infinity]}]];
A look at the function's definition confirms that we get what we wanted:
?aF
Global`aF
aF[x_]=-(x/(-1+x+x^2))
In[1]:= Attributes[Set]
Out[1]= {HoldFirst, Protected, SequenceHold}
In[2]:= Attributes[SetDelayed]
Out[2]= {HoldAll, Protected, SequenceHold}
As you can see by their attributes, both functions hold their first argument (the symbol to which you are assigning), but they differ in that SetDelayed also holds its second argument, while Set does not. This means that Set will evaluate the expression to the right of = at the time the assignment is made. SetDelayed does not evaluate the expression to the right of the := until the variable is actually used.
What's happening is more clear if the right hand side of the assignment has a side effect (e.g. Print[]):
In[3]:= x = (Print["right hand side of Set"]; 3)
x
x
x
During evaluation of In[3]:= right hand side of Set
Out[3]= 3
Out[4]= 3
Out[5]= 3
Out[6]= 3
In[7]:= x := (Print["right hand side of SetDelayed"]; 3)
x
x
x
During evaluation of In[7]:= right hand side of SetDelayed
Out[8]= 3
During evaluation of In[7]:= right hand side of SetDelayed
Out[9]= 3
During evaluation of In[7]:= right hand side of SetDelayed
Out[10]= 3
:= is for defining functions and = is for setting a value, basically.
ie := will evaluate when its read, = will be evaluated when it is set.
think about:
x = 2
y = x
z := x
x = 4
Now, z is 4 if evaluated while y is still 2
Suppose you're working in a language with variable length arrays (e.g. with A[i] for all i in 1..A.length) and have to write a routine that takes n (n : 1..8) variable length arrays of items in a variable length array of length n, and needs to call a procedure with every possible length n array of items where the first is chosen from the first array, the second is chosen from the second array, and so forth.
If you want something concrete to visualize, imagine that your routine has to take data like:
[ [ 'top hat', 'bowler', 'derby' ], [ 'bow tie', 'cravat', 'ascot', 'bolo'] ... ['jackboots','galoshes','sneakers','slippers']]
and make the following procedure calls (in any order):
try_on ['top hat', 'bow tie', ... 'jackboots']
try_on ['top hat', 'bow tie', ... 'galoshes']
:
try_on ['derby','bolo',...'slippers']
This is sometimes called a chinese menu problem, and for fixed n can be coded quite simply (e.g. for n = 3, in pseudo code)
procedure register_combination( items : array [1..3] of vararray of An_item)
for each i1 from items[1]
for each i2 from items[2]
for each i3 from items[3]
register( [ii,i2,i3] )
But what if n can vary, giving a signature like:
procedure register_combination( items : vararray of vararray of An_item)
The code as written contained an ugly case statement, which I replaced with a much simpler solution. But I'm not sure it's the best (and it's surely not the only) way to refactor this.
How would you do it? Clever and surprising are good, but clear and maintainable are better--I'm just passing through this code and don't want to get called back. Concise, clear and clever would be ideal.
Edit: I'll post my solution later today, after others have had a chance to respond.
Teaser: I tried to sell a recursive solution, but they wouldn't go for it, so I had to stick to writing fortran in a HLL.
The answer I went with, posted below.
Either the recursive algorithm
procedure register_combination( items )
register_combination2( [], items [1:] )
procedure register_combination2( head, items)
if items == []
print head
else
for i in items[0]
register_combination2( head ++ i, items [1:] )
or the same with tail calls optimised out, using an array for the indices, and incrementing the last index until it reaches the length of the corresponding array, then carrying the increment up.
Recursion.
Or, better yet, trying to eliminate recursion using stack-like structures and while statements.
For your problem you stated (calling a function with variable arguments) it depends entirely on the programming language you're coding in; many of them allow for passing variable arguments.
Since they were opposed to recursion (don't ask) and I was opposed to messy case statements (which, as it turned out, were hiding a bug) I went with this:
procedure register_combination( items : vararray of vararray of An_item)
possible_combinations = 1
for each item_list in items
possible_combinations = possible_combinations * item_list.length
for i from 0 to possible_combinations-1
index = i
this_combination = []
for each item_list in items
item_from_this_list = index mod item_list.length
this_combination << item_list[item_from_this_list]
index = index div item_list.length
register_combination(this_combination)
Basically, I figure out how many combinations there are, assign each one a number, and then loop through the number producing the corresponding combination. Not a new trick, I suspect, but one worth knowing.
It's shorter, works for any practical combination of list lengths (if there are over 2^60 combinations, they have other problems), isn't recursive, and doesn't have the bug.