Emulating IBM floating point multiplication/addition in VBA - ms-access

I am attempting to emulate a (no longer existing) mainframe report generator in an Access 2003 or Access 2010 environment. The data it generates must match exactly with paper reports from the early 70s. Unfortunately, the earliest years data were run on hardware that used IBM floating point representation instead of IEEE. With the help of Google, I've found a library of VBA functions that will convert a float from decimal to the IEEE 754 32bit binary format. I had to modify the library to accept either 32bit or 64bit floats, so I have a modest working knowledge of floating point formats, however, I'm having trouble making the conversion from IEEE to IBM binary format, as well as trouble multiplying and adding either the IBM or the IEEE numbers.
I haven't turned up any other libraries for performing this conversion and arithmetic operations in VBA - is there an easier way to go about this, or an existing library that I'm not finding? Failing that, a clear and straightforward explanation of the relevant algorithms?
Thanks in advance.

To be honest you'd probably do better to start by looking at the Hercules emulator.
http://www.hercules-390.org/ Other than that in theory with VBA you can use the Decimal type to get good results (note you have to CDec to create these) it uses 12 bits with a variable power of ten scalar.
A quick google shows this post from the hercules group, which confirms Alberts point about needing to know the hardware:
---Snip--
In theory, but rather less so in practice. S/360 and S/370 had a
choice of Scientific or Commercial instruction sets. The former added
the FP instructions and registers to the base; the latter the decimal
instructions, including Edit and Edit & Mark. But larger 360 (iirc /65
and up) and 370 (/155 and up) models had the union of the two, called
the Universal instruction set, and at some point the S/370 dropped the
option.
---snip---
I have to say that having looked at the hercules source code you'll probably need to figure out exactly which floating point operation codes (in terms of precision single,long, extended) are being performed.

The problem is here's your confusing the issue of decimal type in access, and that of single and double type floating point values available in access.
If you use the currency data type in access, this is a scaled integer, and will not produce rounding (that is what most of us use for financial calculations and reports). You can also use decimal values in access, and again they don't round at all as they are packed decimals.
However, both the single and double values available inside of access are in fact the same format and conform to the IEEE floating point standard.
For an access single variable, this is a 32bit number, and the range is:
-3.402823E38
to
-1.401298E-45 for negative values
and
1.401298E-45
to
3.402823E38 for positive values
That looks to be the same to me as the IEEE 754 standard.
So, if you add up values in access as a single, you should get the rouding same results.
So, Intel based, and Access single and doubles I believe are the same as this IEEE standard.
The only real issue it and here is what is the format of the original data you're pulling into access, and what kinds of text or string or conversion process is occurring when that data is pulled in and stored?
Access can convert numbers. Try typing these values at the access command line prompt (debug window)
? hex(255)
Above will show FF
? csng(&hFF)
Above will show 255
Edit:
Ah, ok, I see now I have this reversed, my wrong here. The problem here is assuming you convert a number to the older IBM format (Excess 64?), you will THEN have to get your hands on their code that they used for adding those numbers. In fact, even back then, different IBM models depending on what you purchased actually produced different results (more money = more precision).
So, not only do you need conversion routines to convert to the internal representation, you THEN need the routines that add/subtract/multiply those numbers. So, just having conversion routines is not going to get you very far, since you also have to duplicate their exact routines that do math. Those types of routines are likely not all created equal in terms of how they round numbers etc.

Related

How best to represent negative-binary numbers for use in counters and comparators in Verilog HDL?

I have been designing a Delta-Sigma DAC and have run into confusion and despair over the handling of signed numbers in my (sigma)counters and (delta and Vref) comparators.
I have tried to employ signed 2's complement but the EDAcompiler doesn't seem to notice when I do it, its most likely my own mistake!
So basically my question is, how (in Verilog) do I represent negative numbers in a way that they can be used in counters (which can therefore count up and down)? I am aware that a counter register that will hold signed numbers must be declared reg signed [:0]
Thanks!
Gavin
Well I am not that clear on your question. Some compilers may not be able to handle signed registers directly since if I recall correctly it is a Verilog 2001 feature. But generally if you use digital logic that works with signed numbers you shouldn't have an issue. For example if you use an adder ip just mention that inputs are signed numbers. As for the simulator you can select the type of data you need, generally by selecting the register/value, right clicking on the waveform window and changing the type.
Finally if you have to create the logic yourself just use sign extension. so lets say you are working with 4 bit values
-5 would be 11111011 and 5 wold be 00000101. So you can see that for negative numbers the MSB is 1 and for positive its zero. Using this you can interpret the numbers in your code but just make sure that the size is bigger then what you want to use so no overflow occurs.

Perl/mysql floating point imprecision

I'm using Perl to communicate floating point numbers with a mysql database. I perform a multiplication in perl:
$var = 0.001 * 3;
I then store this value in a mysql database in a column of type DOUBLE. I later retrieve the result, perform a further multiplication and addition to the number and store it back into the database
$previous_result_from_db += 0.001*1 + 0.001*0.5.
The result stored in the database should be 0.0045, but instead I get: 0.0045000000000000005. I'm trying to understand where the source of the imprecision is. Is it Perl or the database? What is the correct way to handle this kind of floating point interaction to avoid the imprecision?
Thanks!
"10.0 times 0.1 is hardly ever 1.0" -- Brian Kernighan, The Elements of Programming Style
It is a known limitation of FLOAT and DOUBLE that they are imprecise numeric data types. This is built into the design of the IEEE 754 format. It affects all programming languages that store floating-point numbers using this format.
MySQL documents this in this appendix: B.5.5.8 Problems with Floating-Point Values.
PHP documents this in Warning: Floating point precision.
If you want a scaled numeric data type in MySQL that avoids this rounding behavior, use DECIMAL.

Best column type in mysql for decimal time

I have a timesheet application where people put eg. 3.5 hours worked in a day.
Sometimes someone might put 1.25 I guess.
I stored as float but am now having issues when I retrieve data... Should I have used decimal to 2 or 3 points?.
There are a few ways to tackle this.
If you want to have uniformity in the entries, I'd suggest using a "Fixed-Point Type" value (see more info here). This would mean that 3.5 hours should always be saved as 3.50.
The other option is to convert all your values to integer values (see more info here), and in your application layer, convert the values back to "readable" format. For example, you would store 1.25 hours as 125, and in your application layer, divide by 100, therefore getting 1.25. This method is more useful for currency management/calculation applications where a specific level of precision is necessary.
Floats allow for floating decimal point precision, so there is no restriction on uniformity of precision for decimal values...
For your purposes, I'd recommend fixed-point type unless there's complexity that you didn't mention.
Hope that helps.

Bulk export of binary waveform data from oscilloscope to data points (csv preferred)

I'm working with some binary waveform files from various early to mid-90's HP scopes. I am trying to do a bulk conversion (we have over 5000) of the files to CSV's and then upload them into a database. I've tried hexdump, xxd, od, strings, etc. and none of them seem to work. I did hunt down a programmers manual but it's not making a whole lot of sense.
The files have a preamble line as ascii text but then the data points are in binary and for some reason nothing I try can decode them. The preamble gives the data necessary to use the binary values and calculate the correct values. It also states that the data is in WORD format.
:WAV:PRE 2,1,32768,1,+4.000000E-08,-4.9722700001108E-06,0,+2.460630E-04,+2.500000E+00,16384;:WAV:DATA #800065536^W�^W�^W�^
I'm pretty confused.
Have a look at
http://www.naic.edu/~phil/hardware/oscilloscopes/9000A_Programmer_Reference.pdf
specifically page 1-21. After ":WAV:DATA", I think the rest of the chunk above will have 65536 8-bit data bytes (the start of which is represented above by �) . The ^W is probably a delimiter, so you would have to parse that out. Just a thought.
UPDATE: I'm new to oscilloscope data collection and am trying to figure the whole thing out from scratch. So, on further digging, it looks like the data you have provided shows this:
PREamble:
- WORD format (16-bit signed integers split into 2 8-bit bytes)
- If there is a WAV:BYT section, that would specify byte order for each pair
- RAW data
- 32768 data points
- COUNT = 1 (I'm not clear on the meaning of this)
- Next 3 should be X increment, origin, reference
- Next 3 should be Y increment, origin, reference, although the manual that I pointed you at above has many more fields than just these, so you might want to consult your specific scope manual.
DATA:
- On closer examination, I don't think the ^W is a delimiter, I think it is the first byte of the pair (0010111). The � character is apparently a standard "I don't know how to represent this character" web representation. You would need to look at that character as 8 bits also.
- 65536 byte pairs of data
I'm not finding a utility that will do this for you. I think you're going to have to write or acquire some code (Perl, C, Java, Python, VB, etc.) to get this done.

Best practice for storing weights in a SQL database?

An application I'm working on needs to store weights of the format X pounds, y.y ounces. The database is MySQL, but I imagine this is DB agnostic.
I can think of three ways to do this:
Convert the weight to decimal pounds and store in a single field. (5 lbs 6.2 oz = 5.33671875 lbs)
Convert the weight to decimal ounces and store in a single field. (5 lbs 6.2 oz = 86.2 oz)
Store the pounds portion as an integer and the ounces portion as a decimal, in two fields.
I'm thinking that #1 is not such a good idea, since decimal pounds will produce numbers of arbitrary precision, which would need to be stored as a float, which could lead to inaccuracies which are inherent in floating point numbers.
Is there a compelling reason to choose #2 over #3 or vise-versa?
TL;DR
Choose either option #1 or option #2—there's no difference between them. Don't use option #3, because it's awkward to work with.
You claim that there are inherent inaccuracies in floating point numbers. I think that this deserves to be explored a little first.
When deciding upon a numeral system for representing a number (whether on a piece of paper, in a computer circuit, or elsewhere), there are two separate issues to consider:
its basis; and
its format.
Pick a base, any base…
Limited by finite space, one cannot represent an arbitrary member of an infinite set. For example: no matter how much paper you buy or how small your handwriting, it'd always be possible to find an integer that won't fit in the given space (you could just keep appending extra digits until the paper runs out). So, with integers, we usually restrict our finite space to representing only those that fall within some particular interval—e.g. if we have space for the positive/negative sign and three digits, we might restrict ourselves to the interval [-999,+999].
Every non-empty interval contains an infinite set of real numbers. In other words, no matter what interval one takes over the real numbers—be it [-999,+999], [0,1], [0.000001,0.000002] or anything else—there is still an infinite set of reals within that interval (one need only keep appending (non-zero) fractional digits)! Therefore arbitrary real numbers must always be "rounded" to something that can be represented in finite space.
The set of real numbers that can be represented in finite space depends upon the numeral system that is used. In our (familiar) positional base-10 system, finite space will suffice for one-half (0.510) but not for one-third (0.33333…10); by contrast, in the (less familiar) positional base-9 system, it is the other way around (those same numbers are respectively 0.44444…9 and 0.39). The consequence of all this is that some numbers that can be represented using only a small amount of space in positional base-10 (and therefore appear to be very "round" to us humans), e.g. one-tenth, would actually require infinite binary circuits to be stored precisely (and therefore don't appear to be very "round" to our digital friends)! Notably, since 2 is a factor of 10, the same is not true in reverse: any number that can be represented with finite binary can also be represented with finite decimal.
We can't do any better for continuous quantities. Ultimately such quantities must use a finite representation in some numeral system: it's arbitrary whether that system happens to be easy on computer circuits, on human fingers, on something else or on nothing at all—whichever system is used, the value must be rounded and therefore it always results in "representation error".
In other words, even if one has a perfectly accurate measuring instrument (which is physically impossible), then any measurement it reports will already have been rounded to a number that happens to fit on its display (in whatever base it uses—typically decimal, for obvious reasons). So, "86.2 oz" is never actually "86.2 oz" but rather a representation of "something between 86.1500000... oz and 86.2499999... oz". (Actually, because in reality the instrument is imperfect, all we can ever really say is that we have some degree of confidence that the actual value falls within that interval—but that is definitely departing some way from the point here).
But we can do better for discrete quantities. Such values are not "arbitrary real numbers" and therefore none of the above applies to them: they can be represented exactly in the numeral system in which they were defined—and indeed, should be (as converting to another numeral system and truncating to a finite length would result in rounding to an inexact number). Computers can (inefficiently) handle such situations by representing the number as a string: e.g. consider ASCII or BCD encoding.
Apply a format…
Since it's a property of the numeral system's (somewhat arbitrary) basis, whether or not a value appears to be "round" has no bearing on its precision. That's a really important observation, which runs counter to many people's intuition (and it's the reason I spent so much time explaining numerical basis above).
Precision is instead determined by how many significant figures a representation has. We need a storage format that is capable of recording our values to at least as many significant figures as we consider them to be correct. Taking by way of example values that we consider to be correct when stated as 86.2 and 0.0000862, the two most common options are:
Fixed point, where the number of significant figures depends on magnitude: e.g. in fixed 5-decimal-point representation, our values would be stored as 86.20000 and 0.00009 (and therefore have 7 and 1 significant figures of precision respectively). In this example, precision has been lost in the latter value (and indeed, it wouldn't take much more for us to have been totally unable to represent anything of significance); and the former value stored false precision, which is a waste of our finite space (and indeed, it wouldn't take much more for the value to become so large that it overflows the storage capacity).
A common example of when this format might be appropriate is for an accounting system: monetary sums must usually be tracked to the penny irrespective of their magnitude (therefore less precision is required for small values, and more precision is required for large values). As it happens, currency is usually also considered to be discrete (pennies are indivisible), so this is also a good example of a situation where a particular basis (decimal for most modern currencies) is desirable to avoid the representation errors discussed above.
One usually implements fixed point storage by treating one's values as quotients over a common denominator and storing the numerator as an integer. In our example, the common denominator could be 105, so instead of 86.20000 and 0.00009 one would store the integers 8620000 and 9 and remember that they must be divided by 100000.
Floating point, where the number of significant figures is constant irrespective of magnitude: e.g. in 5-significant-figure decimal representation, our values would be stored as 86.200 and 0.000086200 (and, by definition, have 5 significant figures of precision both times). In this example, both values have been stored without any loss of precision; and they both also have the same amount of false precision, which is less wasteful (and we can therefore use our finite space to represent a far greater range of values—both large and small).
A common example of when this format might be appropriate is for recording any real world measurements: the precision of measuring instruments (which all suffer from both systematic and random errors) is fairly constant irrespective of scale so, given sufficient significant figures (typically around 3 or 4 digits), absolutely no precision is lost even if a change of base resulted in rounding to a different number.
One usually implements floating point storage by treating one's values as integer significands with integer exponents. In our example, the significand could be 86200 for both values whereupon the (base-10) exponents would be -4 and -9 respectively.
But how precise are the floating point storage formats used by our computers?
An IEEE754 single precision (binary32) floating point number has 24 bits, or log10(224) (over 7) digits, of significance—i.e. it has a tolerance of less than ±0.000006%. In other words, it is more precise than saying "86.20000".
An IEEE754 double precision (binary64) floating point number has 53 bits, or log10(253) (almost 16) digits, of significance—i.e. it has a tolerance of just over ±0.00000000000001%. In other words, it is more precise than saying "86.2000000000000".
The most important thing to realise is that these formats are, respectively, over ten thousand and over one trillion times more precise than saying "86.2"—even though exact conversions of the binary back into decimal happens to include erroneous false precision (which we must ignore: more on this shortly)!
Notice also that both fixed and floating point formats will result in loss of precision when a value is known more precisely than the format supports. Such rounding errors can propagate in arithmetic operations to yield apparently erroneous results (which no doubt explains your reference to the "inherent inaccuracies" of floating point numbers): for example, 1⁄3 × 3000 in 5-place fixed point would yield 999.99000 rather than 1000.00000; and 1⁄7 − 7⁄50 in 5-significant figure floating point would yield 0.0028600 rather than 0.0028571.
The field of numerical analysis is dedicated to understanding these effects, but it is important to realise that any usable system (even performing calculations in your head) is vulnerable to such problems because no method of calculation that is guaranteed to terminate can ever offer infinite precision: consider, for example, how to calculate the area of a circle—there will necessarily be loss of precision in the value used for π, which will propagate into the result.
Conclusion
Real world measurements should use binary floating point: it's fast, compact, extremely precise and no worse than anything else (including the decimal version from which you started). Since MySQL's floating-point datatypes are IEEE754, this is exactly what they offer.
Currency applications should use denary fixed point: whilst it's slow and wastes memory, it ensures both that values are not rounded to inexact quantities and that pennies are not lost on large monetary sums. Since MySQL's fixed-point datatypes are BCD-encoded strings, this is exactly what they offer.
Finally, bear in mind that programming languages usually represent fractional values using binary floating-point types: so if your database stores values in another format, you need to be careful how they are brought into your application or else they may get converted (with all the ensuing issues that entails) at the interface.
Which option is best in this case?
Hopefully I've convinced you that your values can safely (and should) be stored in floating point types without worrying too much about any "inaccuracies"? Remember, they're more precise than your flimsy 3-significant-digit decimal representation ever was: you just have to ignore false precision (but one must always do that anyway, even if using a fixed-point decimal format).
As for your question: choose either option 1 or 2 over option 3—it makes comparisons easier (for example, to find the maximal mass, one could just use MAX(mass), whereas to do it efficiently across two columns would require some nesting).
Between those two, it doesn’t matter which one chooses—floating point numbers are stored with a constant number of significant bits irrespective of their scale.
Furthermore, whilst in the general case it could happen that some values are rounded to binary numbers that are closer to their original decimal representation using option 1 whilst simultaneously others are rounded to binary numbers that are closer to their original decimal representation using option 2, as we shall shortly see such representation errors only manifest within the false precision that should always be ignored.
However, in this case, because it happens that there are 16 ounces to 1 pound (and 16 is a power of 2), the relative differences between original decimal values and stored binary numbers using the two approaches is identical:
5.387510 (not 5.3367187510 as stated in your question) would be stored in a binary32 float as 101.0110001100110011001102 (which is 5.3874998092651367187510): this is 0.0000036% from the original value (but, as discussed above, the "original value" was already a pretty lousy representation of the physical quantity it represents).
Knowing that a binary32 float stores only 7 decimal digits of precision, our compiler knows for certain that everything from the 8th digit onwards is definitely false precision and therefore must be ignored in every case—thus, provided that our input value didn't require more precision than that (and if it did, binary32 was obviously the wrong choice of format), this guarantees a return to a decimal value that looks just as round as that from which we started: 5.38750010. However, we should really apply domain knowledge at this point (as we should with any storage format) to discard any further false precision that might exist, such as those two trailing zeroes.
86.210 would be stored in a binary32 float as 1010110.001100110011001102 (which is 86.199996948242187510): this is also 0.0000036% from the original value. As before, we then ignore false precision to return to our original input.
Notice how the binary representations of the numbers are identical, except for the placement of the radix point (which is four bits apart):
101.0110 00110011001100110
101 0110.00110011001100110
This is because 5.3875 × 24 = 86.2.
As an aside: being European (albeit British), I also have a strong aversion to imperial units of measurement—handling values of different scales is just so messy. I'd almost certainly store masses in SI units (e.g. kilograms or grams) and then perform conversions to imperial units as required within the presentation layer of my application. Plus rigidly adhering to SI units might one day save you from losing $125m.
I’d be tempted to store it in a metric unit, as they tend to be simple decimals and not complex values like pounds and ounces. That way, you can just store the one value (i.e. 103.25 kg) rather than the pounds–ounces equivalent, and it’s easier to perform conversions.
This is something I’ve dealt with in the past. I do a lot of work on pro wrestling and mixed martial arts (MMA) websites where fighters’ heights and weights need to be recorded. They tend to be displayed as feet and inches and pounds and ounces, but I still store the values in their centimetres and kilogram equivalents, and then do the conversion when displaying on the site.
First, I had not known about how floating point numbers were inaccurate - thankfully a search latter helps me understand: Floating Point Inaccuracy Examples
I would fully agree with #eggyal - keep the data in a single format in a single column. This allows you to expose it to the application and let the application deal with the presentation of it - be it in lbs/oz, rounded up lbs, whatever.
The database should keep the raw data while the presentation layer dictates the layout.
You can use decimal data type for weight column.
decimal('weight', 8, 2); // precision = 8, scale = 2
Storage size:
Precision 1-9 5 Bytes
Precision 10-19 9 Bytes
Precision 20-28 13 Bytes
Precision 29-38 17 Bytes