Why do different operators have different associativity? - language-agnostic

I've got to the section on operators in The Ruby Programming Language, and it's made me think about operator associativity. This isn't a Ruby question by the way - it applies to all languages.
I know that operators have to associate one way or the other, and I can see why in some cases one way would be preferable to the other, but I'm struggling to see the bigger picture. Are there some criteria that language designers use to decide what should be left-to-right and what should be right-to-left? Are there some cases where it "just makes sense" for it to be one way over the others, and other cases where it's just an arbitrary decision? Or is there some grand design behind all of this?

Typically it's so the syntax is "natural":
Consider x - y + z. You want that to be left-to-right, so that you get (x - y) + z rather than x - (y + z).
Consider a = b = c. You want that to be right-to-left, so that you get a = (b = c), rather than (a = b) = c.
I can't think of an example of where the choice appears to have been made "arbitrarily".
Disclaimer: I don't know Ruby, so my examples above are based on C syntax. But I'm sure the same principles apply in Ruby.

Imagine to write everything with brackets for a century or two.
You will have the experience about which operator will most likely bind its values together first, and which operator last.
If you can define the associativity of those operators, then you want to define it in a way to minimize the brackets while writing the formulas in easy-to-read terms. I.e. (*) before (+), and (-) should be left-associative.
By the way, Left/Right-Associative means the same as Left/Right-Recursive. The word associative is the mathematical perspective, recursive the algorihmic. (see "end-recursive", and look at where you write the most brackets.)

Most of operator associativities in comp sci is nicked directly from maths. Specifically symbolic logic and algebra.

Related

Do we input only 1s for minterms and 0s for maxterms?

This has been bugging me since a long time.
Suppose I have a boolean function F defined as follows:
Now, it can be expressed in its SOP form as:
F = bar(X)Ybar(Z)+ XYZ
But I fail to understand why we always complement the 0s to express them as 1. Is it assumed that the inputs X, Y and Z will always be 1?
What is the practical application of that? All the youtube videos I watched on this topic, how to express a function in SOP form or as sum of minterms but none of them explained why we need this thing? Why do we need minterms in the first place?
As of now, I believe that we design circuits to yield and take only 1 and that's where minterms come in handy. But I couldn't get any confirmation of this thing anywhere so I am not sure I am right.
Maxterms are even more confusing. Do we design circuits that would yield and take only 0s? Is that the purpose of maxterms?
Why do we need minterms in the first place?
We do not need minterms, we need a way to solve a logic design problem, i.e. given a truth table, find a logic circuit able to reproduce this truth table.
Obviously, this requires a methodology. Minterm and sum-of-products is mean to realize that. Maxterms and product-of-sums is another one. In either case, you get an algebraic representation of your truth table and you can either implement it directly or try to apply standard theorems of boolean algebra to find an equivalent, but simpler, representation.
But these are not the only tools. For instance, with Karnaugh maps, you rewrite your truth table with some rules and you can simultaneously find an algebraic representation and reduce its complexity, and it does not consider minterms. Its main drawback is that it becomes unworkable if the number of inputs rises and it cannot be considered as a general way to solve the problem of logic design.
It happens that minterms (or maxterms) do not have this drawback, and can be used to solve any problem. We get a trut table and we can directly convert it in an equation with ands, ors and nots. Indeed minterms are somehow simpler to human beings than maxterms, but it is just a matter of taste or of a reduced number of parenthesis, they are actually equivalent.
But I fail to understand why we always complement the 0s to express them as 1. Is it assumed that the inputs X, Y and Z will always be 1?
Assume that we have a truth table, with only a given output at 1. For instance, as line 3 of your table. It means that when x=0, y=1 and z=0 , the output will be zero. So, can I express that in boolean logic? With the SOP methodology, we say that we want a solution for this problem that is an "and" of entries or of their complement. And obviously the solution is "x must be false and y must be true and z must be false" or "(not x) must be true and y must be true and (not z) must be true", hence the minterm /x.y./z. So complementing when we have a 0 and leaving unchanged when we have a 1 is way to find the equation that will be true when xyz=010
If I have another table with only one output at 1 (for instance line 8 of your table), we can find similarly that I can implement this TT with x.y.z.
Now if I have a TT with 2 lines at 1, one can use the property of OR gates and do the OR of the previous circuits. when the output of the first one is 1, it will force this behavior and ditto for the second. And we directly get the solution for your table /xy/z+xyz
This can be extended to any number of ones in the TT and gives a systematic way to find an equation equivalent to a truth table.
So just think of minterms and maxterms as a tool to translate a TT into equations. What is important is the truth table (that describes the behaviour of what you want to do) and the equations (that give you a way to realize it).

Why bitwise operators are popular in sport programming

I'm a newbie in one of a sport programming service and found that winning solutions often use bitwise operators.
Here is an example.
Write a function, which finds a difference between two
arrays (consider that they differ by one element).
The solutions are:
let s = x => ~eval(x.join`+`);
let findDiff = (a, b) => s(b) - s(a);
and
let findDiff = (a, b) => eval(a.concat(b).join`^`);
I would like to know:
The explanation of those two examples (bitwise part).
What's the advantage of using bitwise operators on decimal numbers?
Is that faster to operate with bitwise operations rather than normal one?
Update:
I didn't fully understand why my question is marked as a duplicate to ~~ vs parseInt. That's good to know, why this operator replaces parseInt and probably helpful for sport programming. But it doesn't answer on my question.
Code golf isn't focused on bitwise operators, is about code length.
Bitwise operators are not necessary faster, but generally fast enough. They are concise (and usually harder to read, but that's side effect).
~~ is a shorter (and usually more preformant) alternative to parseInt with a considerable number of remarks. In regular (non-golf) code it should be used only if it provides the behaviour that is more desirable than parseInt or in performance-sensitive context.
~a is roughly equal to parseInt(a) * -1 - 1. It can be used as a shorter alternative to ~~a in this particular example, s(b) - s(a), because * -1 - 1 part is eliminated on subtraction (the sign should be taken into account).

Expression Trees: Alternatives or Alternate Evaluation Methods

I'm not even sure if this is the right place to ask a question like this.
As a part of my MSc thesis, I am doing some parallel algorithm stuff. To put it simply part of the thing that I am doing is evaluating thousands of expression trees in parallel (expressions like sin(exp (x + y) * cos (z))). What I am doing right now is converting these expression trees to Prefix/Postfix expressions and evaluating them using conventional methods (stack, recursion, etc). These are the basic things that we've all been taught in Data Structures and basic Computer Science courses.
I'm wondering if there is anything else to be used instead of expression trees for dealing with expressions. I know that compilers are heavily using expression trees for parsing phase so I'm assuming there are no alternatives to expression trees (or else someone would have used it in a compiler).
Are there any alternative evaluation methods for such expressions (rather than stacks and recursion). Something more "parallel" friendly? Parsing such expression with stack is sequential and will create a bottleneck in parallel systems. (Exotic/weird/theoretic methods -if any- are also acceptable for my work)
I think that evaluating expression trees is parallelizable, you just don't convert them to the prefix or postfix form.
For example, the tree for the expression you gave would look like this:
sin
|
*
/ \
exp cos
| |
+ z
/ \
x y
When you encounter the *, you could evaluate the exp subexpression on one thread and the cos subexpression on another one. (You could use a future here to make the code simpler, assuming your programming language supports them.)
Although if your expressions really are as simple as this one and you have thousands of them, then I don't see any reason why you would need to evaluate a single expression in parallel. Parallelizing on the expressions themselves should be more than enough (e.g. with 1000 expressions and 2 cores, evaluate 500 on one core and the rest on the other core).

Pattern matching with associative and commutative operators

Pattern matching (as found in e.g. Prolog, the ML family languages and various expert system shells) normally operates by matching a query against data element by element in strict order.
In domains like automated theorem proving, however, there is a requirement to take into account that some operators are associative and commutative. Suppose we have data
A or B or C
and query
C or $X
Going by surface syntax this doesn't match, but logically it should match with $X bound to A or B because or is associative and commutative.
Is there any existing system, in any language, that does this sort of thing?
Associative-Commutative pattern matching has been around since 1981 and earlier, and is still a hot topic today.
There are lots of systems that implement this idea and make it useful; it means you can avoid write complicated pattern matches when associtivity or commutativity could be used to make the pattern match. Yes, it can be expensive; better the pattern matcher do this automatically, than you do it badly by hand.
You can see an example in a rewrite system for algebra and simple calculus implemented using our program transformation system. In this example, the symbolic language to be processed is defined by grammar rules, and those rules that have A-C properties are marked. Rewrites on trees produced by parsing the symbolic language are automatically extended to match.
The maude term rewriter implements associative and commutative pattern matching.
http://maude.cs.uiuc.edu/
I've never encountered such a thing, and I just had a more detailed look.
There is a sound computational reason for not implementing this by default - one has to essentially generate all combinations of the input before pattern matching, or you have to generate the full cross-product worth of match clauses.
I suspect that the usual way to implement this would be to simply write both patterns (in the binary case), i.e., have patterns for both C or $X and $X or C.
Depending on the underlying organisation of data (it's usually tuples), this pattern matching would involve rearranging the order of tuple elements, which would be weird (particularly in a strongly typed environment!). If it's lists instead, then you're on even shakier ground.
Incidentally, I suspect that the operation you fundamentally want is disjoint union patterns on sets, e.g.:
foo (Or ({C} disjointUnion {X})) = ...
The only programming environment I've seen that deals with sets in any detail would be Isabelle/HOL, and I'm still not sure that you can construct pattern matches over them.
EDIT: It looks like Isabelle's function functionality (rather than fun) will let you define complex non-constructor patterns, except then you have to prove that they are used consistently, and you can't use the code generator anymore.
EDIT 2: The way I implemented similar functionality over n commutative, associative and transitive operators was this:
My terms were of the form A | B | C | D, while queries were of the form B | C | $X, where $X was permitted to match zero or more things. I pre-sorted these using lexographic ordering, so that variables always occurred in the last position.
First, you construct all pairwise matches, ignoring variables for now, and recording those that match according to your rules.
{ (B,B), (C,C) }
If you treat this as a bipartite graph, then you are essentially doing a perfect marriage problem. There exist fast algorithms for finding these.
Assuming you find one, then you gather up everything that does not appear on the left-hand side of your relation (in this example, A and D), and you stuff them into the variable $X, and your match is complete. Obviously you can fail at any stage here, but this will mostly happen if there is no variable free on the RHS, or if there exists a constructor on the LHS that is not matched by anything (preventing you from finding a perfect match).
Sorry if this is a bit muddled. It's been a while since I wrote this code, but I hope this helps you, even a little bit!
For the record, this might not be a good approach in all cases. I had very complex notions of 'match' on subterms (i.e., not simple equality), and so building sets or anything would not have worked. Maybe that'll work in your case though and you can compute disjoint unions directly.

How do you make mathematical equations readable and maintainable?

Given maths is not my strongest point I'm implementing a bezier curve for 3D animation.
The formula is shown here, and as you can see it is quite nasty. In my programming I use descriptive names, and like to break complex lines down to smaller manageable ones.
How is the best way to handle a scenario like this?
Is it to ignore programming best practices and stick with variable names such as x, y, and t?
In my opinion when you have a predefined mathematical equation it is perfectly acceptable to use short variable names: x, y, t, P_0 etc. which correspond to the equation. Make sure to reference the formula clearly though.
if the formulas is extrated to its own function i'd certainly use the canonical maths representation, and maybe add the wiki page url in a comment
if its imbedded in code with a specific usage of the function then keeping the domain names from your code might be better
it depends
Seeing as only the mathematician in you is actually going to understand the formula, my advice would be to go with a style that a mathematician would be most comfortable with (so letters as variables etc...)
I would also definitely put a comment in there somewhere that clearly states what the formula is, and what it does, for example "This method returns a series of points along a quadratic Bezier curve". That way whenever the programmer in you revisits the code you can safely ignore the mathematical complexity with the assumption that your inner mathematician has already checked to make sure its all ok.
I'd encourage you to use mathematic's best practices and denote variables with letters. Just provide explanation for the variables above the formula. And if you can split the formula to smaller subformulas, even better.
Don't bother. Just reference the documentation (the wikipedia page in this case or even better your own documentation) and make sure the variable names match your documentation. Code comments are just not well suited (nor need them to) describe mathematical formulation.
Sometimes a reference is better than 40 lines of comments or even suggestive variable names.
Make the formula in C# (or other language of preference) resemble the mathematical formula as closely as possible, and include a reference to the formula, including a description of the variables. The idea in coding is to be readable, and if you're dealing with mathematical formulae the most readable representation is the one that looks most like mathematics.
You could key the formula into wolfram alpha ... it will try to simplify for you.
It'll also output in a mathematica friendly style ... funnily enough ;)
Kindness,
Dan
I tend to break an equation down into its root parts.
def sum(array)
array.inject(0) { |result, item| result + item }
end
def average(array)
sum(array) / array.length
end
def sum_squared_error(array)
avg = average(array)
array.inject(0) { |result, item| result + (item - avg) ** 2 }
end
def variance(array)
sum_squared_error(array) / (array.length - 1)
end
def standard_deviation(array)
Math.sqrt(variance(array))
end
You might consider using a domain-specific language to handle this. Mathematica would allow you to write out the equation just as it appears in mathematical notion.
The more your final form resembles the original equation, the more maintainable it will be in the long run (otherwise you have to interpret the code every time you see it).