What exactly is "handle"? - terminology

I've often heard about "handles", what exactly are those?
Edit:
For instance I have heard about:
windows handles
event handles
file handles
and so on. Are those things the same? Or they are some abstract terms?

A handle is an indirect way to reference an object owned by the OS or a library. When the operating system or a library owns an object but wants to let a client refer to it, it can provide a reference to that object called a handle.
Handles can be implemented in different ways. Typically they are not references in the C++ or C# sense. Often they are pointers cast to some opaque type, or they might be (or contain) an index into a table of objects that are owned by the operating system or library.
For example, in Windows, if you create a window, the OS creates an object that represents the window, but it doesn't return a pointer to that object. Instead, it returns a window handle, which provides an extra layer of indirection. When you pass the window handle back in another OS call, the OS knows which window object to use based on the handle. This prevents your code from directly accessing the window object.
The extra layer of indirection allows the OS or library to do things like move objects around, reference count the objects, and generally control what happens to the object. Like the PIMPL idiom, the implementation may change completely while still preserving the original API and thus not forcing clients to recompile. It's especially useful if you're trying to offer a non-object-oriented API for clients written in procedural languages like C.

A "handle" is another name for a reference to a resource which is managed by the programmer explicitly instead of automatically by the runtime.

Handles are pointers to unmanaged resources like file handles, database connection handles, windows handles, etc... As they are handles to unmanaged resources in most cases they won't be automatically garbage collected and you need to ensure to properly release them or you might hear about leaking handles.

Related

Word-VBA Functions "Method Saveas2 of object failed"

I have an access-vba application that also makes use of word-vba. While running the application on my local machine, it functions well. Once it is moved to others (same versions of access and word) it will crash when it comes to the vba portion of word. Commands such as document.open or .saveas2 fail: Method 'SaveAs2' of object failed for example.
I've also noticed that libraries that I've referenced in the application are required by any other end user. I'm used to just compiling with the libraries and from that point they are always included in the .jar/.exe/etc, but, it seems when you move the application to other's computers it's always trying to recompile?
I'm not well versed in VBA so I'm speculating that my failing word-vba functions are because of a referencing error, any other ideas?
The "libraries" that VBA can reference are actually COM objects, usually packaged as DLL files. They are objects which are dynamically instantiated at runtime (if they aren't already) when requested. They are loaded by Windows into memory and your program uses the COM standard to interact with them, calling methods and getting or setting properties (interprocess communication). There are generally two ways of interacting with them: early binding and late binding.
With early binding, you add a reference to the library while you are still writing code, which allows the VBA IDE to provide autocompletion and some compile-time error checking. You instantiate objects with the "new" keyword and by directly typing the object name. However, early binding requires that you select a specific dll and possibly a specific version of the interface. This can lead to issues if you reference a specific interface version which one of your users doesn't have.
With late binding, you instantiate objects using CreateObject or GetObject, requesting them by name from Windows. Windows will look the name up and return a reference to the object. The variables in your code are simply objects and calling methods is a bit dangerous because the compiler allows you to type in whatever method name you want and provides no compile-time warnings. This has the advantage that as long as you are calling well established methods and nothing new or deprecated, the code will work regardless of the user's version.
As for the error you are getting, you may want to check the version of Office on the user machines - SaveAs2 was added in Office 2010.

What's the reason for interface to exist in Actionscript-3 and other languages

what is the meaning of this interfaces? even if we implement an interface on a class, we have to declare it's functionality again and again each time we implement it on a different class, so what is the reason of interfaces exist on as3 or any other languages which has interface.
Thank you
I basically agree with the answers posted so far, just had a bit to add.
First to answer the easy part, yes other languages have interfaces. Java comes to mind immediately but I'm pretty sure all OOP languages (C++, C#, etc.) include some mechanism for creating interfaces.
As stated by Jake, you can write interfaces as "contracts" for what will be fulfilled in order to separate work. To take a hypothetical say I'm working on A and you're working on C, and bob is working on B. If we define B' as an interface for B, we can quickly and relatively easily define B' (relative to defining B, the implementation), and all go on our way. I can assume that from A I can code to B', you can assume from C you can code to B', and when bob gets done with B we can just plug it in.
This comes to Jugg1es point. The ability to swap out a whole functional piece is made easier by "dependency injection" (if you don't know this phrase, please google it). This is the exact thing described, you create an interface that defines generally what something will do, say a database connector. For all database connectors, you want it to be able to connect to database, and run queries, so you might define an interface that says the classes must have a "connect()" method and a "doQuery(stringQuery)." Now lets say Bob writes the implementation for MySQL databases, now your client says well we just paid 200,000 for new servers and they'll run Microsoft SQL so to take advantage of that with your software all you'd need to do is swap out the database connector.
In real life, I have a friend who runs a meat packing/distribution company in Chicago. The company that makes their software/hardware setup for scanning packages and weighing things as they come in and out (inventory) is telling them they have to upgrade to a newer OS/Server and newer hardware to keep with the software. The software is not written in a modular way that allows them to maintain backwards compatibility. I've been in this boat before plenty of times, telling someone xyz needs to be upgraded to get abc functionality that will make doing my job 90% easier. Anyhow guess point being in the real world people don't always make use of these things and it can bite you in the ass.
Interfaces are vital to OOP, particularly when developing large applications. One example is if you needed a data layer that returns data on, say, Users. What if you eventually change how the data is obtained, say you started with XML web services data, but then switched to a flat file or something. If you created an interface for your data layer, you could create another class that implements it and make all the changes to the data layer without ever having to change the code in your application layer. I don't know if you're using Flex or Flash, but when using Flex, interfaces are very useful.
Interfaces are a way of defining functionality of a class. it might not make a whole lot of sense when you are working alone (especially starting out), but when you start working in a team it helps people understand how your code works and how to use the classes you wrote (while keeping your code encapsulated). That's the best way to think of them at an intermediate level in my opinion.
While the existing answers are pretty good, I think they miss the chief advantage of using Interfaces in ActionScript, which is that you can avoid compiling the implementation of that Interface into the Main Document Class.
For example, if you have an ISpaceShip Interface, you now have a choice to do several things to populate a variable typed to that Interface. You could load an external swf whose main Document Class implements ISpaceShip. Once the Loader's contentLoaderInfo's COMPLETE event fires, you cast the contentto ISpaceShip, and the implementation of that (whatever it is) is never compiled into your loading swf. This allows you to put real content in front of your users while the load process happens.
By the same token, you could have a timeline instance declared in the parent AS Class of type ISpaceShip with "Export for Actionscript in Frame N *un*checked. This will compile on the frame where it is first used, so you no longer need to account for this in your preloading time. Do this with enough things and suddenly you don't even need a preloader.
Another advantage of coding to Interfaces is if you're doing unit tests on your code, which you should unless your code is completely trivial. This enables you to make sure that the code is succeeding or failing on its own merits, not based on the merits of the collaborator, or where the collaborator isn't appropriate for a test. For example, if you have a controller that is designed to control a specific type of View, you're not going to want to instantiate the full view for the test, but only the functionality that makes a difference for the test.
If you don't have support in your work situation for writing tests, coding to interfaces helps make sure that your code will be testable once you get to the point where you can write tests.
The above answers are all very good, the only thing I'd add - and it might not be immediately clear in a language like AS3, where there are several untyped collection classes (Array, Object and Dictionary) and Object/dynamic classes - is that it's a means of grouping otherwise disparate objects by type.
A quick example:
Image you had a space shooter, where the player has missiles which lock-on to various targets. Suppose, for this purpose, you wanted any type of object which could be locked onto to have internal functions for registering this (aka an interface):
function lockOn():void;//Tells the object something's locked onto it
function getLockData():Object;//Returns information, position, heat, whatever etc
These targets could be anything, a series of totally unrelated classes - enemy, friend, powerup, health.
One solution would be to have them all to inherit from a base class which contained these methods - but Enemies and Health Pickups wouldn't logically share a common ancestor (and if you find yourself making bizarre inheritance chains to accomodate your needs then you should rethink your design!), and your missile will also need a reference to the object its locked onto:
var myTarget:Enemy;//This isn't going to work for the Powerup class!
or
var myTarget:Powerup;//This isn't going to work for the Enemy class!
...but if all lockable classes implement the ILockable interface, you can set this as the type reference:
var myTarget:ILockable;//This can be set as Enemy, Powerup, any class which implements ILockable!
..and have the functions above as the interface itself.
They're also handy when using the Vector class (the name may mislead you, it's just a typed array) - they run much faster than arrays, but only allow a single type of element - and again, an interface can be specified as type:
var lockTargets:Vector.<Enemy> = new Vector.<Enemy>();//New array of lockable objects
lockTargets[0] = new HealthPickup();//Compiler won't like this!
but this...
var lockTargets:Vector.<ILockable> = new Vector.<ILockable>();
lockTargets[0] = new HealthPickup();
lockTargets[1] = new Enemy();
Will, provided Enemy and HealthPickup implement ILockable, work just fine!

Tcl extensions: Life Cycle of extensions' ClientData

Non-trivial native extensions will require per-interpreter data
structures that are dynamically allocated.
I am currently using Tcl_SetAssocData, with a key corresponding
to the extension's name and an appropriate deletion routine,
to prevent this memory from leaking away.
However, Tcl_PkgProvideEx also allows one to record such
information. This information can be retrieved by
Tcl_PkgRequireEx. Associating the extension's data structures
with its package seems more natural than in the "grab-bag"
AssocData; yet the Pkg*Ex routines do not provide an
automatically invoked deletion routine. So I think I need
to stay with the AssocData approach.
For which situations were the Pkg*Ex routines designed for?
Additionally, the Tcl Library allows one to install
ExitHandlers and ThreadExitHandlers. Paraphasing the
manual, this is for flushing buffers to disk etc.
Are there any other situations requiring use of ExitHandlers?
When Tcl calls exit, are Tcl_PackageUnloadProcs called?
The whole-extension ClientData is intended for extensions that want to publish their own stub table (i.e., an organized list of functions that represent an exact ABI) that other extensions can build against. This is a very rare thing to want to do; leave at NULL if you don't want it (and contact the Tcl core developers' mailing list directly if you do; we've got quite a bit of experience in this area). Since it is for an ABI structure, it is strongly expected to be purely static data and so doesn't need deletion. Dynamic data should be sent through a different mechanism (e.g., via the Tcl interpreter or through calling functions via the ABI).
Exit handlers (which can be registered at multiple levels) are things that you use when you have to delete some resource at an appropriate time. The typical points of interest are when an interpreter (a Tcl_Interp structure) is being deleted, when a thread is being deleted, and when the whole process is going away. What resources need to be specially deleted? Well, it's usually obvious: file handles, database handles, that sort of thing. It's awkward to answer in general as the details matter very much: ask a more specific question to get tailored advice.
However, package unload callbacks are only called in response to the unload command. Like package load callbacks, they use “special function symbol” registration, and if they are absent then the unload command will refuse to unload the package. Most packages do not use them. The use case is where there are very long-lived processes that need to have extra upgradeable functionality added to them.

C++0x bind and function without copy-construction

I'm currently trying out a few of the new C++0x features, namely std::function and std::bind. These two functions seem rather suitable for a event-delegate-system for C++ that works like in C♯. I've tried myself to create something like delegates before, but the Hacks I would have needed for member-function-pointers were to much for me…
During my tests I noticed that std::bind copies every object you bind. While that surely enhances safety - can't delete a still registered eventhandler :) - it's also a problem with stateful objects. Is there a way to deactivate the copying - or at least a way to obtain the encapsulated object from the std::function again?
PS: Is there a reference for the features that are going to be included in C++0x (hopefully C++11!) In the end it's at major parts of TR1 and a few additions…
I tried cppreference.org, but they are still at an early stage at documentation, cplusplus.com on the other seems to not even have started on covering C++0x.
If you want to avoid copying use std::ref and/or std::cref. They wrap the object into a pseudoreference
It isn't quite right that:
I noticed that std::bind copies every
object you bind.
At least that isn't the intended specification. You should be able to move a non-copyable object into a bind:
std::bind(f, std::unique_ptr<int>(new int(3)))
However, now that the move-only object is stored in the binder, it is an lvalue. Therefore you can only call it if f accepts an lvalue move-only object (say by lvalue reference). If this is not acceptable, and if the source object outlives the binder, then use of std::ref is another good solution (as mentioned by Armen).
If you need to copy the bound object, then all of its bound arguments must be copyable. But if you only move construct the bound object, then it will only move construct its bound arguments.
The best reference is N3242. There isn't a good and comprehensive tutorial that I'm aware of yet. I might start with the boost documentation with the understanding that std::bind has been adapted to work with rvalue-refs as much as possible.
I have created a move compatable version of bind. there are still lots of problems with it like the binders constructor and a few buggylines here and there etc but it seems to work
check it out here
http://code-slim-jim.blogspot.jp/2012/11/perfect-forwarding-bind-compatable-with.html

Design question: How can I access an IPC mechanism transparently?

I want to do this (no particular language):
print(foo.objects.bookdb.books[12].title);
or this:
book = foo.objects.bookdb.book.new();
book.title = 'RPC for Dummies';
book.save();
Where foo actually is a service connected to my program via some IPC, and to access its methods and objects, some layer actually sends and receives messages over the network.
Now, I'm not really looking for an IPC mechanism, as there are plenty to choose from. It's likely not to be XML based, but rather s. th. like Google's protocol buffers, dbus or CORBA. What I'm unsure about is how to structure the application so I can access the IPC just like I would any object.
In other words, how can I have OOP that maps transparently over process boundaries?
Not that this is a design question and I'm still working at a pretty high level of the overall architecture. So I'm pretty agnostic yet about which language this is going to be in. C#, Java and Python are all likely to get used, though.
I think the way to do what you are requesting is to have all object communication regarded as message passing. This is how object methods are handled in ruby and smalltalk, among others.
With message passing (rather than method calling) as your object communication mechanism, then operations such as calling a method that didn't exist when you wrote the code becomes sensible as the object can do something sensible with the message anyway (check for a remote procedure, return a value for a field with the same name from a database, etc, or throw a 'method not found' exception, or anything else you could think of).
It's important to note that for languages that don't use this as a default mechanism, you can do message passing anyway (every object has a 'handleMessage' method) but you won't get the syntax niceties, and you won't be able to get IDE help without some extra effort on your part to get the IDE to parse your handleMessage method to check for valid inputs.
Read up on Java's RMI -- the introductory material shows how you can have a local definition of a remote object.
The trick is to have two classes with identical method signatures. The local version of the class is a facade over some network protocol. The remote version receives requests over the network and does the actual work of the object.
You can define a pair of classes so a client can have
foo= NonLocalFoo( "http://host:port" )
foo.this= "that"
foo.save()
And the server receives set_this() and save() method requests from a client connection. The server side is (generally) non-trivial because you have a bunch of discovery and instance management issues.
You shouldn't do it! It is very important for programmers to see and feel the difference between an IPC/RPC and a local method call in the code. If you make it so, that they don't have to think about it, they won't think about it, and that will lead to very poorly performing code.
Think of:
foreach o, o.isGreen in someList {
o.makeBlue;
}
The programmer assumes that the loops takes a few nanoseconds to complete, instead it takes close to a second if someList happens to be remote.