Database architecture for millions of new rows per day - mysql

I need to implement a custom-developed web analytics service for large number of websites. The key entities here are:
Website
Visitor
Each unique visitor will have have a single row in the database with information like landing page, time of day, OS, Browser, referrer, IP, etc.
I will need to do aggregated queries on this database such as 'COUNT all visitors who have Windows as OS and came from Bing.com'
I have hundreds of websites to track and the number of visitors for those websites range from a few hundred a day to few million a day. In total, I expect this database to grow by about a million rows per day.
My questions are:
1) Is MySQL a good database for this purpose?
2) What could be a good architecture? I am thinking of creating a new table for each website. Or perhaps start with a single table and then spawn a new table (daily) if number of rows in an existing table exceed 1 million (is my assumption correct). My only worry is that if a table grows too big, the SQL queries can get dramatically slow. So, what is the maximum number of rows I should store per table? Moreover, is there a limit on number of tables that MySQL can handle.
3) Is it advisable to do aggregate queries over millions of rows? I'm ready to wait for a couple of seconds to get results for such queries. Is it a good practice or is there any other way to do aggregate queries?
In a nutshell, I am trying a design a large scale data-warehouse kind of setup which will be write heavy. If you know about any published case studies or reports, that'll be great!

If you're talking larger volumes of data, then look at MySQL partitioning. For these tables, a partition by data/time would certainly help performance. There's a decent article about partitioning here.
Look at creating two separate databases: one for all raw data for the writes with minimal indexing; a second for reporting using the aggregated values; with either a batch process to update the reporting database from the raw data database, or use replication to do that for you.
EDIT
If you want to be really clever with your aggregation reports, create a set of aggregation tables ("today", "week to date", "month to date", "by year"). Aggregate from raw data to "today" either daily or in "real time"; aggregate from "by day" to "week to date" on a nightly basis; from "week to date" to "month to date" on a weekly basis, etc. When executing queries, join (UNION) the appropriate tables for the date ranges you're interested in.
EDIT #2
Rather than one table per client, we work with one database schema per client. Depending on the size of the client, we might have several schemas in a single database instance, or a dedicated database instance per client. We use separate schemas for raw data collection, and for aggregation/reporting for each client. We run multiple database servers, restricting each server to a single database instance. For resilience, databases are replicated across multiple servers and load balanced for improved performance.

Some suggestions in a database agnostic fashion.
The most simplest rational is to distinguish between read intensive and write intensive tables. Probably it is good idea to create two parallel schemas daily/weekly schema and a history schema. The partitioning can be done appropriately. One can think of a batch job to update the history schema with data from daily/weekly schema. In history schema again, you can create separate data tables per website (based on the data volume).
If all you are interested is in the aggregation stats alone (which may not be true). It is a good idea to have a summary tables (monthly, daily) in which the summary is stored like total unqiue visitors, repeat visitors etc; and these summary tables are to be updated at the end of day. This enables on the fly computation of stats with out waiting for the history database to be updated.

You should definitely consider splitting the data by site across databases or schemas - this not only makes it much easier to backup, drop etc an individual site/client but also eliminates much of the hassle of making sure no customer can see any other customers data by accident or poor coding etc. It also means it is easier to make choices about partitionaing, over and above databae table-level partitioning for time or client etc.
Also you said that the data volume is 1 million rows per day (that's not particularly heavy and doesn't require huge grunt power to log/store, nor indeed to report (though if you were genererating 500 reports at midnight you might logjam). However you also said that some sites had 1m visitors daily so perhaps you figure is too conservative?
Lastly you didn't say if you want real-time reporting a la chartbeat/opentracker etc or cyclical refresh like google analytics - this will have a major bearing on what your storage model is from day one.
M

You really should test your way forward will simulated enviroments as close as possible to the live enviroment, with "real fake" data (correct format & length). Benchmark queries and variants of table structures. Since you seem to know MySQL, start there. It shouldn't take you that long to set up a few scripts bombarding your database with queries. Studying the results of your database with your kind of data will help you realise where the bottlenecks will occur.
Not a solution but hopefully some help on the way, good luck :)

Related

One database or multiple databases for statistical architecture

I currently already have a website running using CodeIgniter and MySQL. The MySQL database is around 110 tables big and contains mainly website specific data, like user data, vacancy data, etc.
Now I want to extend this website to include a complete statistical module as well. We would capture a lot of user actions and other aggregations from the data gather on our own website, and would also pull in some data from google analytics API to use in our statistics (we will generate a report in Excel but also show statistical graphs and numbers on a page (using chart.js)).
We are not thinking (in a forseeable future) to use this data in other programs, but we need to be able to open some data to the public using an API.
We expect to start with about 300.000-350.000 data points gathered per day, but this amount will keep on growing every day of course, the more users we get.
Using multiple databases in CodeIgniter seems to not be an issue, so the main problem I am left with is how I should create the architecture for this statistical module.
I have a couple of idea's on how to start doing this, but I am not aware if there is performance impact from one to another solution or other things to take into consideration.
My main idea boils down to having a table containing all "events", which just insert in that table every time an action is performed, eg "user is registered", "user put account on private", "user clicked on X", ...
Then once a day (probably at around midnight), a CRON job would run over that table for the past day and aggregate all the values into a format usable for our statistical metrics. Those aggregated values would be stored in a new table. This way we can clean up the "event" table quite regularly since that will become very big very fast.
Idea 1: Extend the current MySQL database architecture with new tables to incorporate the statistics. I would keep on using the current database architecture and add 2 new tables for the events and the aggregated values.
Idea 2: Create a new database, separate from the current existing one, and use this to insert all the events in a table there and the aggregated values in a new table there.
Note: we already have quite a few CRONS running on our current database, updating statusses and dates, sending emails, ...
Note2: sync issues between databases is not an issue since we will never be storing statistics on a per-user level.
MySQL does not care whether tables are in the same database or separate databases. It is just a convenience for the user. Some things:
You might need db1.tbla JOIN db2.tblb to talk across dbs.
It is convenient to have different GRANTs for different databases, but clumsy to have different GRANTs for 110 tables.
I can't think of any performance differences.
Nightly aggregation is a middle-of-the road approach. Using IODKU gives you 'immediate' aggregation, but is probably more burden on the system.
My blog on Summary Tables .
350K rows inserted per day is about 5/second, which is comfortably low, so I don't think we need to discuss performance issues there.
"Summarize and toss" (for events) -- Yes. I like that approach. (Most people fail to think of this option.)
Do the math. Which table is the largest after a year? How many GB will it be? Then think about whether you can shrink any of the columns in it: SMALLINT instead of INT, normalization of long, oft-repeated, strings, etc.

Optimal way of storing performance data for statistics (graphs)

Currently I'm working on a dashboard in PHP/MySQL which contains several statistics/facts such as: amount of items sold, revenue, gender (male/female) ratio of users etc. (all filterable on last week/month/year). The amount of data is (currently) not that much: 20.000 user rows, 1.000 items, 500 items sold per day but is expected to grow in the future, perhaps even exponentially.
Now, there is a wish to have several graphs displaying the performance to see whether strategy changes have impacts on the amount of users, revenue, gender ratio etc. For this, it is necessary to have numbers per day. Currently, the dashboard can only display "NOW() - 1 week/1 month/1 year" but for showing a graph outlining the growth, these numbers should be saved on a daily basis.
My question is: what are the options in this case? A cronjob could be set in place to save these numbers and write them to a separate 'performance' or 'history' table that saves the visitors, sales, gender ratio etc. in rows linked to the date of that day. This is good for performance, but certain data gets lost. Another option is to compute these numbers with complex queries (group by day) etc, but that seems to intensive since the queries are performed on the production database. Especially since the database structure is a little complex. Thinking of avoiding doing this on the production database, is setting up a data-warehouse with ETL-processes a better option to avoid overloading the production database? In that case the data would not be displayed live.
I honestly have no idea what is the best option in this case. I'm very curious about the answers! Many thanks.
Running query on a production database (especially one which is growing in volume and complexity) become a losing proposition very quickly. There are a lot of possible alternative, basically the entire field of Business Intelligence is grown as as solution of this problem.
For a small system where you just want to avoid to query the production database probably the development of a full blown Data Warehouse is overkill. It is impossible to give a reasonable answer without knowing more, but I would go for one of the following (in growing order of complexity/degree of result):
Instead of directly show the result of the query, save it in a table and query the table
Clone your production database then query the clone
Extract relevant data from production database in a structure which save relevant data and preserve history (google Data Vault)
Direct over the production DB, or over solution 2 or 3 build a dimensional model (google Kimball Dimensional Model). Pay attention that to do a good job you have to consider what kind of queries you want to do. You could end up with different designs for different requirement.
It is also relevant which technology are you using and what are the options available on your available architecture. Depending on what you have on hand, you could have some solution, even complex ones, very much simplified. Do some research.

MySQL: Huge tables that need to be joined, how should be splitted for optimization?

The case:
I have been developing a web application in which I storage data from different automated data sources. Currently I am using MySQL as DBMS and PHP as programming language on a shared LAMP server.
I use several tables to identify the data sources and two tables for the data updates. Data sources are in a three level hierarchy, and updates are timestamped.
One table contains the two upper levels of the hierarchy (geographic location and instrument), plus the time-stamp and an “update ID”. The other table contains the update ID, the third level of the hierarchy (meter) and the value.
Most queries involve a joint statement between this to tables.
Currently the first table contains near 2.5 million records (290 MB) and the second table has over 15 million records (1.1 GB), each hour near 500 records are added to the first table and 3,000 to the second one, and I expect this numbers to increase. I don't think these numbers are too big, but I've been experiencing some performance drawbacks.
Most queries involve looking for immediate past activity (per site, per group of sites, and per instrument) which are no problem, but some involve summaries of daily, weekly and monthly activity (per site and per instrument). The page takes several seconds to load, sometimes surpassing the server's timeout (30s).
It also seems that the automatic updates are suffering from these timeouts, causing the connection to fail.
The question:
Is there any rational way to split these tables so that queries perform more quickly?
Or should I attempt other types of optimizations not involving splitting tables?
(I think the tables are properly indexed, and I know that a possible answer is to move to a dedicated server, probably running something else than MySQL, but just yet I cannot make this move and any optimization will help this scenario.)
If the queries that are slow are the historical summary queries, then you might want to consider a Data Warehouse. As long as your history data is relatively static, there isn't usually much risk to pre-calculating transactional summary data.
Data warehousing and designing schemas for Business Intelligence (BI) reporting is a very broad topic. You should read up on it and ask any specific BI design questions you may have.

MySQL: About BigData

So here's the deal. I've designed as schema which stores the daily stock quotes data. I've two tables (among others) "todayData" and "historicalData" with the same structure. The two tables have innodb engine as their storage engine. There is no FK between two tables and are independent.
if i need to see data for today, i query today table and if i need to generate reports or trending analysis etc i rely on historical table. During midnight, today's data will move to historical table.
The question is historical will be mammoth in few weeks (> 10 GB and counting) and needless to say serving this data from a single table is mindless.
What should i do to make sure the reports generate off of historical will be fast and responsive.
People have suggested partitioning etc but i would like to know are there any other ways to do this?
Thank you
Bo
There is no silver bullet for Big Data. All depends on the data and data usage (access patterns, etc.). First, make sure the table is properly indexed, your queries are optimal, and you have enough memory. And if you still have too much data to contain on single server, shard/partition (but mind the access patterns when you choose shard key - if you have to query multiple partitions for single report, it's bad. Buf if you really have to, make sure you can query them in parallel - something not possible currently with the build-in partitioning (so you need app-level sharding logic))

handling/compressing large datasets in multiple tables

In an application at our company we collect statistical data from our servers (load, disk usage and so on). Since there is a huge amount of data and we don't need all data at all times we've had a "compression" routine that takes the raw data and calculates min. max and average for a number of data-points, store these new values in the same table and removes the old ones after some weeks.
Now I'm tasked with rewriting this compression routine and the new routine must keep all uncompressed data we have for one year in one table and "compressed" data in another table. My main concerns now are how to handle the data that is continuously written to the database and whether or not to use a "transaction table" (my own term since I cant come up with a better one, I'm not talking about the commit/rollback transaction functionality).
As of now our data collectors insert all information into a table named ovak_result and the compressed data will end up in ovak_resultcompressed. But are there any specific benefits or drawbacks to creating a table called ovak_resultuncompressed and just use ovak_result as a "temporary storage"? ovak_result would be kept minimal which would be good for the compressing routine, but I would need to shuffle all data from one table into another continually, and there would be constant reading, writing and deleting in ovak_result.
Are there any mechanisms in MySQL to handle these kind of things?
(Please note: We are talking about quite large datasets here (about 100 M rows in the uncompressed table and about 1-10 M rows in the compressed table). Also, I can do pretty much what I want with both software and hardware configurations so if you have any hints or ideas involving MySQL configurations or hardware set-up, just bring them on.)
Try reading about the ARCHIVE storage engine.
Re your clarification. Okay, I didn't get what you meant from your description. Reading more carefully, I see you did mention min, max, and average.
So what you want is a materialized view that updates aggregate calculations for a large dataset. Some RDBMS brands such as Oracle have this feature, but MySQL doesn't.
One experimental product that tries to solve this is called FlexViews (http://code.google.com/p/flexviews/). This is an open-source companion tool for MySQL. You define a query as a view against your raw dataset, and FlexViews continually monitors the MySQL binary logs, and when it sees relevant changes, it updates just the rows in the view that need to be updated.
It's pretty effective, but it has a few limitations in the types of queries you can use as your view, and it's also implemented in PHP code, so it's not fast enough to keep up if you have really high traffic updating your base table.