Is mysql UPDATE faster than INSERT INTO? - mysql

This is more of a theory question.
If I'm running 50,000 queries that insert new rows, and 50,000 queries that updates those rows, which one will take less time?

Insert would be faster because with update you need to first search for the record that you are going to update and then perform the update.
Though this hardly seems like a valid comparison as you never have a choice whether to insert or update as the two fill two completely different needs.
EDIT: I should add too that this is with the assumption that there are no insert triggers or other situations that could cause potential bottlenecks.

Insert Operation : Create -> Store
Update Operation : Retrieve -> Modify -> Store
Insert Operation faster.

With an insert into the same table, you can always insert all the rows with one query, making it much faster than inserting one by one. When updating, you can update several rows at a time, but you cannot apply this to every update situation, and often you have to run one update query at a time (when updating a specific id) - and on a big table this is very slow having to find the row and then update it every time. It is also slower even if you have indexed the table, by my experience.

As an aside here, don't forget that by doing loads more inserts than updates, you have more rows when you come to select, so you'll slow down the read operation.
So the real question then becomes - what do you care about more, a quick insert or a speedy read. Again, this is dependant on certain factors - particularly (and not yet mentioned) DB engine, such as InnoDB (which is now standard in PHPMyAdmin incidentally).
I agree with everyone else though - there's too much to consider on a case-by-case basis and therefore you really need to run your own tests and assess the situation from there based on your needs.

There's a lot of non-practical answers here. Yes, theoretically inserts are slower because they have to do the extra step of looking up the row. But this is not at all the full picture if you're working with a database made after 1992.
Short answer: they're the same speed. (Don't pick one operation over the other for the sake of speed, just pick the right operation).
Long answer: When updating, you're writing to memory pages and marking them as dirty. Any modern database will detect this and keep these pages in cache longer (this is opposed to a normal select statement which doesn't set this flag). This cache is also smart enough to hold on to pages that are accessed frequently (See LRU-K). So subsequent updates to the same rows will be pretty much instant, no lookups needed. This is assuming you're updating based on index'd columns such as IDs (I'll talk about that in a second).
Compare this to a rapid amount of inserts, new pages will need to be made and these pages needed to be loaded into the cache. Sure you can put multiple new rows on the same page, but as you continue to insert this page is filled up and tossed away never to be used again. Thus, not taking advantage of re-using pages in the cache. (And just as a note, "loading pages into the cache" is also known as a "page fault", which is the #1 slower-downer of database technology in most environments, MonogoDB is always inclined to share this idea).
If you're inserting on basis of a column that isn't index: yeah that is WAY slower than inserting. This should be made infrequent in any app. But mind you, if you DO have indexes on a table, it will speed up your updating but also will slow your inserting because this means newly inserted rows will have to insert new index data as well (as compared to updates which re-use existing index data instead of generating new ones). See here for more details on that in terms of how MySQL does it.
Finally, Multi-threaded/multi-processing environments can also turn this idea on its head. Which, I'm not going to get into that. That's a whole 'nother can of worms. You can do your research on your type of database + storage engine for this as well as gauge your apps use of concurrent enviroment... Or, you can just ignore all that and just use the most intuitive operation.

Related

Distributed database use cases

At the moment i do have a mysql database, and the data iam collecting is 5 Terrabyte a year. I will save my data all the time, i dont think i want to delete something very early.
I ask myself if i should use a distributed database because my data will grow every year. And after 5 years i will have 25 Terrabyte without index. (just calculated the raw data i save every day)
i have 5 tables and the most queries are joins over multiple tables.
And i need to access mostly 1-2 columns over many rows at a specific timestamp.
Would a distributed database be a prefered database than only a single mysql database?
Paritioning will be difficult, because all my tables are really high connected.
I know it depends on the queries and on the database table design and i can also have a distributed mysql database.
i just want to know when i should think about a distributed database.
Would this be a use case? or could mysql handle this large dataset?
EDIT:
in average i will have 1500 clients writing data per second, they affect all tables.
i just need the old dataset for analytics. Like machine learning and
pattern matching.
also a client should be able to see the historical data
Your question is about "distributed", but I see more serious questions that need answering first.
"Highly indexed 5TB" will slow to a crawl. An index is a BTree. To add a new row to an index means locating the block in that tree where the item belongs, then read-modify-write that block. But...
If the index is AUTO_INCREMENT or TIMESTAMP (or similar things), then the blocks being modified are 'always' at the 'end' of the BTree. So virtually all of the reads and writes are cacheable. That is, updating such an index is very low overhead.
If the index is 'random', such as UUID, GUID, md5, etc, then the block to update is rarely found in cache. That is, updating this one index for this one row is likely to cost a pair of IOPs. Even with SSDs, you are likely to not keep up. (Assuming you don't have several TB of RAM.)
If the index is somewhere between sequential and random (say, some kind of "name"), then there might be thousands of "hot spots" in the BTree, and these might be cacheable.
Bottom line: If you cannot avoid random indexes, your project is doomed.
Next issue... The queries. If you need to scan 5TB for a SELECT, that will take time. If this is a Data Warehouse type of application and you need to, say, summarize last month's data, then building and maintaining Summary Tables will be very important. Furthermore, this can obviate the need for some of the indexes on the 'Fact' table, thereby possibly eliminating my concern about indexes.
"See the historical data" -- See individual rows? Or just see summary info? (Again, if it is like DW, one rarely needs to see old datapoints.) If summarization will suffice, then most of the 25TB can be avoided.
Do you have a machine with 25TB online? If not, that may force you to have multiple machines. But then you will have the complexity of running queries across them.
5TB is estimated from INT = 4 bytes, etc? If using InnoDB, you need to multiple by 2 to 3 to get the actual footprint. Furthermore, if you need to modify a table in the future, such action probably needs to copy the table over, so that doubles the disk space needed. Your 25TB becomes more like 100TB of storage.
PARTITIONing has very few valid use cases, so I don't want to discuss that until knowing more.
"Sharding" (splitting across machines) is possibly what you mean by "distributed". With multiple tables, you need to think hard about how to split up the data so that JOINs will continue to work.
The 5TB is huge -- Do everything you can to shrink it -- Use smaller datatypes, normalize, etc. But don't "over-normalize", you could end up with terrible performance. (We need to see the queries!)
There are many directions to take a multi-TB db. We really need more info about your tables and queries before we can be more specific.
It's really impossible to provide a specific answer to such a wide question.
In general, I recommend only worrying about performance once you can prove that you have a problem; if you're worried, it's much better to set up a test rig, populate it with representative data, and see what happens.
"Can MySQL handle 5 - 25 TB of data?" Yes. No. Depends. If - as you say - you have no indexes, your queries may slow down a long time before you get to 5TB. If it's 5TB / year of highly indexable data it might be fine.
The most common solution to this question is to keep a "transactional" database for all the "regular" work, and a datawarehouse for reporting, using a regular Extract/Transform/Load job to move the data across, and archive it. The data warehouse typically has a schema optimized for querying, usually entirely unlike the original schema.
If you want to keep everything logically consistent, you might use sharding and clustering - a sort-a-kind-a out of the box feature of MySQL.
I would not, however, roll my own "distributed database" solution. It's much harder than you might think.

How to optimize and Fast run SQL query

I have following SQL query that taking too much time to fetch data.
Customer.joins("LEFT OUTER JOIN renewals ON customers.id = renewals.customer_id").where("renewals.customer_id IS NULL && customers.status_id = 4").order("created_at DESC").select('first_name, last_name, customer_state, customers.created_at, customers.customer_state, customers.id, customers.status_id')
Above query takes 230976.6ms to execute.
I added indexing on firstname, lastname, customer_state and status_id.
How can I execute query within less then 3 sec. ?
Try this...
Everyone wants faster database queries, and both SQL developers and DBAs can turn to many time-tested methods to achieve that goal. Unfortunately, no single method is foolproof or ironclad. But even if there is no right answer to tuning every query, there are plenty of proven do's and don'ts to help light the way. While some are RDBMS-specific, most of these tips apply to any relational database.
Do use temp tables to improve cursor performance
I hope we all know by now that it’s best to stay away from cursors if at all possible. Cursors not only suffer from speed problems, which in itself can be an issue with many operations, but they can also cause your operation to block other operations for a lot longer than is necessary. This greatly decreases concurrency in your system.
However, you can’t always avoid using cursors, and when those times arise, you may be able to get away from cursor-induced performance issues by doing the cursor operations against a temp table instead. Take, for example, a cursor that goes through a table and updates a couple of columns based on some comparison results. Instead of doing the comparison against the live table, you may be able to put that data into a temp table and do the comparison against that instead. Then you have a single UPDATE statement against the live table that’s much smaller and holds locks only for a short time.
Sniping your data modifications like this can greatly increase concurrency. I’ll finish by saying you almost never need to use a cursor. There’s almost always a set-based solution; you need to learn to see it.
Don’t nest views
Views can be convenient, but you need to be careful when using them. While views can help to obscure large queries from users and to standardize data access, you can easily find yourself in a situation where you have views that call views that call views that call views. This is called nesting views, and it can cause severe performance issues, particularly in two ways. First, you will very likely have much more data coming back than you need. Second, the query optimizer will give up and return a bad query plan.
I once had a client that loved nesting views. The client had one view it used for almost everything because it had two important joins. The problem was that the view returned a column with 2MB documents in it. Some of the documents were even larger. The client was pushing at least an extra 2MB across the network for every single row in almost every single query it ran. Naturally, query performance was abysmal.
And none of the queries actually used that column! Of course, the column was buried seven views deep, so even finding it was difficult. When I removed the document column from the view, the time for the biggest query went from 2.5 hours to 10 minutes. When I finally unraveled the nested views, which had several unnecessary joins and columns, and wrote a plain query, the time for that same query dropped to subseconds.
Do use table-valued functions
RESOURCES
VIDEO/WEBCAST
Sponsored
Discover your Data Dilemma
WHITE PAPER
Best Practices when Designing a Digital Workplace
SEE ALL
Search Resources
Go
This is one of my favorite tricks of all time because it is truly one of those hidden secrets that only the experts know. When you use a scalar function in the SELECT list of a query, the function gets called for every single row in the result set. This can reduce the performance of large queries by a significant amount. However, you can greatly improve the performance by converting the scalar function to a table-valued function and using a CROSS APPLY in the query. This is a wonderful trick that can yield great improvements.
Want to know more about the APPLY operator? You'll find a full discussion in an excellent course on Microsoft Virtual Academy by Itzik Ben-Gan.
Do use partitioning to avoid large data moves
Not everyone will be able to take advantage of this tip, which relies on partitioning in SQL Server Enterprise, but for those of you who can, it’s a great trick. Most people don’t realize that all tables in SQL Server are partitioned. You can separate a table into multiple partitions if you like, but even simple tables are partitioned from the time they’re created; however, they’re created as single partitions. If you're running SQL Server Enterprise, you already have the advantages of partitioned tables at your disposal.
This means you can use partitioning features like SWITCH to archive large amounts of data from a warehousing load. Let’s look at a real example from a client I had last year. The client had the requirement to copy the data from the current day’s table into an archive table; in case the load failed, the company could quickly recover with the current day’s table. For various reasons, it couldn’t rename the tables back and forth every time, so the company inserted the data into an archive table every day before the load, then deleted the current day’s data from the live table.
This process worked fine in the beginning, but a year later, it was taking 1.5 hours to copy each table -- and several tables had to be copied every day. The problem was only going to get worse. The solution was to scrap the INSERT and DELETE process and use the SWITCH command. The SWITCH command allowed the company to avoid all of the writes because it assigned the pages to the archive table. It’s only a metadata change. The SWITCH took on average between two and three seconds to run. If the current load ever fails, you SWITCH the data back into the original table.
YOU MIGHT ALSO LIKE
Microsoft Dynamics AX ERP
Microsoft Dynamics AX: A new ERP is born, this time in the cloud
Joseph Sirosh
Why Microsoft’s data chief thinks current machine learning tools are like...
Urs Holzle Structure
Google's infrastructure czar predicts cloud business will outpace ads in 5...
This is a case where understanding that all tables are partitions slashed hours from a data load.
If you must use ORMs, use stored procedures
This is one of my regular diatribes. In short, don’t use ORMs (object-relational mappers). ORMs produce some of the worst code on the planet, and they’re responsible for almost every performance issue I get involved in. ORM code generators can’t possibly write SQL as well as a person who knows what they're doing. However, if you use an ORM, write your own stored procedures and have the ORM call the stored procedure instead of writing its own queries. Look, I know all the arguments, and I know that developers and managers love ORMs because they speed you to market. But the cost is incredibly high when you see what the queries do to your database.
Stored procedures have a number of advantages. For starters, you’re pushing much less data across the network. If you have a long query, then it could take three or four round trips across the network to get the entire query to the database server. That's not including the time it takes the server to put the query back together and run it, or considering that the query may run several -- or several hundred -- times a second.
Using a stored procedure will greatly reduce that traffic because the stored procedure call will always be much shorter. Also, stored procedures are easier to trace in Profiler or any other tool. A stored procedure is an actual object in your database. That means it's much easier to get performance statistics on a stored procedure than on an ad-hoc query and, in turn, find performance issues and draw out anomalies.
In addition, stored procedures parameterize more consistently. This means you’re more likely to reuse your execution plans and even deal with caching issues, which can be difficult to pin down with ad-hoc queries. Stored procedures also make it much easier to deal with edge cases and even add auditing or change-locking behavior. A stored procedure can handle many tasks that trouble ad-hoc queries. My wife unraveled a two-page query from Entity Framework a couple of years ago. It took 25 minutes to run. When she boiled it down to its essence, she rewrote that huge query as SELECT COUNT(*) from T1. No kidding.
OK, I kept it as short as I could. Those are the high-level points. I know many .Net coders think that business logic doesn’t belong in the database, but what can I say other than you’re outright wrong. By putting the business logic on the front end of the application, you have to bring all of the data across the wire merely to compare it. That’s not good performance. I had a client earlier this year that kept all of the logic out of the database and did everything on the front end. The company was shipping hundreds of thousands of rows of data to the front end, so it could apply the business logic and present the data it needed. It took 40 minutes to do that. I put a stored procedure on the back end and had it call from the front end; the page loaded in three seconds.
Of course, the truth is that sometimes the logic belongs on the front end and sometimes it belongs in the database. But ORMs always get me ranting.
Don’t do large ops on many tables in the same batch
This one seems obvious, but apparently it's not. I’ll use another live example because it will drive home the point much better. I had a system that suffered tons of blocking. Dozens of operations were at a standstill. As it turned out, a delete routine that ran several times a day was deleting data out of 14 tables in an explicit transaction. Handling all 14 tables in one transaction meant that the locks were held on every single table until all of the deletes were finished. The solution was to break up each table's deletes into separate transactions so that each delete transaction held locks on only one table. This freed up the other tables and reduced the blocking and allowed other operations to continue working. You always want to split up large transactions like this into separate smaller ones to prevent blocking.
Don't use triggers
This one is largely the same as the previous one, but it bears mentioning. Don’t use triggers unless it’s unavoidable -- and it’s almost always avoidable.
The problem with triggers: Whatever it is you want them to do will be done in the same transaction as the original operation. If you write a trigger to insert data into another table when you update a row in the Orders table, the lock will be held on both tables until the trigger is done. If you need to insert data into another table after the update, then put the update and the insert into a stored procedure and do them in separate transactions. If you need to roll back, you can do so easily without having to hold locks on both tables. As always, keep transactions as short as possible and don’t hold locks on more than one resource at a time if you can help it.
Don’t cluster on GUID
After all these years, I can't believe we’re still fighting this issue. But I still run into clustered GUIDs at least twice a year.
A GUID (globally unique identifier) is a 16-byte randomly generated number. Ordering your table’s data on this column will cause your table to fragment much faster than using a steadily increasing value like DATE or IDENTITY. I did a benchmark a few years ago where I inserted a bunch of data into one table with a clustered GUID and into another table with an IDENTITY column. The GUID table fragmented so severely that the performance degraded by several thousand percent in a mere 15 minutes. The IDENTITY table lost only a few percent off performance after five hours. This applies to more than GUIDs -- it goes toward any volatile column.
Don’t count all rows if you only need to see if data exists
It's a common situation. You need to see if data exists in a table or for a customer, and based on the results of that check, you’re going to perform some action. I can't tell you how often I've seen someone do a SELECT COUNT(*) FROM dbo.T1 to check for the existence of that data:
SET #CT = (SELECT COUNT(*) FROM dbo.T1);
If #CT > 0
BEGIN
END
It’s completely unnecessary. If you want to check for existence, then do this:
If EXISTS (SELECT 1 FROM dbo.T1)
BEGIN
END
Don’t count everything in the table. Just get back the first row you find. SQL Server is smart enough to use EXISTS properly, and the second block of code returns superfast. The larger the table, the bigger difference this will make. Do the smart thing now before your data gets too big. It’s never too early to tune your database.
In fact, I just ran this example on one of my production databases against a table with 270 million rows. The first query took 15 seconds, and included 456,197 logical reads, while the second one returned in less than one second and included only five logical reads. However, if you really do need a row count on the table, and it's really big, another technique is to pull it from the system table. SELECT rows from sysindexes will get you the row counts for all of the indexes. And because the clustered index represents the data itself, you can get the table rows by adding WHERE indid = 1. Then simply include the table name and you're golden. So the final query is SELECT rows from sysindexes where object_name(id) = 'T1' and indexid = 1. In my 270 million row table, this returned sub-second and had only six logical reads. Now that's performance.
Don’t do negative searches
Take the simple query SELECT * FROM Customers WHERE RegionID <> 3. You can’t use an index with this query because it’s a negative search that has to be compared row by row with a table scan. If you need to do something like this, you may find it performs much better if you rewrite the query to use the index. This query can easily be rewritten like this:
SELECT * FROM Customers WHERE RegionID < 3 UNION ALL SELECT * FROM Customers WHERE RegionID
This query will use an index, so if your data set is large it could greatly outperform the table scan version. Of course, nothing is ever that easy, right? It could also perform worse, so test this before you implement it. There are too many factors involved for me to tell you that it will work 100 percent of the time. Finally, I realize this query breaks the “no double dipping” tip from the last article, but that goes to show there are no hard and fast rules. Though we're double dipping here, we're doing it to avoid a costly table scan.
Ref:http://www.infoworld.com/article/2604472/database/10-more-dos-and-donts-for-faster-sql-queries.html
http://www.infoworld.com/article/2628420/database/database-7-performance-tips-for-faster-sql-queries.html

Is there / would be feasible a service providing random elements from a given SQL table?

ABSTRACT
Talking with some colleagues we came accross the "extract random row from a big database table" issue. It's a classic one and we know the naive approach (also on SO) is usually something like:
SELECT * FROM mytable ORDER BY RAND() LIMIT 1
THE PROBLEM
We also know a query like that is utterly inefficient and actually usable only with very few rows. There are some approaches that could be taken to attain better efficiency, like these ones still on SO, but they won't work with arbitrary primary keys and the randomness will be skewed as soon as you have holes in your numeric primary keys. An answer to the last cited question links to this article which has a good explanation and some bright solutions involving an additional "equal distribution" table that must be maintained whenever the "master data" table changes. But then again if you have frequent DELETEs on a big table you'll probably be screwed up by the constant updating of the added table. Also note that many solutions rely on COUNT(*) which is ridiculously fast on MyISAM but "just fast" on InnoDB (I don't know how it performs on other platforms but I suspect the InnoDB case could be representative of other transactional database systems).
In addition to that, even the best solutions I was able to find are fast but not Ludicrous Speed fast.
THE IDEA
A separate service could be responsible to generate, buffer and distribute random row ids or even entire random rows:
it could choose the best method to extract random row ids depending on how the original PKs are structured. An ordered list of keys could be maintained in ram by the service (shouldn't take too many bytes per row in addition to the actual size of the PK, it's probably ok up to 100~1000M rows with standard PCs and up to 1~10 billion rows with a beefy server)
once the keys are in memory you have an implicit "row number" for each key and no holes in it so it's just a matter of choosing a random number and directly fetch the corresponding key
a buffer of random keys ready to be consumed could be maintained to quickly respond to spikes in the incoming requests
consumers of the service will connect and request N random rows from the buffer
rows are returned as simple keys or the service could maintain a (pool of) db connection(s) to fetch entire rows
if the buffer is empty the request could block or return EOF-like
if data is added to the master table the service must be signaled to add the same data to its copy too, flush the buffer of random picks and go on from that
if data is deleted from the master table the service must be signaled to remove that data too from both the "all keys" list and "random picks" buffer
if data is updated in the master table the service must be signaled to update corresponding rows in the key list and in the random picks
WHY WE THINK IT'S COOL
does not touch disks other than the initial load of keys at startup or when signaled to do so
works with any kind of primary key, numerical or not
if you know you're going to update a large batch of data you can just signal it when you're done (i.e. not at every single insert/update/delete on the original data), it's basically like having a fine grained lock that only blocks requests for random rows
really fast on updates of any kind in the original data
offloads some work from the relational db to another, memory only process: helps scalability
responds really fast from its buffers without waiting for any querying, scanning, sorting
could easily be extended to similar use cases beyond the SQL one
WHY WE THINK IT COULD BE A STUPID IDEA
because we had the idea without help from any third party
because nobody (we heard of) has ever bothered to do something similar
because it adds complexity in the mix to keep it updated whenever original data changes
AND THE QUESTION IS...
Does anything similar already exists? If not, would it be feasible? If not, why?
The biggest risk with your "cache of eligible primary keys" concept is keeping the cache up to date, when the origin data is changing continually. It could be just as costly to keep the cache in sync as it is to run the random queries against the original data.
How do you expect to signal the cache that a value has been added/deleted/updated? If you do it with triggers, keep in mind that a trigger can fire even if the transaction that spawned it is rolled back. This is a general problem with notifying external systems from triggers.
If you notify the cache from the application after the change has been committed in the database, then you have to worry about other apps that make changes without being fitted with the signaling code. Or ad hoc queries. Or queries from apps or tools for which you can't change the code.
In general, the added complexity is probably not worth it. Most apps can tolerate some compromise and they don't need an absolutely random selection all the time.
For example, the inequality lookup may be acceptable for some needs, even with the known weakness that numbers following gaps are chosen more often.
Or you could pre-select a small number of random values (e.g. 30) and cache them. Let app requests choose from these. Every 60 seconds or so, refresh the cache with another set of randomly chosen values.
Or choose a random value evenly distributed between MIN(id) and MAX(id). Try a lookup by equality, not inequality. If the value corresponds to a gap in the primary key, just loop and try again with a different random value. You can terminate the loop if it's not successful after a few tries. Then try another method instead. On average, the improved simplicity and speed of an equality lookup may make up for the occasional retries.
It appears you are basically addressing a performance issue here. Most DB performance experts recommend you have as much RAM as your DB size, then disk is no longer a bottleneck - your DB lives in RAM and flushes to disk as required.
You're basically proposing a custom developed in-RAM CDC Hashing system.
You could just build this as a standard database only application and lock your mapping table in RAM, if your DB supports this.
I guess I am saying that you can address performance issues without developing custom applications, just use already existing performance tuning methods.

How can I fix this scaling issue with soft deleting items?

I have a database where most tables have a delete flag for the tables. So the system soft deletes items (so they are no longer accessible unless by admins for example)
What worries me is in a few years, when the tables are much larger, is that the overall speed of the system is going to be reduced.
What can I do to counteract effects like that.
Do I index the delete field?
Do I move the deleted data to an identical delete table and back when undeleted?
Do I spread out the data over a few MySQL servers over time? (based on growth)
I'd appreciate any and all suggestions or stories.
UPDATE:
So partitioning seems to be the key to this. But wouldn't partitioning just create two "tables", one with the deleted items and one without the deleted items.
So over time the deleted partition will grow large and the occasional fetches from it will be slow (and slower over time)
Would the speed difference be something I should worry about? Since I fetch most (if not all) data by some key value (some are searches but they can be slow for this setup)
I'd partition the table on the DELETE flag.
The deleted rows will be physically kept in other place, but from SQL's point of view the table remains the same.
Oh, hell yes, index the delete field. You're going to be querying against it all the time, right? Compound indexes with other fields you query against a lot, like parent IDs, might also be a good idea.
Arguably, this decision could be made later if and only if performance problems actually appear. It very much depends on how many rows are added at what rate, your box specs, etc. Obviously, the level of abstraction in your application (and the limitations of any libraries you are using) will help determine how difficult such a change will be.
If it becomes a problem, or you are certain that it will be, start by partitioning on the deleted flag between two tables, one that holds current data and one that holds historical/deleted data. IF, as you said, the "deleted" data will only be available to administrators, it is reasonable to suppose that (in most applications) the total number of users (here limited only to admins) will not be sufficient to cause a problem. This means that your admins might need to wait a little while longer when searching that particular table, but your user base (arguably more important in most applications) will experience far less latency. If performance becomes unacceptable for the admins, you will likely want to index the user_id (or transaction_id or whatever) field you access the deleted records by (I generally index every field by which I access the table, but at certain scale there can be trade-offs regarding which indexes are most worthwhile).
Depending on how the data is accessed, there are other simple tricks you can employ. If the admin is looking for a specific record most of the time (as opposed to, say, reading a "history" or "log" of user activity), one can often assume that more recent records will be looked at more often than old records. Some DBs include tuning options for making recent records easier to find than older records, but you'll have to look it up for your particular database. Failing that, you can manually do it. The easiest way would be to have an ancient_history table that contains all records older than n days, weeks or months, depending on your constraints and suspected usage patterns. Newer data then lives inside a much smaller table. Even if the admin is going to "browse" all the records rather than searching for a specific one, you can start by showing the first n days and have a link to see all days should they not find what they are looking for (eg, most online banking applications that lets you browse transactions but shows only the first 30 days of history unless you request otherwise.)
Hopefully you can avoid having to go a step further, and sharding on user_id or some such scheme. Depending on the scale of the rest of your application, you might have to do this anyway. Unless you are positive that you will need to, I strongly suggest using vertical partitioning first (eg, keeping your forum_posts on a separate machine than your sales_records), as it is FAR easier to setup and maintain. If you end up needing to shard on user_id, I suggest using google ;-]
Good luck. BTW, I'm not a DBA so take this with a grain of salt.

Building a Large Table in MySQL

This is my first time building a database with a table containing 10 million records. The table is a members table that will contain all the details of a member.
What do I need to pay attention when I build the database?
Do I need a special version of MySQL? Should I use MyISAM or InnoDB?
For a start, you may need to step back and re-examine your schema. How did you end up with 10 million rows in the member table? Do you actually have 10 million members (it seems like a lot)?
I suspect (although I'm not sure) that you have less than 10 million members in which case your table will not be correctly structured. Please post the schema, that's the first step to us helping you out.
If you do have 10 million members, my advice is to make your application vendor-agnostic to begin with (i.e., standard SQL). Then, if you start running into problems, just toss out your current DBMS and replace it with a more powerful one.
Once you've established you have one that's suitable, then, and only then would I advise using vendor-specific stuff. Otherwise it will be a painful process to change.
BTW, 10 million rows is not really considered a big database table, at least not where I come from.
Beyond that, the following is important (not necessarily an exhaustive list but a good start).
Design your tables for 3NF always. Once you identify performance problems, you can violate that rule provided you understand the consequences.
Don't bother performance tuning during development, your queries are in a state of flux. Just accept the fact they may not run fast.
Once the majority of queries are locked down, then start tuning your tables. Add whatever indexes speed up the selects, de-normalize and so forth.
Tuning is not a set-and-forget operation (which is why we pay our DBAs so much). Continuously monitor performance and tune to suit.
I prefer to keep my SQL standard to retain the ability to switch vendors at any time. But I'm pragmatic. Use vendor-specific stuff if it really gives you a boost. Just be aware of what you're losing and try to isolate the vendor-specific stuff as much as possible.
People that use "select * from ..." when they don't need every column should be beaten into submission.
Likewise those that select every row to filter out on the client side. The people that write our DBMS' aren't sitting around all day playing Solitaire, they know how to make queries run fast. Let the database do what it's best at. Filtering and aggregation is best done on the server side - only send what is needed across the wire.
Generate your queries to be useful. Other than the DoD who require reports detailing every component of their aircraft carriers down to the nuts-and-bolts level, no-one's interested in reading your 1200-page report no matter how useful you think it may be. In fact, I don't think the DoD reads theirs either, but I wouldn't want some general chewing me out because I didn't deliver - those guys can be loud and they have a fair bit of sophisticated weaponry under their control.
At least use InnoDB. You will feel the pain when you realize MyISAM has just lost your data...
Apart from this, you should give more information about what you want to do.
You don't need to use InnoDB if you don't have data integrity and atomic action requirements. You want to use InnoDB if you have foreign keys between tables and you are required to keep the constraints, or if you need to update multiple tables in atomic operation. Otherwise, if you just need to use the table to do analysis, MyISAM is fine.
For queries, make sure you build smart indexes to suite your query. For example, if you want to sort by columns c and selecting based on columns a, and b, make sure you have an index that covers columns a, b, and c, in that order, and that index includes full length of each column, rather than a prefix. If you don't do your index right, sorting over a large amount of data will kill you. See http://dev.mysql.com/doc/refman/5.0/en/order-by-optimization.html
Just a note about InnoDB and setting up and testing a large table with it. If you start injecting your data, it will take hours. Make sure you issue commits periodically, otherwise if you want to stop and redo for whatever reason, you end up have to 1) wait hours for transaction recovery, or 2) kill mysqld, set InnoDB recover flag to no recover and restart. Also if you want to re-inject data from scratch, DROP the table and recreate it is almost instantaneous, but it will take hours to actually "DELETE FROM table".