UML scenario example - language-agnostic

How are scenarios expressed? I think they're linked to use-cases but I'm not sure and I'm seeking some good examples or a document that can serve as a template.

The problem of UML use cases is that you have use case diagrams, but there is nothing concrete about textual specification.
When you follow the Unified Process (UP), which is a methodology by creators of UML and uses UML quite much, there is an activity called use case realization, which is about specifying use cases and therefore also the scenarios.
For this, you can use any behavioural diagram. Sequence digrams, state machine diagrams, activity diagrams, communications diagrams, collaborations diagrams, communications overview diagram and timing diagram.
Diagrams arenice, but sometimes to verbose, often it is easier to use some simple textual use case scenario specification, e.g. look at what Alistair Cockburn promotes. There are however many other ways which got recently popular, mostly as a part of the Behaviour Driven Development (BDD) approach. Those are informal specifications written in natural language having structure, which is supported by various tools, which are able to help you generate acceptance tests for your requirements expressed through the specifications. For more details look for example at the Cucumber or Fitnesse frameworks.

Scenarios sound like UML sequence diagrams to me:
A scenario is a sequence of steps
describing an interaction between a
user and a system

Related

How do I document my code to understand how it flows (works)?

I am writing a small game,and I now have 9 C# scripts that make it work. I have lost track of what exactly is happening and how. I want to know how things work from the moment the game starts. Whats happening and how, etc.
I am a beginner, and I have heard that writing down your program flow is called documenting it. How can I document? Do I have to write comments everywhere in my code to explain the flow of the program?
Putting extensive comments into your code is not a good approach. Basically you should try to make your code as self-explanatory as possible. You do this by carefully planning what belongs into a class or function and by using meaningful names for your classes, functions and variables. Comments are nothing but a last resort if additional explanation is really required.
In most cases you should also also have some documents in addition to the code that explain certain aspects of your software:
Requirements document - what is the purpose of the software, how is it used
Architecture and design specification - what are the modules and classes of the software and how do they interact. Often this document mainly consists of one or more diagrams (UML or something else).
Build manual - how to compile and link the software
Installation instructions
User manual
This list is neither complete nor is it mandatory. If, for example, the user interface of your software is simple and self-explaining, you probably won't need a user manual.
Sometimes diagrams make better documentation than text. There is a standard way of diagramming a control flow (whether it's of a program or a business process). They're called ... wait for it ... control-flow diagrams. But I don't think that's exactly what you're after.
There are also flow charts (often spelled as one word), which may be more suited to software than general control-flow diagrams. Flow charts can be useful for understanding an algorithm, but they generally don't give a good big-picture view.
With a complicated program, what might be more important to keep in mind is the data flow. For those we have ... can you guess? ... data-flow diagrams (DFDs).
DFDs can be drawn at varying levels of detail. You can have a high-level one that shows the major components of the system and how they fit together and low-level ones that show the nitty-gritty details for the portions of the system that require more detail.
DFDs can be used for a variety of analyses, including things like threat modeling. But I find them great for getting an overview of what's-what when I'm looking at a new project (or one I've forgotten about). You should be able to find some tutorials about DFDs online, and I think some drawing software (like Visio) have templates specifically for DFDs (and probably the other types of diagrams I've mentioned).
Some might consider DFDs a bit old-school and prefer more rigorous systems like UML (Unified Modeling Language), which is capable of expressing many more concepts and of having a very direct mapping between your "model" and your code. I've never learned enough UML to get much use out of it. The diagrams in many books on software patterns are expressed in UML.

Which innovations (like MVC, xunit, Hotspot) did Smalltalk bring?

I find more and more aspects where Smalltalk was the innovator, i.e. created the technique or at least the overall concept for the first time. I can think of the following:
xunit approach
IDE concepts
VM optimizations
fluent interfaces
several design patterns (e.g. model-view-controller)
the class-free prototype paradigm.
Are all of these correct? Which further innovations did Smalltalk bring?
I'm sure there are more (e.g. in the field of language design?)
The mouse
Unit Testing
Refactoring
Scavenging GC
image concept (snapshot)
It is the first language that was a clear improvement on a large majority of its successors (with the possible exceptions of self and newspeak). If you want to see the future of java and c#, look no further than smalltalk.
Also, Dan Ingalls is usually given credit for inventing BitBLT as part of Smalltalk 72.
I would also add "IDE" to the list, but I have no citation to back that up.
You forgot one BIG thing: object-oriented programming
I read somewhere that smalltalk implemented the first window based GUI. Hard to beat that ;)
Domain-Driven Design: Trygve Renskaug's papers on the MVC pattern discuss heavily the importance of representing the domain of the system in the object model and separating it from the conceptual view.

Class Diagrams - questionably useful?

How is a class diagram actually any different to just looking at the class definition with all the functions collapsed? I've been asked to write some and realized that this is all just .. read the source .. it has comments. What's the point of a class diagram, how is it different to even minorly commented definitions, and what makes a good class diagram better than others?
Edit: Yes, the source already exists, and did so long before the class diagrams.
Another edit: People have been talking about visual vs textual tastes. That's not the definition of class diagram I was given. It's still purely textual. The sample class diagram is a bunch of text, that resembles the source code with the function definitions cut. That's the reason that I asked. If it was a genuine diagram, I could understand.
If you have one or two classes, that does not make a diference.
If you have a complex object model, things change.
And, at least for me, is easy to look first at a diagram in order to look for what I want in stead of looking at a bunch of source files.
Also seeing the classes on a picture and their relations helps to understant the ideas of the project.
I'd rather have source. Given that, I can always reverse engineer it.
You have to ask what UML is for: it's just a communication device, a way to get your ideas across to other developers. If UML is helping, great. If it becomes another burden to maintain, prefer working code with good unit tests.
A good class diagram clearly shows each classes responsibilies and associations - at an appropriate level of abstraction.
Class diagrams are useful because they allow you to design at a higher level of granularity. Operations drawn on a white board are easier to change than source code. It also clearly shows associations through lines, rather than leafing through code.
They're helpful in that they are a segue from conceptual ideas to source code.
They let you say more with less.
If the source already exists, I guess it's the old adage, "A picture tells a thousand words".
For someone not familiar with the source, a diagram may help them to grok the overall design quicker then reading the source, no matter how well documented. Some people are more visual than others. Personally, I'd rather have the source.
Like many things, it's probably a matter of taste.
Edit:
I thought the definition of a diagram was that it is visual. However, if it's just a bunch of text, then the only point I can see is that it provides an overview of intent without the unnecessary implementation details.
The difference between looking at a diagram and the source is that you don't need to process as much data when looking at the diagram (a picture) than when reading the source (says thousand words).
In my experience I've found class diagrams to be very useful when I'm not familiar with the architecture of the software. But class diagrams don't replace the need for source code and proper documentation, they're just a communication and productivity tool that complement the methods I mentioned before. Their intent is to understand the software architecture. not to replace other documentations. How useful a class diagram is depends on its quality and the complexity of it and the source code.
Don't put too much detail into the diagrams. It makes them confusing. You'll want them to communicate relationships, not API and a list of methods.
They also help to see when and where to refactor code. Use class diagrams along with proper documentation and you'll be all set.
I'm not sure quite what definition you've been given for a Class Diagram - it sounds almost as though the example you've been shown has just one class on it. If so, I can understand why you think it's a bit ridiculous.
Class Diagrams are a way to show the relationships between classes - a good one can provide a lot of information about how your system works in one diagram that rewards careful study. It allows a developer unfamiliar with a subsystem to come up to speed quickly without getting mired in the implementation details.
Here's one simple one I found with a quick Google:
http://netbeans.org/images_www/articles/uml-class-diagram/Completed-Class-Diagram.gif
Some tools (Microsoft's Visual Studio is one) contain tools that allow you to draw a class diagram once and have it automatically kept up to date ("in synch") with the code. Very useful.

is there a Universal Model for languages?

Many programming languages share generic and even fairly universal features. For example, if you compared Java, VB6, .NET, PHP, Python, then you would find common functions such as control structures, numeric and string manipulation, etc.
What has been done to define these features at a meta-language (or language-agnostic) level?
UML offers a descriptive reference of software in every aspect, but the real-world focus seems to be data processes. Is UML relevant?
I'm not asking "Why we don't have a single language that replaces the current plethora." We need many different tools (at least in this eon).
I'm not asking that all languages fit a template -- assembly vs. compiled languages are different enough to make that unfeasible (and some folks call HTML a language, though I wouldn't). Any attempt would start with a properly narrow scope. In line with this, I wouldn't expect the model to cover even a small selection with full validity.
I would expect however that such a model could be used to transpose from one language to another (with limited goals -- think jist translation).
There have been many attempts at this, but none have been very successful. The earliest I'm aware of is UNCOL more than 50 years ago.
You've given a list of languages that have a lot in common because they're pretty similar -- they're all procedural languages with common roots and some OO extensions thrown in, so that's not too suprising. If you start looking at different languages like LISP, haskell, erlang, prolog, or even SQL you start seeing very different things.
What you're describing sounds like the formal semantics of programming languages. There are a variety of approaches and each will give a way to formally specify the meaning of a program in some programming language. In some cases, this specification is essentially a translation into another language such as lambda calculus, or compilation for a formally specified abstract machine such as SECD.
There is so much work here it's hard to pick a specific reference. But I hope I've given you some useful keywords to continue your search.
UML is typically used to define algorithms/code in simpler terms before moving on to real code.
To answer what I am guessing to be your question, there is already a defined set of required parts of languages while,for,if,else... Will this ever be set as a standard, or made into a base library that is used by all languages: no, this is because the different developers of languages like to do it themselves.
I think the closest you can get to this without loss of generality is a Turing machine, which is not very useful for practical purposes. But if you allow Turing machine languages to be "labeled" and reused, you could build up the concepts you need, working from low- to high-level.
I think that MOF is the universal language.
You can for example create UML diagrams from MOF via a UML metamodel. If you save this metamodel information into xmi then you can save what ever information you need and even more than in any language. XMI semantic is so rich that there is no limit to its use. If you map UML to xmi on the top of a metamodel live synchronize with MOF then this is for me the universal language.
The author of Pattern Calculus seems to propose such a universal model. I expect that it will turn out to be just as useful as previous attempts to define a universal model, that is to say, good in parts but not the last word.

handling amorphous subsystems in formal software design

People like Alexander Stepanov and Sean Parent vote for a formal and abstract approach on software design.
The idea is to break complex systems down into a directed acyclic graph and hide cyclic behaviour in nodes representing that behaviour.
Parent gave presentations at boost-con and google (sheets from boost-con, p.24 introduces the approach, there is also a video of the google talk).
While i like the approach and think its a neccessary development, i have a problem with imagining how to handle subsystems with amorphous behaviour.
Imagine for example a common pattern for state-machines: using an interface which all states support and having different behaviour in concrete implementations for the states.
How would one solve that?
Note that i am just looking for an abstract approach.
I can think of hiding that behaviour behind a node and defining different sub-DAGs for the states, but that complicates the design considerately if you want to influence the behaviour of the main DAG from a sub-DAG.
Your question is not clear. Define amorphous subsystems.
You are "just looking for an abstract approach" but then you seem to want details about an implementation in a conventional programming language ("common pattern for state-machines"). So, what are you asking for? How to implement nested finite state-machines?
Some more detail will help the conversation.
For a real abstract approach, look at something like Stream X-Machines:
... The X-machine model is structurally the
same as the finite state machine, except
that the symbols used to label the machine's
transitions denote relations of type X→X. ...
The Stream X-Machine differs from Eilenberg's
model, in that the fundamental data type
X = Out* × Mem × In*,
where In* is an input sequence,
Out* is an output sequence, and Mem is the
(rest of the) memory.
The advantage of this model is that it
allows a system to be driven, one step
at a time, through its states and
transitions, while observing the
outputs at each step. These are
witness values, that guarantee that
particular functions were executed on
each step. As a result, complex
software systems may be decomposed
into a hierarchy of Stream
X-Machines, designed in a top-down
way and tested in a bottom-up way.
This divide-and-conquer approach to
design and testing is backed by
Florentin Ipate's proof of correct
integration, which proves how testing
the layered machines independently is
equivalent to testing the composed
system. ...
But I don't see how the presentation is related to this. He seems to speak about a quite mainstream approach to programming, nothing similar to X-Machines. Anyway, the presentation is quite confusing and I have no time to see the video right now.
First impression of the talk, reading the slides only
The author touches haphazardly on numerous fields/problems/solutions, apparently without recognizing it: from Peopleware (for example Psychology of programming), to Software Engineering (for example software product lines), to various programming techniques.
How the various parts are linked and what exactly he is advocating is not clear at all (I'm accustomed to just reading slides and they are usually consequential):
Dataflow programming?
Constraints solving for User Interfaces? For practical implementations, see Garnet for Common Lisp, Amulet/OpenAmulet for C++.
What advantages gives us this "new" concept-based generic programming with respect to well-known approaches (for example, tools based on Hoare logic pre/post conditions and invariants or, better, Hoare's Communicating Sequential Processes (CSP) or Hehner's Practical Theory of Programming or some programming language with a sophisticated type-system like ATS, Qi or Epigram and so on)? It seems to me that introducing "concepts" - which, as-is, are specific to C++ - is not more simple than using the alternatives. Is it just about jargon and "politics"? (Finally formal methods... but disguised).
Why organizing program modules as a DAG and not as a tree, like David Parnas advocated decades ago in Designing software for ease of extension and contraction? (here a directly accessible .pdf and here slides from a lecture). The work on X-Machines probably is an answer to this question (going even beyond DAGs), but, again, the author seems to speak about a quite conventional program development regime in which Parnas' approach is the only sensible.
If/when I will see the video I will update this answer.