I more than once saw code of the form:
DiceThrower dt = new DiceThrower();
dt.throw(); //this is a void method
int result = dt.getResult();
instead of
DiceThrower dt = new DiceThrower();
int result = dt.throw();
My question is...why? Isn't it better to have the throw method returning the result? By not doing so, I could even incurr in sometimes forgetting about calling throw() before getResult(), accessing always old values of getResult(). Having both the operation and the result in the same method would circumvent that.
What is your oppinion on the matter?
Thanks
I'd use this pattern if you would need to use the data often, and it's expensive to (re)generate. But then memoization would probably be better, so the caller doesn't have to care.
You could even support both. Throw could return the value but it would also be available via getResult(). As noted above, if it's expensive to throw you want to cache the value in case it's needed more than once.
Related
private var _variable:int;
public function set variable(val:int):void{
_variable = val;
}
public function get variable():int{
return _variable
}
Now if I have to increment the variable... which one is more optimized way of doing ?
__instance.variable++;
or
__instance.variable = __instance.variable + 1;
The reason for asking this question is, I have read a++ is faster than a = a+1;. Would the same principle apply even when using getters and setters ?
No normally they will be translated the same way because there is no special opcode within the VM to do this operation, the VM will have to do these operations :
read the variable value into a register
increment the register
put back the value
now it's shorter and less error prone to write __instance.variable++ than the second way.
In contrary when you increment a local variable doing var++ it exists a special operation (inclocal or inclocal_i (i stand for integer) ) that will directly increment the value of the register so it can be slightly faster.
Here a list for example of the AVM2 opcode :
http://www.anotherbigidea.com/javaswf/avm2/AVM2Instructions.html
As far as i know there is no gradual difference between these two..
I have read a++ is faster than a = a+1;
Actually this statement of yours is a Paradox.
Because compilers(C compiler in this case) and interprets consider a++ as a=a+1 , so even though you write a++. Its not going to make a huge difference.
Is using an if coupled with an immediate return like in the example below an acceptable practise instead of having a if with a block of code inside {} ? Are these equivalent in practise or is there a disadvantage to one of the approaches ?
An example in Java:
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
ServletContext sc = this.getServletContext();
// Throw exception for fatal error (Servlet not defined in web.xml ?)
if( sc == null )
return; // old-style programming
// Careful with silent bugs ! Correct way of handling this is:
// throw new RuntimeException( "BookDetail: ServletContext is null" );
BookList bookList = WebUtil.getBookList( sc );
Martin Fowler would favour the early return, and calls the idea a Guard Clause.
Personally, I don't like it in Java, as I prefer one return per method. However this is subjective and I may be in the minority.
I've blogged about this for and against.
That is not a return, it's an exception. The code is perfectly ok tho.
Even if you'd replace that throw with a "return something", it would still be ok.
I think it comes down to readability. The code should function the same either way.
I use stuff like this all the time
Function Blah() As Boolean
If expr Then
Return False
End If
Do Other work...
Return result
End Function
For error conditions, generally it's best to throw an exception - exception handling was invented to get rid of the manual return code style error checking in C that comprises about 30% of a C program.
However, early returns are fine - they are far more readable than adding an extra scope with curly braces.
if (!_cache.has_key(key))
return null;
return _cache[key]
Is better than:
if (_cache_has_key(key))
{
return _cache[key]
}
else
return null;
And it only gets more obvious the more early returns that you add, 5 early returns beats the hell out of 5 nested if statements.
Note that I didn't return null on an error condition, it's expected that often the key won't be in the cache - but it still means the caller has to write code to check the result. In .NET there's a better pattern of returning a boolean, and setting the result via an out parameter. The methods beginning with Try usually follow this pattern:
Foo foo;
if (!TryGetCachedFoo("myfoo", foo))
{
foo = new Foo(...);
AddToCache("myfoo", foo);
}
// do something with foo
As long as you're using them for conditional escapes as the first thing in the routine. I think the fact that they are obvious in that location, and avoid at least one level of indentation outweighs the negative of having a multiple returns.
In the example you give, I'd favor throwing an exception because a null ServletContext is usually a sign that something has gone wrong. However, there are times when checking whether a parameter is null and returning immediately from the method is both useful and valid.
For instance, if you are gathering contact information about a user and the user has the option of providing a phone number. In that case, you may have a method that validates that the phone number contains all numbers, has the correct number of digits, etc, but which would immediately return if the phone number was empty or null.
public void validatePhone(String phoneNumber) throws ValidationException {
if (phoneNumber == null || phoneNumber.equals("")) {
return;
}
//do validation stuff, throwing exception if not valid
In your example, there is no return after the if statement; you are throwing an exception. (edit: I see you have changed the code since I posted this answer).
There are purists who think that you should have only one return statement in a method (at the end of the method). There's some merit to that idea - it makes the code more clear, it makes it easier to see what can be returned for the method, and especially when you need to cleanup resources (especially in a language without garbage collection; or in Java where you need to close for example an InputStream) it's more clear and easier if you have just one return at the bottom, and do the cleanup code just before the return.
I would not have any objection against the code in your example, however.
I have a few (subjective, or not) remarks:
I always use accolades with a if even the block contains only one line
I don't like to have many return on one method
I don't think that this null check is necessary. If getServletContext() returns null, then you have a much bigger problem with your webapp that should definitely be fixed. In that case, having a NullPointerException later in the code is an exceptional error so I wouldn't bother handling it.
I'm rewriting a series of PHP functions to a container class. Many of these functions do a bit of processing, but in the end, just echo content to STDOUT.
My question is: should I have a return value within these functions? Is there a "best practice" as far as this is concerned?
In systems that report errors primarily through exceptions, don't return a return value if there isn't a natural one.
In systems that use return values to indicate errors, it's useful to have all functions return the error code. That way, a user can simply assume that every single function returns an error code and develop a pattern to check them that they follow everywhere. Even if the function can never fail right now, return a success code. That way if a future change makes it possible to have an error, users will already be checking errors instead of implicitly silently ignoring them (and getting really confused why the system is behaving oddly).
Can the processing fail? If so, should the caller know about that? If either of these is no, then I don't see value in a return. However, if the processing can fail, and that can make a difference to the caller, then I'd suggest returning a status or error code.
Do not return a value if there is no value to return. If you have some value you need to convey to the caller, then return it but that doesn't sound like the case in this instance.
I will often "return: true;" in these cases, as it provides a way to check that the function worked. Not sure about best practice though.
Note that in C/C++, the output functions (including printf()) return the number of bytes written, or -1 if this fails. It may be worth investigating this further to see why it's been done like this. I confess that
I'm not sure that writing to stdout could practically fail (unless you actively close your STDOUT stream)
I've never seen anyone collect this value, let alone do anything with it.
Note that this is distinct from writing to file streams - I'm not counting stream redirection in the shell.
To do the "correct" thing, if the point of the method is only to print the data, then it shouldn't return anything.
In practice, I often find that having such functions return the text that they've just printed can often be useful (sometimes you also want to send an error message via email or feed it to some other function).
In the end, the choice is yours. I'd say it depends on how much of a "purist" you are about such things.
You should just:
return;
In my opinion the SRP (single responsibility principle) is applicable for methods/functions as well, and not only for objects. One method should do one thing, if it outputs data it shouldn't do any data processing - if it doesn't do processing it shouldn't return data.
There is no need to return anything, or indeed to have a return statement. It's effectively a void function, and it's comprehensible enough that these have no return value. Putting in a 'return;' solely to have a return statement is noise for the sake of pedantry.
I was training a new developer the other day and realized I don't know the actual term for "catching" a return value in a variable. For example, consider this pseudocoded method:
String updateString(newPart) {
string += newPart;
return string;
}
Assume this is being called to simply update the string - the return value is not needed:
updateString("add this");
Now, assume we want to do something with the returned value. We want to change the call so that we can use the newly updated string. I found myself saying "catch the return value", meaning I wanted to see:
String returnedString = updateString("add this");
So, if you were trying to ask someone to make this change, what terminology would you use? Is it different in different languages (since technically, you may be calling either a function or a method, depending on the language)?
assign the return value to a variable?
Returned values can be assigned or discarded/ignored/not used/[insert synonym here].
There isn't really a technical term for it.
I would say "returnedString is to be initialised with the return value of updateString".
"Catch" makes me think of exceptions, which is a bit misleading. How about something like "use" or "store" or "assign"?
Common ones that I know:
You assign a value to a variable.
You store a value into a variable.
check the function's return value, do not ignore return values
In the example, you're simply assigning the return value of the function to a new variable.
When describing the behavior of that single line of code, it doesn't really matter that the return value is not essential to the use of the function. However, in a broader context, it is very important to know what purpose this "Interesting Return Value" serves.
As others have said there isn't really a word for what you describe. However, here's a bit of terminology for you to chew on: the example you give looks like it could be a Fluent Interface.
I suggest "cache", meaning store it for later.
Maybe there's a subliminal reason you're saying "catch".
It's better too state the purpose rather than the implementation details (because actual implementation can be different in different programming langugages).
Generally speaking:
- Save the return value of the call.
If you know the return value is a result of something:
- Save the result of the call.
If you know the return value is to signify a status (such as error):
- Save the status of the call.
By using the word "save", you can use that same statement across the board, regardless of the mechanism used in that particular language to save the return value.
I have a function called FindSpecificRowValue that takes in a datatable and returns the row number that contains a particular value. If that value isn't found, I want to indicate so to the calling function.
Is the best approach to:
Write a function that returns false if not found, true if found, and the found row number as a byref/output parameter, or
Write a function that returns an int and pass back -999 if the row value isn't found, the row number if it is?
Personally I would not do either with that method name.
I would instead make two methods:
TryFindSpecificRow
FindSpecificRow
This would follow the pattern of Int32.Parse/TryParse, and in C# they could look like this:
public static Boolean TryFindSpecificRow(DataTable table, out Int32 rowNumber)
{
if (row-can-be-found)
{
rowNumber = index-of-row-that-was-found;
return true;
}
else
{
rowNumber = 0; // this value will not be used anyway
return false;
}
}
public static Int32 FindSpecificRow(DataTable table)
{
Int32 rowNumber;
if (TryFindSpecificRow(table, out rowNumber))
return rowNumber;
else
throw new RowNotFoundException(String.Format("Row {0} was not found", rowNumber));
}
Edit: Changed to be more appropriate to the question.
functions that fail should throw exceptions.
If failure is part of the expected flow then returning an out of band value is OK, except where you cannot pre-determine what an out-of-band value would be, in which case you have to throw an exception.
If I had to choose between your options I would choose option 2, but use a constant rather than -999...
You could also define return value as Nullable and return Nothing if nothing found.
I would choose option 2. Although I think I would just use -1 not -999.
Richard Harrison is right that a named constant is better than a bare -1 or -999.
I would go with 2, or some other variation where the return value indicates whether the value was found.
It seems that the value of the row the function returns (or provides a reference to) already indicates whether the value was found. If a value was not found, then it seems to make no sense to provide a row number that doesn't contain the value, so the return value should be -1, or Null, or whatever other value is suitable for the particular language. Otherwise, the fact that a row number was returned indicates the value was found.
Thus, there doesn't seem to be a need for a separate return value to indicate whether the value was found. However, type 1 might be appropriate if it fits with the idioms of the particular language, and the way function calls are performed in it.
Go with 2) but return -1 (or a null reference if returning a reference to the row), that idiom is uses extensively (including by by .nets indexOf (item) functions), it's what I'd probably do.
BTW -1 is more acceptable and widly used "magic number" than -999, thats the only reason why it's "correct" (quotes used there for a reason).
However much of this has to do with what you expect. Should the item always be in there, but you just don't know where? In that case return the index normally, and throw an error/exception if it's not there.
In this case, the item might not be there, and that's an okay condition. It's an error trap for unselected values in a GridView that binds to a datatable.
Another few possibilities not yet mentioned:
// Method 1: Supports covariance; can return default<T> on failure.
T TryGetThing(ref bool success);
// Method 2: Does not support covariance, but may allow cleaner code in some cases
// where calling code would use some particular value in in case of failure.
T TryGetThing(T DefaultValue);
// Method 3: Does not support covariance, but may allow cleaner code in some cases
// where calling code would use some particular value in case of failure, but should
// not take the time to compute that value except when necessary.
T TryGetThing(Func<T> AlternateGetMethod);
// Method 4: Does support covariance; ErrorMethod can throw if that's what should
// happen, or it can set some flag which is visible to the caller in some other way.
T TryGetThing(Action ErrorMethod);
The first approach is the reverse of the method Microsoft developed in the days before support existed for covariant interfaces. The last is in some ways the most versatile, but is likely to require the creation of a couple of new GC object instances (e.g. a closure and a delegate) each time it's used.