Currently, we are developing an API for our system and there are some resources that may have different kinds of identifiers.
For example, there is a resource called orders, which may have an unique order number and also have an unique id. At the moment, we only have URLs for the id, which are these URLs:
GET /api/orders/{id}
PUT /api/orders/{id}
DELETE /api/orders/{id}
But now we need also the possibility to use order numbers, which normally would result into:
GET /api/orders/{orderNumber}
PUT /api/orders/{orderNumber}
DELETE /api/orders/{orderNumber}
Obviously that won't work, since id and orderNumber are both numbers.
I know that there are some similar questions, but they don't help me out, because the answers don't really fit or their approaches are not really restful or comprehensible (for us and for possible developers using the API). Additionally, the questions and answers are partially older than 7 years.
To name a few:
1. Using a query param
One suggests to use a query param, e.g.
GET /api/orders/?orderNumber={orderNumber}
I think, there are a lot of problems. First, this is a filter on the orders collections, so that the result should be a list as well. However, there is only one order for the unique order number which is a little bit confusing. Secondly, we use such a filter to search/filter for a subset of orders. Additionally, a query params is some kind of a second-class parameter, but should be first-class in this case. This is even a problem, if I the object does not exist. Normally a get would return a 404 (not found), but a GET /api/orders/?orderNumber=1234 would be an empty array, if the order 1234 does not exist.
2. Using a prefix
Some public APIs use some kind of a discriminator to distinguish between different types, e.g. like:
GET /api/orders/id_1234
GET /api/orders/ordernumber_367652
This works for their approach, because id_1234 and ordernumber_367652 are their real unique identifiers that are also returned by other resources. However, that would result in a response object like this:
{
"id": "id_1234",
"ordernumber": "ordernumber_367652"
//...
}
This is not very clean, because the type (id or order number) is modelled twice. And apart from the problem of changing all identifiers and response objects, this would be confusing, if you e.g. want to search for all order numbers greater than 67363 (thus, there is also a string/number clash). If the response does not add the type as a prefix, a user have to add this for some request, which would also be very confusing (sometime you have to add this and sometimes not...)
3. Using a verb
This is what e.g. Twitter does: their URL ends with show.json, so you can use it like:
GET /api/orders/show.json?id=1234
GET /api/orders/show.json?number=367652
I think, this is the most awful solution, since it is not restful. Furthermore, it has some of the problems that I mentioned in the query param approach.
4. Using a subresource
Some people suggest to model this like a subresource, e.g.:
GET /api/orders/1234
GET /api/orders/id/1234 //optional
GET /api/orders/ordernumber/367652
I like the readability of this approach, but I think the meaning of /api/orders/ordernumber/367652 would be "get (just) the order number 367652" and not the order. Finally, this breaks some best practices like using plurals and only real resources.
So finally, my questions are: Did we missed something? And are there are other approaches, because I think that this is not an unusual problem?
to me, the most RESTful way of solving your problem is using the approach number 2 with a slight modification.
From a theoretical point of view, you just have valid identification code to identify your order. At this point of the design process, it isn't important whether your identification code is an id or an order number. It's something that uniquely identify your order and that's enough.
The fact that you have an ambiguity between ids and numbers format is an issue belonging to the implementation phase, not the design phase.
So for now, what we have is:
GET /api/orders/{some_identification_code}
and this is very RESTful.
Of course you still have the problem of solving your ambiguity, so we can proceed with the implementation phase. Unfortunately your order identification_code set is made of two distinct entities that share the format. It's trivial it can't work. But now the problem is in the definition of these entity formats.
My suggestion is very simple: ids will be integers, while numbers will be codes such as N1234567. This approach will make your resource representation acceptable:
{
"id": "1234",
"ordernumber": "N367652"
//...
}
Additionally, it is common in many scenarios such as courier shipments.
Here is an alternate option that I came up with that I found slightly more palatable.
GET /api/orders/1234
GET /api/orders/1234?idType=id //optional
GET /api/orders/367652?idType=ordernumber
The reason being it keeps the pathing consistent with REST standards, and then in the service if they did pass idType=orderNumber (idType of id is the default) you can pick up on that.
I'm struggling with the same issue and haven't found a perfect solution. I ended up using this format:
GET /api/orders/{orderid}
GET /api/orders/bynumber/{orderNumber}
Not perfect, but it is readable.
I'm also struggling with this! In my case, i only really need to be able to GET using the secondary ID, which makes this a little easier.
I am leaning towards using an optional prefix to the ID:
GET /api/orders/{id}
GET /api/orders/id:{id}
GET /api/orders/number:{orderNumber}
or this could be a chance to use an obscure feature of the URI specification, path parameters, which let you attach parameters to particular path elements:
GET /api/orders/{id}
GET /api/orders/{id};id_type=id
GET /api/orders/{orderNumber};id_type=number
The URL using an unqualified ID is the canonical one. There are two options for the behaviour of non-canonical URLs: either return the entity, or redirect to the canonical URL. The latter is more theoretically pure, but it may be inconvenient for users. Or it may be more useful for users, who knows!
Another way to approach this is to model an order number as its own thing:
GET /api/ordernumbers/{orderNumber}
This could return a small object with just the ID, which users could then use to retrieve the entity. Or even just redirect to the order.
If you also want a general search resource, then that can also be used here:
GET /api/orders?number={orderNumber}
In my case, i don't want such a resource (yet), and i could be uncomfortable adding what appears to be a general search resource that only supports one field.
So basically, you want to treat all ids and order numbers as unique identifiers for the order records. The thing about unique identifiers is, of course, they have to be unique! But your ids and order numbers are all numeric; do their ranges overlap? If, say, "1234" could be either an id or an order number, then obviously /api/orders/1234 is not going to reference a unique order.
If the ranges are unique, then you just need discriminator logic in the handler code for /api/orders/{id}, that can tell an id from an order number. This could actually work, say if your order numbers have more digits than your ids ever will. But I expect you would have done this already if you could.
If the ranges might overlap, then you must at least force the references to them to have unique ranges. The simplest way would be to add a prefix when referring to an order number, e.g. the prefix "N". So that if the order with id 1234 has order number 367652, it could be retrieved with either of these calls:
/api/orders/1234
/api/orders/N367652
But then, either the database must change to include the "N" prefix in all order numbers (you say this is not possible) or else the handler code would have to strip off the "N" prefix before converting to int. In that case, the "N" prefix should only be used in the API calls - user facing data-entry forms should not expose it! You can't have a "lookup by any identifier" field where users can enter either id or order number (this would have a non-uniqueness problem anyway.) Instead, you must have separate "lookup by id" and "lookup by order number" options. Then, you should be able to have the order number input handler automatically add the "N" prefix before submitting to the API.
Fundamentally, this is a problem with the database design - if this (using values from both fields as "unique identifiers") was a requirement, then the database fields should have been designed with this in mind (i.e. with non-overlapping ranges) - if you can't change the order number format, then the id format should have been different.
I'll take a real example I have to implement in a program I'm coding:
I have a database that has the score of every game bowled in the past three years in a bowling center. With a GUI, you can choose to either search for the best score on each lane, search for the best score between two dates, for the best score for each week, etc.
I'm wondering what the best way to implement this is. Should I code something like this:
public Vector<Scores> grabMaxScores(sortType, param1, param2)
{
if(sortType.equals("By lane"))
...
else if(sortType.equals("Between given dates")
...
}
Or is it more appropriate to code different methods for each type and call the correct one in the listener?
public Vector<Scores> grabMaxScoresBetweenDates(startDate, endDate)
{
...
}
public Vector<Scores> grabMaxScoresByLane(minLane, maxLane)
{
...
}
I'm not necessarily asking for this particular problem, it's just a question I find asking myself often when I'm coding multiple methods that are alike where the principle is the same, but the parameters are different.
I can see there are good reasons to use each of them, but I want to know if there is a "more correct" or standard way of coding this.
In my personal opinion, I would prefer your second option over the first. This is because you have the opportunity to be precise about things like the types of the parameters. For example, minLane and maxLane may just be integers, but startDate and endDate could very well be Date objects. It's often nicer if you can actually specify what you expect, as it reduces the need for such things as casting and range checks, etc. Also, I would find it more readable, as the function names just say what you are trying to do.
However, I may have an alternative idea, which is kind of a variation on your first example (I actually got this inspiration from Java's Comparator, in case you're familiar with that). Rather than pass a string as the first argument, pass some sort of Selector object. Selector would be the name of a class or a interface, which would look something like so (in Java):
interface Selector {
public void select(Score next);
public Score getBest( );
}
If the select method "likes" the value of next which is given to it, it can store the value for later. If it doesn't like it, it can simply discard it, and keep whatever value it already has. After all the data is processed, the best value will be left over, and can be requested by calling getBest. Of course, you can alter the interface to suit your particular needs (e.g. it seems like you might be expecting more than one value to be retrieved. Also, generics might help a lot as well).
The reason I like this idea is that now your function is very general purpose. In order to add new functionality, you don't need to add functions, and you don't need to modify any functions you already have. Instead, the user of your code can simply define their own implementation of Selector as they see fit. This allows your code to be far more compositional, which makes it easier to use. The only inconvenience is the need to define implementations of Selector, though, you could also provide several default ones.
The approach you have used would also work. But if you want to add some new functionality like "get lowest scores on Friday evening", you will need to add one more function, which kinda not so good thing to do.
As you have already have the data in a database you can generate database queries which would fetch the required results and display. So you need not modify your code every time.
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 11 months ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Sorry for the waffly title - if I could come up with a concise title, I wouldn't have to ask the question.
Suppose I have an immutable list type. It has an operation Foo(x) which returns a new immutable list with the specified argument as an extra element at the end. So to build up a list of strings with values "Hello", "immutable", "world" you could write:
var empty = new ImmutableList<string>();
var list1 = empty.Foo("Hello");
var list2 = list1.Foo("immutable");
var list3 = list2.Foo("word");
(This is C# code, and I'm most interested in a C# suggestion if you feel the language is important. It's not fundamentally a language question, but the idioms of the language may be important.)
The important thing is that the existing lists are not altered by Foo - so empty.Count would still return 0.
Another (more idiomatic) way of getting to the end result would be:
var list = new ImmutableList<string>().Foo("Hello")
.Foo("immutable")
.Foo("word");
My question is: what's the best name for Foo?
EDIT 3: As I reveal later on, the name of the type might not actually be ImmutableList<T>, which makes the position clear. Imagine instead that it's TestSuite and that it's immutable because the whole of the framework it's a part of is immutable...
(End of edit 3)
Options I've come up with so far:
Add: common in .NET, but implies mutation of the original list
Cons: I believe this is the normal name in functional languages, but meaningless to those without experience in such languages
Plus: my favourite so far, it doesn't imply mutation to me. Apparently this is also used in Haskell but with slightly different expectations (a Haskell programmer might expect it to add two lists together rather than adding a single value to the other list).
With: consistent with some other immutable conventions, but doesn't have quite the same "additionness" to it IMO.
And: not very descriptive.
Operator overload for + : I really don't like this much; I generally think operators should only be applied to lower level types. I'm willing to be persuaded though!
The criteria I'm using for choosing are:
Gives the correct impression of the result of the method call (i.e. that it's the original list with an extra element)
Makes it as clear as possible that it doesn't mutate the existing list
Sounds reasonable when chained together as in the second example above
Please ask for more details if I'm not making myself clear enough...
EDIT 1: Here's my reasoning for preferring Plus to Add. Consider these two lines of code:
list.Add(foo);
list.Plus(foo);
In my view (and this is a personal thing) the latter is clearly buggy - it's like writing "x + 5;" as a statement on its own. The first line looks like it's okay, until you remember that it's immutable. In fact, the way that the plus operator on its own doesn't mutate its operands is another reason why Plus is my favourite. Without the slight ickiness of operator overloading, it still gives the same connotations, which include (for me) not mutating the operands (or method target in this case).
EDIT 2: Reasons for not liking Add.
Various answers are effectively: "Go with Add. That's what DateTime does, and String has Replace methods etc which don't make the immutability obvious." I agree - there's precedence here. However, I've seen plenty of people call DateTime.Add or String.Replace and expect mutation. There are loads of newsgroup questions (and probably SO ones if I dig around) which are answered by "You're ignoring the return value of String.Replace; strings are immutable, a new string gets returned."
Now, I should reveal a subtlety to the question - the type might not actually be an immutable list, but a different immutable type. In particular, I'm working on a benchmarking framework where you add tests to a suite, and that creates a new suite. It might be obvious that:
var list = new ImmutableList<string>();
list.Add("foo");
isn't going to accomplish anything, but it becomes a lot murkier when you change it to:
var suite = new TestSuite<string, int>();
suite.Add(x => x.Length);
That looks like it should be okay. Whereas this, to me, makes the mistake clearer:
var suite = new TestSuite<string, int>();
suite.Plus(x => x.Length);
That's just begging to be:
var suite = new TestSuite<string, int>().Plus(x => x.Length);
Ideally, I would like my users not to have to be told that the test suite is immutable. I want them to fall into the pit of success. This may not be possible, but I'd like to try.
I apologise for over-simplifying the original question by talking only about an immutable list type. Not all collections are quite as self-descriptive as ImmutableList<T> :)
In situations like that, I usually go with Concat. That usually implies to me that a new object is being created.
var p = listA.Concat(listB);
var k = listA.Concat(item);
I'd go with Cons, for one simple reason: it means exactly what you want it to.
I'm a huge fan of saying exactly what I mean, especially in source code. A newbie will have to look up the definition of Cons only once, but then read and use that a thousand times. I find that, in the long term, it's nicer to work with systems that make the common case easier, even if the up-front cost is a little bit higher.
The fact that it would be "meaningless" to people with no FP experience is actually a big advantage. As you pointed out, all of the other words you found already have some meaning, and that meaning is either slightly different or ambiguous. A new concept should have a new word (or in this case, an old one). I'd rather somebody have to look up the definition of Cons, than to assume incorrectly he knows what Add does.
Other operations borrowed from functional languages often keep their original names, with no apparent catastrophes. I haven't seen any push to come up with synonyms for "map" and "reduce" that sound more familiar to non-FPers, nor do I see any benefit from doing so.
(Full disclosure: I'm a Lisp programmer, so I already know what Cons means.)
Actually I like And, especially in the idiomatic way. I'd especially like it if you had a static readonly property for the Empty list, and perhaps make the constructor private so you always have to build from the empty list.
var list = ImmutableList<string>.Empty.And("Hello")
.And("Immutable")
.And("Word");
Whenever I'm in a jam with nomenclature, I hit up the interwebs.
thesaurus.com returns this for "add":
Definition: adjoin, increase; make
further comment
Synonyms: affix,
annex, ante, append, augment, beef
up, boost, build up, charge up,
continue, cue in, figure in, flesh
out, heat up, hike, hike up, hitch on,
hook on, hook up with, include, jack
up, jazz up, join together, pad,
parlay, piggyback, plug into, pour it
on, reply, run up, say further, slap
on, snowball, soup up, speed up,
spike, step up, supplement, sweeten,
tack on, tag
I like the sound of Adjoin, or more simply Join. That is what you're doing, right? The method could also apply to joining other ImmutableList<>'s.
Personally, I like .With(). If I was using the object, after reading the documentation or the code comments, it would be clear what it does, and it reads ok in the source code.
object.With("My new item as well");
Or, you add "Along" with it.. :)
object.AlongWith("this new item");
I ended up going with Add for all of my Immutable Collections in BclExtras. The reason being is that it's an easy predictable name. I'm not worried so much about people confusing Add with a mutating add since the name of the type is prefixed with Immutable.
For awhile I considered Cons and other functional style names. Eventually I discounted them because they're not nearly as well known. Sure functional programmers will understand but they're not the majority of users.
Other Names: you mentioned:
Plus: I'm wishy/washing on this one. For me this doesn't distinguish it as being a non-mutating operation anymore than Add does
With: Will cause issues with VB (pun intended)
Operator overloading: Discoverability would be an issue
Options I considered:
Concat: String's are Immutable and use this. Unfortunately it's only really good for adding to the end
CopyAdd: Copy what? The source, the list?
AddToNewList: Maybe a good one for List. But what about a Collection, Stack, Queue, etc ...
Unfortunately there doesn't really seem to be a word that is
Definitely an immutable operation
Understandable to the majority of users
Representable in less than 4 words
It gets even more odd when you consider collections other than List. Take for instance Stack. Even first year programmers can tell you that Stacks have a Push/Pop pair of methods. If you create an ImmutableStack and give it a completely different name, lets call it Foo/Fop, you've just added more work for them to use your collection.
Edit: Response to Plus Edit
I see where you're going with Plus. I think a stronger case would actually be Minus for remove. If I saw the following I would certainly wonder what in the world the programmer was thinking
list.Minus(obj);
The biggest problem I have with Plus/Minus or a new pairing is it feels like overkill. The collection itself already has a distinguishing name, the Immutable prefix. Why go further by adding vocabulary whose intent is to add the same distinction as the Immutable prefix already did.
I can see the call site argument. It makes it clearer from the standpoint of a single expression. But in the context of the entire function it seems unnecessary.
Edit 2
Agree that people have definitely been confused by String.Concat and DateTime.Add. I've seen several very bright programmers hit this problem.
However I think ImmutableList is a different argument. There is nothing about String or DateTime that establishes it as Immutable to a programmer. You must simply know that it's immutable via some other source. So the confusion is not unexpected.
ImmutableList does not have that problem because the name defines it's behavior. You could argue that people don't know what Immutable is and I think that's also valid. I certainly didn't know it till about year 2 in college. But you have the same issue with whatever name you choose instead of Add.
Edit 3: What about types like TestSuite which are immutable but do not contain the word?
I think this drives home the idea that you shouldn't be inventing new method names. Namely because there is clearly a drive to make types immutable in order to facilitate parallel operations. If you focus on changing the name of methods for collections, the next step will be the mutating method names on every type you use that is immutable.
I think it would be a more valuable effort to instead focus on making types identifiable as Immutable. That way you can solve the problem without rethinking every mutating method pattern out there.
Now how can you identify TestSuite as Immutable? In todays environment I think there are a few ways
Prefix with Immutable: ImmutableTestSuite
Add an Attribute which describes the level of Immutablitiy. This is certainly less discoverable
Not much else.
My guess/hope is development tools will start helping this problem by making it easy to identify immutable types simply by sight (different color, stronger font, etc ...). But I think that's the answer though over changing all of the method names.
I think this may be one of those rare situations where it's acceptable to overload the + operator. In math terminology, we know that + doesn't append something to the end of something else. It always combines two values together and returns a new resulting value.
For example, it's intuitively obvious that when you say
x = 2 + 2;
the resulting value of x is 4, not 22.
Similarly,
var empty = new ImmutableList<string>();
var list1 = empty + "Hello";
var list2 = list1 + "immutable";
var list3 = list2 + "word";
should make clear what each variable is going to hold. It should be clear that list2 is not changed in the last line, but instead that list3 is assigned the result of appending "word" to list2.
Otherwise, I would just name the function Plus().
To be as clear as possible, you might want to go with the wordier CopyAndAdd, or something similar.
I would call it Extend() or maybe ExtendWith() if you feel like really verbose.
Extends means adding something to something else without changing it. I think this is very relevant terminology in C# since this is similar to the concept of extension methods - they "add" a new method to a class without "touching" the class itself.
Otherwise, if you really want to emphasize that you don't modify the original object at all, using some prefix like Get- looks like unavoidable to me.
Added(), Appended()
I like to use the past tense for operations on immutable objects. It conveys the idea that you aren't changing the original object, and it's easy to recognize when you see it.
Also, because mutating method names are often present-tense verbs, it applies to most of the immutable-method-name-needed cases you run into. For example an immutable stack has the methods "pushed" and "popped".
I like mmyers suggestion of CopyAndAdd. In keeping with a "mutation" theme, maybe you could go with Bud (asexual reproduction), Grow, Replicate, or Evolve? =)
EDIT: To continue with my genetic theme, how about Procreate, implying that a new object is made which is based on the previous one, but with something new added.
This is probably a stretch, but in Ruby there is a commonly used notation for the distinction: add doesn't mutate; add! mutates. If this is an pervasive problem in your project, you could do that too (not necessarily with non-alphabetic characters, but consistently using a notation to indicate mutating/non-mutating methods).
Join seems appropriate.
Maybe the confusion stems from the fact that you want two operations in one. Why not separate them? DSL style:
var list = new ImmutableList<string>("Hello");
var list2 = list.Copy().With("World!");
Copy would return an intermediate object, that's a mutable copy of the original list. With would return a new immutable list.
Update:
But, having an intermediate, mutable collection around is not a good approach. The intermediate object should be contained in the Copy operation:
var list1 = new ImmutableList<string>("Hello");
var list2 = list1.Copy(list => list.Add("World!"));
Now, the Copy operation takes a delegate, which receives a mutable list, so that it can control the copy outcome. It can do much more than appending an element, like removing elements or sorting the list. It can also be used in the ImmutableList constructor to assemble the initial list without intermediary immutable lists.
public ImmutableList<T> Copy(Action<IList<T>> mutate) {
if (mutate == null) return this;
var list = new List<T>(this);
mutate(list);
return new ImmutableList<T>(list);
}
Now there's no possibility of misinterpretation by the users, they will naturally fall into the pit of success.
Yet another update:
If you still don't like the mutable list mention, even now that it's contained, you can design a specification object, that will specify, or script, how the copy operation will transform its list. The usage will be the same:
var list1 = new ImmutableList<string>("Hello");
// rules is a specification object, that takes commands to run in the copied collection
var list2 = list1.Copy(rules => rules.Append("World!"));
Now you can be creative with the rules names and you can only expose the functionality that you want Copy to support, not the entire capabilities of an IList.
For the chaining usage, you can create a reasonable constructor (which will not use chaining, of course):
public ImmutableList(params T[] elements) ...
...
var list = new ImmutableList<string>("Hello", "immutable", "World");
Or use the same delegate in another constructor:
var list = new ImmutableList<string>(rules =>
rules
.Append("Hello")
.Append("immutable")
.Append("World")
);
This assumes that the rules.Append method returns this.
This is what it would look like with your latest example:
var suite = new TestSuite<string, int>(x => x.Length);
var otherSuite = suite.Copy(rules =>
rules
.Append(x => Int32.Parse(x))
.Append(x => x.GetHashCode())
);
A few random thoughts:
ImmutableAdd()
Append()
ImmutableList<T>(ImmutableList<T> originalList, T newItem) Constructor
DateTime in C# uses Add. So why not use the same name? As long the users of your class understand the class is immutable.
I think the key thing you're trying to get at that's hard to express is the nonpermutation, so maybe something with a generative word in it, something like CopyWith() or InstancePlus().
I don't think the English language will let you imply immutability in an unmistakable way while using a verb that means the same thing as "Add". "Plus" almost does it, but people can still make the mistake.
The only way you're going to prevent your users from mistaking the object for something mutable is by making it explicit, either through the name of the object itself or through the name of the method (as with the verbose options like "GetCopyWith" or "CopyAndAdd").
So just go with your favourite, "Plus."
First, an interesting starting point:
http://en.wikipedia.org/wiki/Naming_conventions_(programming) ...In particular, check the "See Also" links at the bottom.
I'm in favor of either Plus or And, effectively equally.
Plus and And are both math-based in etymology. As such, both connote mathematical operation; both yield an expression which reads naturally as expressions which may resolve into a value, which fits with the method having a return value. And bears additional logic connotation, but both words apply intuitively to lists. Add connotes action performed on an object, which conflicts with the method's immutable semantics.
Both are short, which is especially important given the primitiveness of the operation. Simple, frequently-performed operations deserve shorter names.
Expressing immutable semantics is something I prefer to do via context. That is, I'd rather simply imply that this entire block of code has a functional feel; assume everything is immutable. That might just be me, however. I prefer immutability to be the rule; if it's done, it's done a lot in the same place; mutability is the exception.
How about Chain() or Attach()?
I prefer Plus (and Minus). They are easily understandable and map directly to operations involving well known immutable types (the numbers). 2+2 doesn't change the value of 2, it returns a new, equally immutable, value.
Some other possibilities:
Splice()
Graft()
Accrete()
How about mate, mateWith, or coitus, for those who abide. In terms of reproducing mammals are generally considered immutable.
Going to throw Union out there too. Borrowed from SQL.
Apparently I'm the first Obj-C/Cocoa person to answer this question.
NNString *empty = [[NSString alloc] init];
NSString *list1 = [empty stringByAppendingString:#"Hello"];
NSString *list2 = [list1 stringByAppendingString:#"immutable"];
NSString *list3 = [list2 stringByAppendingString:#"word"];
Not going to win any code golf games with this.
I think "Add" or "Plus" sounds fine. The name of the list itself should be enough to convey the list's immutability.
Maybe there are some words which remember me more of making a copy and add stuff to that instead of mutating the instance (like "Concatenate"). But i think having some symmetry for those words for other actions would be good to have too. I don't know of a similar word for "Remove" that i think of the same kind like "Concatenate". "Plus" sounds little strange to me. I wouldn't expect it being used in a non-numerical context. But that could aswell come from my non-english background.
Maybe i would use this scheme
AddToCopy
RemoveFromCopy
InsertIntoCopy
These have their own problems though, when i think about it. One could think they remove something or add something to an argument given. Not sure about it at all. Those words do not play nice in chaining either, i think. Too wordy to type.
Maybe i would just use plain "Add" and friends too. I like how it is used in math
Add 1 to 2 and you get 3
Well, certainly, a 2 remains a 2 and you get a new number. This is about two numbers and not about a list and an element, but i think it has some analogy. In my opinion, add does not necessarily mean you mutate something. I certainly see your point that having a lonely statement containing just an add and not using the returned new object does not look buggy. But I've now also thought some time about that idea of using another name than "add" but i just can't come up with another name, without making me think "hmm, i would need to look at the documentation to know what it is about" because its name differs from what I would expect to be called "add". Just some weird thought about this from litb, not sure it makes sense at all :)
Looking at http://thesaurus.reference.com/browse/add and http://thesaurus.reference.com/browse/plus I found gain and affix but I'm not sure how much they imply non-mutation.
I think that Plus() and Minus() or, alternatively, Including(), Excluding() are reasonable at implying immutable behavior.
However, no naming choice will ever make it perfectly clear to everyone, so I personally believe that a good xml doc comment would go a very long way here. VS throws these right in your face when you write code in the IDE - they're hard to ignore.
Append - because, note that names of the System.String methods suggest that they mutate the instance, but they don't.
Or I quite like AfterAppending:
void test()
{
Bar bar = new Bar();
List list = bar.AfterAppending("foo");
}
list.CopyWith(element)
As does Smalltalk :)
And also list.copyWithout(element) that removes all occurrences of an element, which is most useful when used as list.copyWithout(null) to remove unset elements.
I would go for Add, because I can see the benefit of a better name, but the problem would be to find different names for every other immutable operation which might make the class quite unfamiliar if that makes sense.