Tag Cloud Data Backend - tag-cloud

I want to be able to generate tag clouds from free text that comes from any number of different sources. For clarity, I'm not talking about how to display a tag cloud once the critical tags/phrases are already discovered, I'm hoping to be able to discover the meaningful phrases themselves... preferable on a PHP/MySQL stack.
If I had to do this myself, I'd start by establishing some kind of index for words/phrases that gives a "normal" frequency for any word/phrase. eg "Constantinople" occurs once in every 1,000,000 words on average (normal frequency "0.000001"). Then as I analyze a body of text, I'd find the individual words/phrases (another challenge!), find frequencies of each within the input, and measure against the expected freqeuncy. Words that have the highest ratio against expected frequency get boosted priority in the cloud.
I'd like to believe someone else has already done this, WAY better than I could hope to, but I'll be damned if I can find it.
Any recommendations??

You need an inverted index, used by full-text search engines. A text search library like Lucene or Xapian should help, many such libraries have PHP bindings.

Related

Creating more relevant results from LDA topic modeling?

I am doing a project for my degree and I have an actual client from another college. They want me to do all this stuff with topic modeling to an sql file of paper abstracts he's given me. I have zero experience with topic modeling but I've been using Gensim and Nlkt in a Jupyter notebook for this.
What he want's right now is for me to generate 10 or more topics, record the top 10 most overall common words from the LDA's results, and then if they are very frequent in each topic, remove them from the resulting word cloud and if they are more variant, remove the words from just the topics where they are infrequent and keep them in the more relevant topics.
He also wants me to compare the frequency of each topic from the sql files of other years. And, he wants these topics to have a name generated smartly from the computer.
I have topic models per year and overall, but of course they do not appear exactly the same way in each year. My biggest concern is the first thing he wants with the removal process. Is any of this possible? I need help figuring out where to look as google is giving me not what I want as I am probably searching it wrong.
Thank you!
Show some of the code you use so we can give you more useful tips. Also use nlp tag, the tags you used are kind of specific and not followed by many people so your question might be hard to find for the relevant users.
By the whole word-removal thing do you mean stop words too? Or did you already remove those? Stop words are very common words ("the", "it", "me" etc.) which often appear high in most frequent word lists but do not really have any meaning for finding topics.
First you remove the stop words to make the most common words list more useful.
Then, as he requested, you look which (more common) words are common in ALL the topics (I can imagine in case of abstracts this is stuff like hypothesis, research, paper, results etc., so stuff that is abstract-specific but not useful for determining topics within different abstracts and remove those. I can imagine for this kind of analysis as well as the initial LDA it makes sense to use all the data from all years to have a large amount of data for the model to recognize patterns. But you should try around the variations and see if the per year or overall versions get you nicer results.
After you have your global word lists per topic you go back to the original data (split up by year) to count the frequencies of how often the combined words from a topic occur per year. If you view this over the years you probably can see trends like some topics that are popular in the last few years/now but if you go back far enough they werent relevant.
The last thing you mentioned (automatically assigning labels to topics) is actually something quite tricky, depending on how you go about it.
The "easy" way would be e.g. just use the most frequent word in each topic as label but the results will probably be underwhelming.
A more advanced approach is Topic Labeling. Or you can try an approach like modified text summarization using more powerful models.

MySQL fulltext search with a minimum number of matches per record

I've been puzzling over this for a little while and I'm looking for feedback as to the best way to implement this.
Essentially I want to be able to search a database of documents and specify a keyword, for any record that matches the keyword I need to be able to specify how many times that keyword must occur.
The solution I'm about to start work on uses regex within the query to accomplish this, however from trawling stackoverflow I can see that this is possibly a little slow, the API needs to be able to do this very quickly since we're talking thousands of requests per minute.
Is there a faster way than using Regex or shall I pull out the VISA card and invest in some high end hardware?
To be clear I'm not tied to mysql I need to search a LOT of documents and match only those that have the keyword that occur X times.

Setting Up an Easily Searchable MySQL Database for Word Searches

I have appx. 2TB of text that I want to turn into a searchable database, where I will usually be searching to see if 2-4 word expressions exist in the database (for instance I might do a search to see if the phrase "these are four words", or "three consecutive words" appears anywhere in the text).
These searches will happen very often so it is very important that I setup the database to use as little processing as possible. I'd also want to minimize the overhead as much as possible so I can lower the amount of database servers I'll need.
Does anybody have any suggestions as to how I should setup this database?
For instance I was thinking of doing a linked list that was organized |id|word1|word2| (with all three beings keys) so for the expression "these are four words", I'd first search "these are", then I'd search "are four", check to see if any matches for "these are" are 1 id lower than "are four", and then do the same thing for "four words". But I think there has to be a more efficient way of doing it.
EDIT: The ONLY thing I will be using this database for is doing these 2-4 word exact match searches, and it is meant for internal use. All I want this database to be able to do is let me know if a 2-4 word expression exists somewhere in all of my files of information, and nothing more.
Does anybody have any suggestions as
to how I should setup this database?
Personally, I'd first rule out the possibility of using MySQL's full-text search, and every Open Source, full-text search engine. There's a list of Open Source search engines on Wikipedia. I'd also rule out using Google Custom Search. Heck, I'd even consider a commercial product before I'd try rolling my own.
At the very least, studying their code might give you some ideas about index structure.
If you're thinking of building a linked list in SQL, well, you might want to build a tiny test before you get too far into it. I don't think it will be practical, but I could be wrong.
It takes a lot of work to do full-text search really well. (Think about proximity searches—find "there are" within 3 words of "many ways to fail". ) Reinventing this wheel might not be the best use of your time.

How to search for text fragments in a database

Are there any open source or commercial tools available that allow for text fragment indexing of database contents and can be queried from Java?
Background of the question is a large MySQL database table with several hundred thousand records, containing several VARCHAR columns. In these columns people would like to search for fragments of the contents, so a fulltext index (which is based on word boundaries) would not help.
EDIT: [Added to make clear why these first suggestions would not solve the problem:]
This is why MySQL's built in fulltext index will not do the job, and neither will Lucene or Sphinx, all of which were suggested in the answers. I already looked at both those, but as far as I can tell, these are based on indexing words, excluding stop words and doing all sorts of sensible things for a real fulltext search. However this is not suitable, because I might be looking for a search term like "oison" which must match "Roisonic Street" as well as "Poison-Ivy". The key difference here is that the search term is just a fragment of the column content, that need not be delimited by any special characters or white space.
EDIT2: [Added some more background info:]
The requested feature that is to be implemented based on this is a very loose search for item descriptions in a merchandise management system. Users often do not know the correct item number, but only part of the name of the item. Unfortunately the quality of these descriptions is rather low, they come from a legacy system and cannot be changed easily. If for example people were searching for a sledge hammer they would enter "sledge". With a word/token based index this would not find matches that are stored as "sledgehammer", but only those listen "sledge hammer". There are all kinds of weird variances that need to be covered, making a token based approach impractical.
Currently the only thing we can do is a LIKE '%searchterm%' query, effectively disabling any index use and requiring lots of resources and time.
Ideally any such tool would create an index that allowed me to get results for suchlike queries very quickly, so that I could implement a spotlight-like search, only retrieving the "real" data from the MySQL table via the primary key when a user picks a result record.
If possible the index should be updatable (without needing a full rebuild), because data might change and should be available for search immediately by other clients.
I would be glad to get recommendations and/or experience reports.
EDIT3: Commercial solution found that "just works"
Even though I got a lot of good answers for this question, I wanted to note here, that in the end we went with a commercial product called "QuickFind", made and sold by a German company named "HMB Datentechnik". Please note that I am not affiliated with them in any way, because it might appear like that when I go on and describe what their product can do. Unfortunately their website looks rather bad and is German only, but the product itself is really great. I currently have a trial version from them - you will have to contact them, no downloads - and I am extremely impressed.
As there is no comprehensive documentation available online, I will try and describe my experiences so far.
What they do is build a custom index file based on database content. They can integrate via ODBC, but from what I am told customers rarely do that. Instead - and this is what we will probably do - you generate a text export (like CSV) from your primary database and feed that to their indexer. This allows you to be completely independent of the actual table structure (or any SQL database at all); in fact we export data joined together from several tables. Indexes can be incrementally updated later on the fly.
Based on that their server (a mere 250kb or so, running as a console app or Windows service) serves listens for queries on a TCP port. The protocol is text based and looks a little "old", but it is simple and works. Basically you just pass on which of the available indexes you want to query and the search terms (fragments), space delimited.
There are three output formats available, HTML/JavaScript array, XML or CSV. Currently I am working on a Java wrapper for the somewhat "dated" wire protocol. But the results are fantastic: I currently have a sample data set of approximately 500.000 records with 8 columns indexed and my test application triggers a search across all 8 columns for the contents of a JTextField on every keystroke while being edited and can update the results display (JTable) in real-time! This happens without going to the MySQL instance the data originally came from. Based on the columns you get back, you can then ask for the "original" record by querying MySQL with the primary key of that row (needs to be included in the QuickFind index, of course).
The index is about 30-40% the size of the text export version of the data. Indexing was mainly bound by disk I/O speed; my 500.000 records took about a minute or two to be processed.
It is hard to describe this as I found it even hard to believe when I saw an in-house product demo. They presented a 10 million row address database and searched for fragments of names, addresses and phone numbers and when hitting the "Search" button, results came back in under a second - all done on a notebook! From what I am told they often integrate with SAP or CRM systems to improve search times when call center agents just understand fragments of the names or addresses of a caller.
So anyway, I probably won't get much better in describing this. If you need something like this, you should definitely go check this out. Google Translate does a reasonably good job translating their website from German to English, so this might be a good start.
This may not be what you want to hear, because I presume you are trying to solve this with SQL code, but Lucene would be my first choice. You can also build up fairly clever ranking and boosting techniques with additional tools. Lucene is written in Java so it should give you exactly the interface you need.
If you were a Microsoft shop, the majority of what you're looking for is built into SQL Server, and wildcards can be enabled which will give you the ability to do partial word matches.
In Lucene and Lucene.Net, you can use wildcard matches if you like. However, it's not supported to use wildcards as the first symbol in a search. If you want the ability to use first character wildcards, you'll probably need to implement some sort of trie-based index on your own, since it's an expensive operation in many cases to filter the set of terms down to something reasonable for the kind of index most commonly needed for full text search applications, where suffix stemming is generally more valuable.
You can apparently alter the Query Parser instance in Lucene to override this rule by setting setAllowLeadingWildcard to true.
I'm fairly sure that wildcard-on-both-ends-of-a-word searches are inherently inefficient. Skip lists are sometimes used to improve performance on such searches with plaintext, but I think you're more likely to find an implementation like that in something like grep than a generalized text indexing tool.
There are other solutions for the problem that you describe where one word may occur spelled as two, or vice versa. Fuzzy queries are supported in Lucene, for example. Orthographic and morphological variants can be handled using either by providing a filter that offers suggestions based on some sort of Bayesian mechanism, or by indexing tricks, namely, taking a corpus of frequent variants and stuffing the index with those terms. I've even seen knowledge from structured data stuffed into the full text engine (e.g. adding city name and the word "hotel" to records from the hotel table, to make it more likely that "Paris Hotels" will include a record for the pension-house Caisse des Dépôts.) While not exactly a trivial problem, it's manageable without destroying the advantages of word-based searches.
I haven't had this specific requirement myself, but my experience tells me Lucene can do the trick, though perhaps not standalone. I'd definitely use it through Solr as described by Michael Della Bitta in the first answer. The link he gave was spot on - read it for more background.
Briefly, Solr lets you define custom FieldTypes. These consist of an index-time Analyzer and a query-time Analyzer. Analyzers figure out what to do with the text, and each consists of a Tokenizer and zero to many TokenFilters. The Tokenizer splits your text into chunks and then each TokenFilter can add, subtract, or modify tokens.
The field can thus end up indexing something quite different from the original text, including multiple tokens if necessary. So what you want is a multiple-token copy of your original text, which you query by sending Lucene something like "my_ngram_field:sledge". No wildcards involved :-)
Then you follow a model similar to the prefix searching offered up in the solrconfig.xml file:
<fieldType name="prefix_token" class="solr.TextField" positionIncrementGap="1">
<analyzer type="index">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory" />
<filter class="solr.EdgeNGramFilterFactory" minGramSize="1" maxGramSize="20"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory" />
</analyzer>
</fieldType>
The EdgeNGramFilterFactory is how they implement prefix matching for search box autocomplete. It takes the tokens coming from the previous stages (single whitespace-delimited words transformed into lower case) and fans them out into every substring on the leading edge. sledgehammer = s,sl,sle,sled,sledg,sledge,sledgeh, etc.
You need to follow this pattern, but replace the EdgeNGramFilterFactory with your own which does all NGrams in the field. The default org.apache.solr.analysis.NGramFilterFactory is a good start, but it does letter transpositions for spell checking. You could copy it and strip that out - it's a pretty simple class to implement.
Once you have your own FieldType (call it ngram_text) using your own MyNGramFilterFactory, just create your original field and the ngram field like so:
<field name="title" type="text" indexed="true" stored="true"/>
<field name="title_ngrams" type="ngram_text" indexed="true" stored="false"/>
Then tell it to copy the original field into the fancy one:
<copyField source="title" dest="title_ngrams"/>
Alright, now when you search "title_ngrams:sledge" you should get a list of documents that contain this. Then in your field list for the query you just tell it to retrieve the field called title rather than the field title_ngrams.
That should be enough of a nudge to allow you to fit things together and tune it to astonishing performance levels rather easily. At an old job we had a database with over ten million products with large HTML descriptions and managed to get Lucene to do both the standard query and the spellcheck in under 200ms on a mid-sized server handling several dozen simultaneous queries. When you have a lot of users, caching kicks in and makes it scream!
Oh, and incremental (though not real-time) indexing is a cinch. It can even do it under high loads since it creates and optimizes the new index in the background and autowarms it before swapping it in. Very slick.
Good luck!
If your table is MyISAM, you can use MySQL's full text search capabilites: http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html
If not, the "industry standard" is http://www.sphinxsearch.com/
Some ideas on what to do if you are using InnoDB: http://www.mysqlperformanceblog.com/2009/09/10/what-to-do-with-mysql-full-text-search-while-migrating-to-innodb/
Also, a good presentation that introduces Sphinx and explains architecture+usage
http://www.scribd.com/doc/2670976/Sphinx-High-Performance-Full-Text-Search-for-MySQL-Presentation
Update
Having read your clarification to the question -- Sphinx can do substring matches. You need to set "enable-star" and create an infix index with the appropriate min_infix_length (1 will give you all possible substrings, but obviously the higher the set it, the smaller your index will be, and the faster your searches). See http://sphinxsearch.com/docs/current.html for details.
I'd use Apache Solr. The indexing strategy is entirely tunable (see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters), can incrementally read directly from your database to populate the index (see DataImportHandler in the same wiki), and can be queried from basically any language that speaks HTTP and XML or something like JSON.
what about using tools such as proposed above (lucene etc.) for full text indexing and having LIKE search for cases, where nothing was found? (i.e. run LIKE only after fulltext indexed search returned zero results)
What you're trying to do is unlikely to ever be all that much faster than LIKE '%searchterm%' without a great deal of custom code. The equivalent of LIKE 'searchterm%' ought to be trivial though. You could do what you're asking by building an index of all possible partial words that aren't covered by the trailing wild-card, but this would result in an unbelievably large index size, and it would be unusually slow for updates. Long tokens would result in Bad Things™. May I ask why you need this? Re: Spotlight... You do realize that Spotlight doesn't do this, right? It's token-based just like every other full-text indexer. Usually query expansion is the appropriate method of getting inexact matches if that's your goal.
Edit:
I had a project exactly like this at one point; part-numbers for all kinds of stuff. We finally settled on searchterm* in Xapian, but I believe Lucene also has the equivalent. You won't find a good solution that handles wild-card searches on either side of the token, but a trailing wild-card is usually more than good enough for what you want, and I suspect you'll find that users adapt to your system fairly quickly if they have any control over cleaning up the data. Combine it with query expansion (or even limited token expansion) and you should be pretty well set. Query expansion would convert a query for "sledgehammer" into "sledgehammer* OR (sledge* hammer*)" or something similar. Not every query will work, but people are already pretty well trained to try related queries when something doesn't work, and as long as at least one or two obvious queries come up with the results they expect, you should be OK. Your best bet is still to clean up the data and organize it better. You'd be surprised how easy this ends up being if you version everything and implement an egalitarian edit policy. Maybe let people add keywords to an entry and be sure to index those, but put limits on how many can be set. Too many and you may actually degrade the search results.
Shingle search could do the trick.
http://en.wikipedia.org/wiki/W-shingling
For example, if you use 3-character shingles, you can split "Roisonic" to: "roi", "son", "ic ", and store all three values, associating them with original entry. When searching for "oison", you first will search for "ois", "iso", "son". First you fuzzy-match all entries by shingles (finding the one with "son"), and then you can refine the search by using exact string matching.
Note that 3-character shingle require the fragment in query to be at least 5 characters long, 4-char shingle requires 7-char query and so on.
The exact answer to your question is right here Whether it will perform sufficiently well for the size of your data is another question.
I'm pretty sure Mysql offers a fulltext option, and it's probably also possible to use Lucene.
See here for related comments
Best efficient way to make a fulltext search in MySQL
A "real" full text index using parts of a word would be many times bigger than the source text and while the search may be faster any update or insert processing would be horibly slow.
You only hope is if there is some sort of pattern to the "mistakes' made. You could apply a set of "AI" type rules to the incoming text and produce cannonical form of the text which you could then apply a full text index to. An example for a rule could be to split a word ending in hammer into two words s/(\w?)(hammer)/\1 \2/g or to change "sledg" "sled" and "schledge" to "sledge". You would need to apply the same set of rules to the query text. In the way a product described as "sledgehammer" could be matched by a search for ' sledg hammer'.

How to correct the user input (Kind of google "did you mean?")

I have the following requirement: -
I have many (say 1 million) values (names).
The user will type a search string.
I don't expect the user to spell the names correctly.
So, I want to make kind of Google "Did you mean". This will list all the possible values from my datastore. There is a similar but not same question here. This did not answer my question.
My question: -
1) I think it is not advisable to store those data in RDBMS. Because then I won't have filter on the SQL queries. And I have to do full table scan. So, in this situation how the data should be stored?
2) The second question is the same as this. But, just for the completeness of my question: how do I search through the large data set?
Suppose, there is a name Franky in the dataset.
If a user types as Phranky, how do I match the Franky? Do I have to loop through all the names?
I came across Levenshtein Distance, which will be a good technique to find the possible strings. But again, my question is do I have to operate on all 1 million values from my data store?
3) I know, Google does it by watching users behavior. But I want to do it without watching user behavior, i.e. by using, I don't know yet, say distance algorithms. Because the former method will require large volume of searches to start with!
4) As Kirk Broadhurst pointed out in an answer below, there are two possible scenarios: -
Users mistyping a word (an edit
distance algorithm)
Users not knowing a word and guessing
(a phonetic match algorithm)
I am interested in both of these. They are really two separate things; e.g. Sean and Shawn sound the same but have an edit distance of 3 - too high to be considered a typo.
The Soundex algorithm may help you out with this.
http://en.wikipedia.org/wiki/Soundex
You could pre-generate the soundex values for each name and store it in the database, then index that to avoid having to scan the table.
the Bitap Algorithm is designed to find an approximate match in a body of text. Maybe you could use that to calculate probable matches. (it's based on the Levenshtein Distance)
(Update: after having read Ben S answer (use an existing solution, possibly aspell) is the way to go)
As others said, Google does auto correction by watching users correct themselves. If I search for "someting" (sic) and then immediately for "something" it is very likely that the first query was incorrect. A possible heuristic to detect this would be:
If a user has done two searches in a short time window, and
the first query did not yield any results (or the user did not click on anything)
the second query did yield useful results
the two queries are similar (have a small Levenshtein distance)
then the second query is a possible refinement of the first query which you can store and present to other users.
Note that you probably need a lot of queries to gather enough data for these suggestions to be useful.
I would consider using a pre-existing solution for this.
Aspell with a custom dictionary of the names might be well suited for this. Generating the dictionary file will pre-compute all the information required to quickly give suggestions.
This is an old problem, DWIM (Do What I Mean), famously implemented on the Xerox Alto by Warren Teitelman. If your problem is based on pronunciation, here is a survey paper that might help:
J. Zobel and P. Dart, "Phonetic String Matching: Lessons from Information Retieval," Proc. 19th Annual Inter. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR'96), Aug. 1996, pp. 166-172.
I'm told by my friends who work in information retrieval that Soundex as described by Knuth is now considered very outdated.
Just use Solr or a similar search server, and then you won't have to be an expert in the subject. With the list of spelling suggestions, run a search with each suggested result, and if there are more results than the current search query, add that as a "did you mean" result. (This prevents bogus spelling suggestions that don't actually return more relevant hits.) This way, you don't require a lot of data to be collected to make an initial "did you mean" offering, though Solr has mechanisms by which you can hand-tune the results of certain queries.
Generally, you wouldn't be using an RDBMS for this type of searching, instead depending on read-only, slightly stale databases intended for this purpose. (Solr adds a friendly programming interface and configuration to an underlying Lucene engine and database.) On the Web site for the company that I work for, a nightly service selects altered records from the RDBMS and pushes them as a documents into Solr. With very little effort, we have a system where the search box can search products, customer reviews, Web site pages, and blog entries very efficiently and offer spelling suggestions in the search results, as well as faceted browsing such as you see at NewEgg, Netflix, or Home Depot, with very little added strain on the server (particularly the RDBMS). (I believe both Zappo's [the new site] and Netflix use Solr internally, but don't quote me on that.)
In your scenario, you'd be populating the Solr index with the list of names, and select an appropriate matching algorithm in the configuration file.
Just as in one of the answers to the question you reference, Peter Norvig's great solution would work for this, complete with Python code. Google probably does query suggestion a number of ways, but the thing they have going for them is lots of data. Sure they can go model user behavior with huge query logs, but they can also just use text data to find the most likely correct spelling for a word by looking at which correction is more common. The word someting does not appear in a dictionary and even though it is a common misspelling, the correct spelling is far more common. When you find similar words you want the word that is both the closest to the misspelling and the most probable in the given context.
Norvig's solution is to take a corpus of several books from Project Gutenberg and count the words that occur. From those words he creates a dictionary where you can also estimate the probability of a word (COUNT(word) / COUNT(all words)). If you store this all as a straight hash, access is fast, but storage might become a problem, so you can also use things like suffix tries. The access time is still the same (if you implement it based on a hash), but storage requirements can be much less.
Next, he generates simple edits for the misspelt word (by deleting, adding, or substituting a letter) and then constrains the list of possibilities using the dictionary from the corpus. This is based on the idea of edit distance (such as Levenshtein distance), with the simple heuristic that most spelling errors take place with an edit distance of 2 or less. You can widen this as your needs and computational power dictate.
Once he has the possible words, he finds the most probable word from the corpus and that is your suggestion. There are many things you can add to improve the model. For example, you can also adjust the probability by considering the keyboard distance of the letters in the misspelling. Of course, that assumes the user is using a QWERTY keyboard in English. For example, transposing an e and a q is more likely than transposing an e and an l.
For people who are recommending Soundex, it is very out of date. Metaphone (simpler) or Double Metaphone (complex) are much better. If it really is name data, it should work fine, if the names are European-ish in origin, or at least phonetic.
As for the search, if you care to roll your own, rather than use Aspell or some other smart data structure... pre-calculating possible matches is O(n^2), in the naive case, but we know in order to be matching at all, they have to have a "phoneme" overlap, or may even two. This pre-indexing step (which has a low false positive rate) can take down the complexity a lot (to in the practical case, something like O(30^2 * k^2), where k is << n).
You have two possible issues that you need to address (or not address if you so choose)
Users mistyping a word (an edit distance algorithm)
Users not knowing a word and guessing (a phonetic match algorithm)
Are you interested in both of these, or just one or the other? They are really two separate things; e.g. Sean and Shawn sound the same but have an edit distance of 3 - too high to be considered a typo.
You should pre-index the count of words to ensure you are only suggesting relevant answers (similar to ealdent's suggestion). For example, if I entered sith I might expect to be asked if I meant smith, however if I typed smith it would not make sense to suggest sith. Determine an algorithm which measures the relative likelihood a word and only suggest words that are more likely.
My experience in loose matching reinforced a simple but important learning - perform as many indexing/sieve layers as you need and don't be scared of including more than 2 or 3. Cull out anything that doesn't start with the correct letter, for instance, then cull everything that doesn't end in the correct letter, and so on. You really only want to perform edit distance calculation on the smallest possible dataset as it is a very intensive operation.
So if you have an O(n), an O(nlogn), and an O(n^2) algorithm - perform all three, in that order, to ensure you are only putting your 'good prospects' through to your heavy algorithm.