Difference in amplitude from the same source using FFT - fft

I have a question regarding use of FFT. Using function getBand(int i) with Minim i can extract the amplitude of a specific frequency and do pretty maps of it. Works great.
However, this is a more of a curiosity question. When i look at the values extracted from playing the same song two twice using the same frequency (so the amplitude should be identical) but i get very different values - why is this?
0.0,0.0,0.0,0.0,0.0,0.08706585,0.23708777,0.83046436,0.74603105,0.30447206
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08706585,0.4790409,0.9608221,0.83046436,0.74603105

Are you sure the inputs are exactly the same in both cases ? If you're just taking a random segment of a song then the output of an FFT will be very different for different starting points in the song.

The mp3 decoding could be flaky and/or the lead-in buffering of the fft routine could be flakey, (different length of silence preceeding the series).
In this case it looks like the lead-in is around 2 steps greater in the 2nd output.
Then, if the time interval at which the ffts are performed is longer than the fft window size, a difference in the lead-in can cause the fft windows to land on quite different parts of the series, which could explain the very different values later in the outputs.
The situation should be clearer if you can increase the 'time resolution' (amount of ffts performed per given time) -or increase the fft window size, so the fft measurements arent done sparsely. Idealy they should overlap before we could expect to match a pattern between scans done out of step.

Related

Rescale data to be sinuosoidal

I have some time series data I'm looking at in Python that I know should follow a sine2 function, but for various reasons doesn't quite fit it. I'm taking an FFT of it and it has a fairly broad frequency spread, when it should be a very narrow single frequency. However, the errors causing this are quite consistent--if I take data again it matches very closely to the previous data set and gives a very similar FFT.
So I've been trying to come up with a way I can rescale the time axis of the data so that it is at a single frequency, and then apply this same rescaling to future data I collect. I've tried various filtering techniques to smooth the data or to cut frequencies from the FFT without much luck. I've also tried fitting a frequency varying sine2 to the data, but haven't been able to get a good fit (if I was able to, I would use the frequency vs time function to rescale the time axis of the original data so that it has a constant frequency and then apply the same rescaling to any new data I collect).
Here's a small sample of the data I'm looking at (the full data goes for a few hundred cycles). And the resulting FFT of the full data
Any suggestions would be greatly appreciated. Thanks!

Finding images in RAM dump

Extracting screenshots from RAM dumps
Some classical security / hacking challenges include having to analyze the dump of the physical RAM of a system. volatility does a great job at extracting useful information, including wire-view of the windows displayed at the time (using the command screenshot). But I would like to go further and find the actual content of the windows.
So I'd like to reformulate the problem as finding raw images (think matrix of pixels) in a large file. If I can do this, I hope to find the content of the windows, at least partially.
My idea was to rely on the fact that a row of pixels is similar to the next one. If I find a large enough number of lines of the same size, then I let the user fiddle around with an interactive tool and see if it decodes to something interesting.
For this, I would compute a kind of spectrogram. More precise a heatmap where the shade show how likely it is for the block of data #x to be part of an image of width y bytes, with x and y the axis of the spectrogram. Then I'd just have to look for horizontal lines in it. (See the examples below.)
The problem I have right now is to find a method to compute that "kind of spectrogram" accurately and quickly. As an order of magnitude, I would like to be able to find images of width 2048 in RGBA (8192 bytes per row) in a 4GB file in a few minutes. That means processing a few tens of MB per second.
I tried using FFT and autocorrelation, but they do not show the kind of accuracy I'm after.
The problem with FFT
Since finding the length of a mostly repeating pattern looks like finding a frequency, I tried to use a Fourier transform with 1 byte = 1 sample and plot the absolute value of the spectrum.
But the main problem is the period resolution. Since I'm interested in finding the period of the signal (the byte length of a row of pixels), I want to plot the spectrogram with period length on the y axis, not the frequency. But the way the discrete Fourier transform work is that it computes the frequencies multiple of 1/n (for n data points). Which gives me a very low resolution for large periods and a higher-than-needed resolution for short periods.
Here is a spectrogram computed with this method on a 144x90 RGB BMP file. We expect a peak at an offset 432. The window size for the FFT was 4320 bytes.
And the segment plot of the first block of data.
I calculated that if I need to distinguish between periods k and k+1, then I need a window size of roughly k². So for 8192 bytes, that makes the FFT window about 16MB. Which would be way too slow.
So the FFT computes too much information I don't need and not enough information I would need. But given a reasonable window size, it usually show a sharp peak at about the right period.
The problem with autocorrelation
The other method I tried is to use a kind of discrete autocorrelation to plot the spectrogram.
More exactly, what I compute is the cross-correlation between a block of data and half of it. And only compute it for the offsets where the small block is fully inside the large block. The size of the large block has to be twice larger than the max period to plot.
Here is an example of spectrogram computed with this method on the same image as before.
And the segment plot of the autocorrelation of the first block of data.
Altough it produces just the right amount of data, the value of the autocorrelation change slowly, thus not making a sharp peak for the right period.
Question
Is there a way to get both a sharp peak and around the correct period and enough precision around the large periods? Either by tweaking the afformentioned algorithms or by using a completely different one.
I can't judge much about the FFT part. From the title ("Finding images in RAM dump") it seems you are trying to solve a bigger problem and FFT is only a part of it, so let me answer on those parts where I have some knowledge.
analyze the RAM dump of a system
This sounds much like physical RAM. If an application takes a screenshot, that screenshot is in virtual RAM. This results in two problems:
a) the screenshot may be incomplete, because parts of it are paged out to disk
b) you need to perform a physical address to virtual address mapping in order to bring the bytes of the screenshot into correct order
find raw images from the memory dump
To me, the definition of what a raw image is is unclear. Any application storing an image will use an image file format. Storing only the data makes the screenshot useless.
In order to perform an FFT on the data, you should probably know whether it uses 24 bit per pixel or 32 bit per pixel.
I hope to find a screenshot or the content of the current windows
This would require an application that takes screenshots. You can of course hope. I can't judge about the likeliness of that.
rely on the fact that a row of pixels is similar to the next one
You probably hope to find some black on white text. For that, the assumption may be ok. If the user is viewing his holiday pictures, this may be different.
Also note that many values in a PC are 32 bit (Integer, Float) and 0x00000000 is a very common value. Your algorithm may detect this.
images of width 2048
Is this just a guess? Or would you finally brute-force all common screen sizes?
in RGBA
Why RGBA? A screenshot typically does not have transparency.
With all of the above, I wonder whether it wouldn't be more efficient to search for image signatures like JPEG, BMP or PNG headers in the dump and then analyze those headers and simply get the picture from the metadata.
Note that this has been done before, e.g. WinDbg has some commands in the ext debugger extension which is loaded by default
!findgifs
!findjpegs
!findjpgs
!findpngs

gnuRadio Dual Tone detection

I am trying to come up with an efficient way to characterize two narrowband tones separated by about 900kHz (one at around 100kHZ and one at around 1MHz once translated to baseband). They don't move much in freq over time but may have amplitude variations we want to monitor.
Each tone is roughly about 100Hz wide and we are required to characterize these two beasts over long periods of time down to a resolution of about 0.1 Hz. The samples are coming in at over 2M Samples/sec (TBD) to adequately acquire the highest tone.
I'm trying to avoid (if possible) doing brute force >2MSample FFTs on the data once a second to extract frequency domain data. Is there an efficient approach? Something akin to performing two (much) smaller FFTs around the bands of interest? Ive looked at Goertzel and chirp z methods but I am not certain it helps save processing.
Something akin to performing two (much) smaller FFTs around the bands of interest
There is, it's called Goertzel, and is kind of the FFT for single bins, and you already have looked at it. It will save you CPU time.
Anyway, there's no reason to do a 2M-point FFT; first of all, you only want a resolution of about 1/20 the sampling rate, hence, a 20-point FFT would totally do, and should be pretty doable for your CPU at these low rates; since you don't seem to care about phase of your tones, FFT->complex_to_mag.
However, there's one thing that you should always do: look at your signal of interest, and decimate down to the rate that fits exactly that. Since GNU Radio's filters are implemented cleverly, the filter itself will only run at the decimated rate, and you can spend the CPU cycles saved on a better filter.
Because a direct decimation from 2MHz to 100Hz (decimation: 20000) will really have an ugly filter length, you should do this multi-rated:
I'd try first decimating by 100, and then in a second step by 100, leaving you with 200Hz observable spectrum. The xlating fir filter blocks will let you use a simple low-pass filter (use the "Low-Pass Filter Taps" block to define a variable that contains such taps) as a band-selector.

How to find all frequencies in audio with discrete fourier transform?

I want to analyze some audio and decompose it as best as I can into sine waves. I have never used FFT before and am just doing some initial reading and about the concepts and available libraries, like FFTW and KissFFT.
I'm confused on this point... it sounds like the DFT/FFT will give you the sine amplitudes only at certain frequencies, multiples of a base frequency. For example, if I have audio sampled at the usual 44100 Hz, and I pick a chunk of say 256 samples, then that chuck could fit one cycle of 44100/256=172Hz, and the DFT will give me the sine amplitudes at 172, 172*2, 172*3, etc. Is that correct? How do you then find the strength at other frequencies? I'd like to see a spectrum all the way from 20Hz to about 15Khz, at about 1Hz increments.
Fourier decomposition allows you to take any function of time and describe it as a sum of sine waves each with different amplitudes and frequencies. If however you want to approach this problem using the DFT, you need to make sure you have sufficient resolution in the frequency domain in order to distinguish between different frequencies. Once you have that you can determine which frequencies are dominant in the signal and create a signal consisting of multiples sinewaves corresponding to those frequencies. You are correct in saying that with a sampling frequency of 44.1 kHz, only looking at 256 samples, the lowest frequency you will be able to detect in those 256 samples is a frequency of 172 Hz.
OBTAIN SUFFICIENT RESOLUTION IN THE FREQUENCY DOMAIN:
Amplitude values for frequencies "only at certain frequencies, multiples of a base frequency", is true for Fourier decomposition, NOT the DFT, which will have a frequency resolution of a certain increment. The frequency resolution of the DFT is related to the sampling rate and number of samples of the time-domain signal used to calculate the DFT. Reducing the frequency spacing will give you a better ability to distinguish between two frequencies close together and this can be done in two ways;
Decreasing the sampling rate, but this would move the periodic repetitions in frequency closer together. (Remember NyQuist theorem here)
Increase the number of samples which you use to calculate the DFT. If only the 256 samples are available, one can perform "zero padding" where 0-valued samples are appended to the end of the data, but there are some effects to this which needs to be considered.
HOW TO COME TO A CONCLUSION:
If you depict the frequency content of different audio signals into individual graphs, you will find that the amplitudes differ abit. This is because the individual signals will not be identical in sound, and there is always noise inherent in any signal (from the surroundings and the hardware itself). Therefore, what you want to do is to take the average of two or more DFT signals to remove noise and get a more accurate represention of the frequency content. Depending on your application, this may not be possible if the sound you are capturing is noticably changing rapidly over time (for example speech, or music). Averaging is thus only useful if all the signals to be averaged are pretty much equal in sound (individual seperate recordings of "the same thing"). Just to clarify, from, for example, four time-domain signals, you want to create four frequency domain signals (using a DFT method), and then calculate the average of the four frequency-domain signals into a single averaged frequency-domain signal. This will remove noise and give you a better representation of which frequencies are inherent in your audio.
AN ALTERNATIVE SOLUTION:
If you know that your signal is supposed to contain a certain number of dominant frequencies (not too many) and these are the only ones your are interesting in, then I would recommend that you use Pisarenko's harmonic decomposition (PHD) or Multiple signal classification (MUSIC, nice abbreviation!) to find these frequencies (and their corresponding amplitude values). This is less intensive computationally than the DFT. For example. if you KNOW the signal contains 3 dominant frequencies, Pisarenko will return the frequency values for these three, but keep in mind that the DFT reveals much more information, allowing you come to more conclusions.
Your initial assumption is incorrect. An FFT/DFT will not give you amplitudes only at certain discrete frequencies. Those discrete frequencies are only the centers of bins, each bin constituting a narrow-band filter with a main lobe of non-zero bandwidth, roughly a width or two of the FFT bin separation, depending on the window (rectangular, von Hann, etc.) applied before the FFT. Thus the amplitude of spectral content between bin centers will show up, but spread across multiple FFT result bins.
If the separation of key signals is large enough and the noise level is low enough, then you can interpolate the FFT results to examine frequencies between bin centers. You may need to use a high quality interpolator, such as a Sinc kernel.
If your signal separation is smaller or the noise level is higher, then you may need a longer window of data to feed a longer FFT to gather sufficient resolution information. An FFT window of length 256 at 44.1k sample rate is almost certainly just too short to gather sufficient information regarding spectral content below a few 100 Hz, if those are among the frequencies you would like to see examined, as they can't be separated cleanly from a DC bias (bin 0).
Unfortunately, there's a degree of uncertainty in identifying the frequencies in a fixed sample of a signal. If you use a short FFT, then there's no way to tell the difference between frequencies over a fairly wide range. If you use a long FFT to get higher resolution in the frequency domain, then you can't detect frequency changes as quickly. This is inherent in the math.
Off the top of my head: If you want a 15kHz range at 1Hz increments, you need a 15000 point FFT, which at 44.1kHz means you'll get a frequency plot three times per second. (I may be missing a factor of 2 in there as I can't recall whether the Nyquist limit means you actually want a 30kHz bandwidth.)
You may also be interested in the Short-time Fourier transform. It doesn't solve the fundamental trade-off problem but in practice may get you what you want.

Microphone Pitch/Freq Detection (actionscript 3.0 in particular)

So, I'm trying to detect the average frequency of a sound recorded from the microphone. It can be assumed that this sound will be in mp3 or wav form. My final goal is to do this live (or close enough), but for now simply finding the average frequency of an mp3 or wav is good enough to start with.
I'm having an unbelievably hard time finding any classes in actionscript 3.0 that can help me with this task. Can anyone help me out by possibly suggesting classes in AS3.0 or algorithms for me to look at for this particular task ?
Thanks to all in advance.
The best approach varies depending on the audio you're analyzing. For monophonic input, such as a singer, flute, or trumpet, an autocorrelation approach can work well. The idea here is that you're trying to find the period of the wave form by comparing it against itself at various intervals to find the best match. Imagine you have a sound wave with a period that starts over after every 400 samples. If you were to iterate over some number of samples, always comparing the sample at index i with the sample at index (i + 400), perhaps by subtracting one from another and adding this result to a running total, you'd find that your total would be 0 if the wave was a perfect match of itself at this interval of 400. Of course, you don't know that 400 is your magic number, and so you need to check a variety of intervals that fall within your possible range. You could exclude intervals that would result in a frequency that's impossibly low or high. You also would obviously not expect to find a perfect match, but generally speaking, the interval where the match is closest is your frequency for a monophonic pitch.
For polyphonic sources, or instruments with a timbre that's very rich in harmonics like violin or guitar, you may need to use a different approach. FFT based approaches are widely used for this in order to break down audio segments into their harmonic pitch content. It's then a matter of applying some rules that you come up with for deciding which frequencies coming out of the FFT are your best bet.