I'm thinking about this question for a time: when does an ARM7(with 3 pipelines) processor increase its PC register.
I originally thought that after an instruction has been executed, the processor first check is there any exception in the last execution, then increase PC by 2 or 4 depending on current state. If an exception occur, ARM7 will change its running mode, store PC in the LR of current mode and begin to process current exception without modifying the PC register.
But it make no sense when analyzing returning instructions. I can not work out why PC will be assigned LR when returning from an undefined-instruction-exception while LR-4 from prefetch-abort-exception, don't both of these exceptions happened at the decoding state? What's more, according to my textbook, PC will always be assigned LR-4 when returning from prefetch-abort-exception no matter what state the processor is(ARM or Thumb) before exception occurs. However, I think PC should be assigned LR-2 if the original state is Thumb, since a Thumb-instruction is 2 bytes long instead of 4 bytes which an ARM-instruction holds, and we just wanna roll-back an instruction in current state. Is there any flaws in my reasoning or something wrong with the textbook.
Seems a long question. I really hope anyone can help me get the right answer.
Thanks in advance.
You return to LR from undefined-instruction handling because that points to the instruction after the one that caused the trap; you don't want to return to the same undefined instruction again, it'll only hit the same trap.
You return to LR-4 from prefetch-abort if you want to execute the same instruction again; presumably because you've mapped some memory in for it so it'll now work.
At what point in the pipeline an ARM7 actually increases its PC is irrelevant, because the value of PC during execution and consequently the value of LR in abort handlers is something laid down as part of the ARM architecture standard, based largely on what the ancient ARM2 did with its PC.
However, I think PC should be assigned LR-2 if the original state is Thumb
That would make sense, but then the exception handler would need to know whether the original code that caused it to trigger was ARM or Thumb code. This might have impacted compatibility too, as there was plenty of non-Thumb-aware exception handling code around. So instead the Thumb architecture fudged the LR on entry to exception handlers so that the handler could always use the same instruction to return, the one they were used to using for non-Thumb code.
Related
I see the standard way of exiting RISC-V exception handler is update mepc to mepc+4 before mret.
But won't this cause problem if the next instruction is only 2-bytes long in compressed instruction mode?
In compressed instruction mode there are mixed of 4-bytes and 2-bytes instructions. If you not update mepc and just mret then you keep getting same exception. But always adding 4 to trapped mepc seem like a bug for mixed compressed instruction.
Am I missing something?
I see the standard way of exiting risc-v exception handler is update mepc to mepc+4 before mret.
These are not serious exception handlers; they are illustrative only — to show catching of exceptions at all, and returning back to the interrupted code without having done the actual exception processing needed for the given situation. Thus, the easiest thing to do to prevent an infinite loop is to simply skip past the offending instruction.
One of the few places where we advance the pc in order to return to the code that cause the exception is in handling an ecall. As far as I know there is no compressed (16-bit) ecall instruction.
Many resumable exceptions need to rerun the instruction that caused the exception — loads & stores that cause page faults (available in both 32-bit and 16-bit form), for example, need to re-execute once the page tables have been fixed (the page read in from disc and mapped into the user's address space).
Many other exceptions are not generally resumable.
However, emulation of an instruction requires knowing its size, as is the case with ecall. if you choose to emulate, for example, misaligned memory accesses, you will indeed have to make a decision as to the size of the instruction, as emulating it means resuming past it. Also note that RISC V supports 16-bit, 32-bit, 48-bit, 64-bit and longer instructions, so an exception handler that is going to emulate instructions will need to be able to decode their length (only the instructions chosen for emulation, though).
The other thing to add is that the sample exception handlers you may be looking at are designed to work without the compressed instruction set, and since RVC is optional that is a reasonable design choice (though ideally, of course, would be clearly stated).
I hope this question isn't to stupid cause it may seem obvious.
As I'm doing a little research on Buffer overflows I stumble over a simple question:
After going to a new Instruction Address after a call/return/jump:
Will the CPU execute the OP Code at that address and then move one byte to the next address and execute the next OP Code and so on until the next call/return/jump is reached? Or is there something more tricky involved?
A bit boringly extended explanation (saying the same as those comments):
CPU has special purpose register instruction pointer eip, which points to the next instruction to execute.
A jmp, call, ret, etc. ends internally with something similar to:
mov eip,<next_instruction_address>.
While the CPU is processing instructions, it does increment eip by appropriate size of last executed instruction automatically (unless overridden by one of those jmp/j[condition]/call/ret/int/... instructions).
Wherever you point the eip (by whatever means), CPU will try it's best to execute content of that memory as next instruction opcode(s), not aware of any context (where/why did it come from to this new eip). Actually this amnesia sort of happens ahead of each instruction executed (I'm silently ignoring the modern internal x86 architecture with various pre-execution queues and branch predictions, translation into micro instructions, etc... :) ... all of that are implementation details quite hidden from programmer, usually visible only trough poor performance, if you disturb that architecture much by jumping all around mindlessly). So it's CPU, eip and here&now, not much else.
note: some context on x86 can be provided by defining the memory layout by supervising code (like OS), ie. marking some areas of memory as non-executable. CPU detecting it's eip pointing to such area will signal a failure, and fall into "trap" handler (usually managed by OS also, killing the interfering process).
The call instruction saves (onto the stack) the address to the instruction after it onto the stack. After that, it simply jumps. It doesn't explicitly tell the cpu to look for a return instruction, since that will be handled by popping (from the stack) the return address that call saved in the first place. This allows for multiple calls and returns, or to put it simply, nested calls.
While the CPU is processing instructions, it does increment eip by
appropriate size of last executed instruction automatically (unless
overridden by one of those jmp/j[condition]/call/ret/int/... instructions).
That's what i wanted to know.
I'm well aware that thers more Stuff arround (NX Bit, Pipelining ect).
Thanks everybody for their replys
I am working with a Cortex-A9 and my program crashes because of an UNDEFINED_INSTRUCTION exception. The assembly line that causes this exception is according to my debugger's trace:
Trace #9999 : S:0x022D9A7C E92D4800 ARM PUSH {r11,lr}
Exception: UNDEFINED_INSTRUCTION (9)
I program in C and don't write assembly or binary and I am using gcc. Is this really the instruction that causes the exception, i.e. is the encoding of this PUSH instruction wrong and hence a compiler/assembler bug? Or is the encoding correct and something strange is going on? Scrolling back in the trace I found another PUSH instruction, that does not cause errors and looks like this:
Trace #9966 : S:0x022A65FC E52DB004 ARM PUSH {r11}
And of course there are a lot of other PUSH instruction too. But I did not find any other that tries to push specifically R11 and LR, so I can't compare.
I can't answer my own question, so I edit it:
Sorry guys, I don't exactly know what happend. I tried it several times and got the same error again and again. Then I turned the device off, went away and tried it again later and know it works fine...
Maybe the memory was corrupted somehow due to overheating or something? I don't know. Thanks for your answers anyway.
I use gcc 4.7.2 btw.
I suspect something is corrupting the SP register. Load/store multiple (of which PUSH is one alias) to unaligned addresses are undefined in the architecture, so if SP gets overwritten with something that's not a multiple of 4, then a subsequent push/pop will throw an undef exception.
Now, if you're on ARM Linux, there is (usually) a kernel trap for unaligned accesses left over from the bad old days which if enabled will attempt to fix up most unaligned load/store multiple instructions (despite them being architecturally invalid). However if the address is invalid (as is likely in the case of SP being overwritten with nonsense) it will give up and leave the undef handler to do its thing.
In the (highly unlikely) case that the compiler has somehow generated bad code that is fix-uppable most of the time,
cat /proc/cpuinfo/alignment
would show some non-zero fixup counts, but as I say, it's most likely corruption - a previous function has smashed the stack in such a way that an invalid SP is loaded on return, that then shows up at the next stack operation. Best double-check your pointer and array accesses.
For some months I've been working on a "home-made" operating system.
Currently, it boots and goes into 32-bit protected mode.
I've loaded the interrupt table, but haven't set up the pagination (yet).
Now while writing my exception routines I've noticed that when an instruction throws an exception, the exception routine is executed, but then the CPU jumps back to the instruction which threw the exception! This does not apply to every exception (for example, a div by zero exception will jump back to the instruction AFTER the division instruction), but let's consider the following general protection exception:
MOV EAX, 0x8
MOV CS, EAX
My routine is simple: it calls a function that displays a red error message.
The result: MOV CS, EAX fails -> My error message is displayed -> CPU jumps back to MOV CS -> infinite loop spamming the error message.
I've talked about this issue with a teacher in operating systems and unix security.
He told me he knows Linux has a way around it, but he doesn't know which one.
The naive solution would be to parse the throwing instruction from within the routine, in order to get the length of that instruction.
That solution is pretty complex, and I feel a bit uncomfortable adding a call to a relatively heavy function in every affected exception routine...
Therefore, I was wondering if the is another way around the problem. Maybe there's a "magic" register that contains a bit that can change this behaviour?
--
Thank you very much in advance for any suggestion/information.
--
EDIT: It seems many people wonder why I want to skip over the problematic instruction and resume normal execution.
I have two reasons for this:
First of all, killing a process would be a possible solution, but not a clean one. That's not how it's done in Linux, for example, where (AFAIK) the kernel sends a signal (I think SIGSEGV) but does not immediately break execution. It makes sense, since the application can block or ignore the signal and resume its own execution. It's a very elegant way to tell the application it did something wrong IMO.
Another reason: what if the kernel itself performs an illegal operation? Could be due to a bug, but could also be due to a kernel extension. As I've stated in a comment: what should I do in that case? Shall I just kill the kernel and display a nice blue screen with a smiley?
That's why I would like to be able to jump over the instruction. "Guessing" the instruction size is obviously not an option, and parsing the instruction seems fairly complex (not that I mind implementing such a routine, but I need to be sure there is no better way).
Different exceptions have different causes. Some exceptions are normal, and the exception only tells the kernel what it needs to do before allowing the software to continue running. Examples of this include a page fault telling the kernel it needs to load data from swap space, an undefined instruction exception telling the kernel it needs to emulate an instruction that the CPU doesn't support, or a debug/breakpoint exception telling the kernel it needs to notify a debugger. For these it's normal for the kernel to fix things up and silently continue.
Some exceptions indicate abnormal conditions (e.g. that the software crashed). The only sane way of handling these types of exceptions is to stop running the software. You may save information (e.g. core dump) or display information (e.g. "blue screen of death") to help with debugging, but in the end the software stops (either the process is terminated, or the kernel goes into a "do nothing until user resets computer" state).
Ignoring abnormal conditions just makes it harder for people to figure out what went wrong. For example, imagine instructions to go to the toilet:
enter bathroom
remove pants
sit
start generating output
Now imagine that step 2 fails because you're wearing shorts (a "can't find pants" exception). Do you want to stop at that point (with a nice easy to understand error message or something), or ignore that step and attempt to figure out what went wrong later on, after all the useful diagnostic information has gone?
If I understand correctly, you want to skip the instruction that caused the exception (e.g. mov cs, eax) and continue executing the program at the next instruction.
Why would you want to do this? Normally, shouldn't the rest of the program depend on the effects of that instruction being successfully executed?
Generally speaking, there are three approaches to exception handling:
Treat the exception as an unrepairable condition and kill the process. For example, division by zero is usually handled this way.
Repair the environment and then execute the instruction again. For example, page faults are sometimes handled this way.
Emulate the instruction using software and skip over it in the instruction stream. For example, complicated arithmetic instructions are sometimes handled this way.
What you're seeing is the characteristic of the General Protection Exception. The Intel System Programming Guide clearly states that (6.15 Exception and Interrupt Reference / Interrupt 13 - General Protection Exception (#GP)) :
Saved Instruction Pointer
The saved contents of CS and EIP registers point to the instruction that generated the
exception.
Therefore, you need to write an exception handler that will skip over that instruction (which would be kind of weird), or just simply kill the offending process with "General Protection Exception at $SAVED_EIP" or a similar message.
I can imagine a few situations in which one would want to respond to a GPF by parsing the failed instruction, emulating its operation, and then returning to the instruction after. The normal pattern would be to set things up so that the instruction, if retried, would succeed, but one might e.g. have some code that expects to access some hardware at addresses 0x000A0000-0x000AFFFF and wish to run it on a machine that lacks such hardware. In such a situation, one might not want to ever bank in "real" memory in that space, since every single access must be trapped and dealt with separately. I'm not sure whether there's any way to handle that without having to decode whatever instruction was trying to access that memory, although I do know that some virtual-PC programs seem to manage it pretty well.
Otherwise, I would suggest that you should have for each thread a jump vector which should be used when the system encounters a GPF. Normally that vector should point to a thread-exit routine, but code which was about to do something "suspicious" with pointers could set it to an error handler that was suitable for that code (the code should unset the vector when laving the region where the error handler would have been appropriate).
I can imagine situations where one might want to emulate an instruction without executing it, and cases where one might want to transfer control to an error-handler routine, but I can't imagine any where one would want to simply skip over an instruction that would have caused a GPF.
I'm debugging some odd ARM exceptions in an embedded system using the IAR workbench toolchain. Sometimes, when an exception is trapped the SVC_STACK is reported as out of range (very out of range!) Is this relevant, or just an artifact of the J-Link JTAG debugger? What is the SVC_STACK used for? It is set to 0x1000 size, but when it is out of range, it is way up in our heap area. Thanks!
ARMs SVC mode is entered when an exception occurs (not an IRQ or FIQ - fast IRQ). It can also be entered directly by code executing in non-user mode by setting the CPRS register, but I think this is uncommon except for when initializing the system.
When an exception occurs, the processor switches to the SVC stack, which has to be set up very early in the initialization of the system. I'm guessing that your initialization code is not properly setting up the SVC stack, or it's possible that one of the exception handlers is not coded properly and is trashing the stack.
A third possibility is that you're using an RTOS that sets up the ARM stacks the way it wants (basically overriding the SVC stack that the IAR's initialization code might set up). If this is the case, it's possible that everything is OK, but the IAR debugger thinks the SVC stack is out of range - the debugger will get its information from the linker config file - but if something changes the stack to another area of memory, then the debugger will get confused.
This happened to me all the time with the user mode stack in IAR when using an RTOS - the stacks were allocated based on task control blocks which were not in the CSTACK segment the debugger thought it should be in, and the debugger would issue irritating warnings. There was some project configuration setting that could be used to quiet the warnings, but I don't recall off the top of my head what it was - we rarely bothered with it, and just lived with the noise.
You'll need to verify that the the stack 'way up in the heap' area is valid - if you don't have some bit of code explicitly doing this, it's likely that it's wrong (or maybe you'll need to ask your RTOS vendor).
The ARM Architecture Reference Manual (ARM ARM) is freely available from arm.com and goes into excruciating detail about how the ARM stacks work. Another good reference is the ARM System Developer's Guide by Andrew Sloss, et al.