How to return multiple classes as IQueryable<T> - linq-to-sql

Using Linq I would like to return an object that contains customers and invoices they have.
I understand returning a single type from a method:
public IQueryable<customers> GetCustomers()
{
return from c in customers
select c;
}
But I am having trouble figuring out multiple objects:
public IQueryable<???> GetCustomersWithInvoices()
{
return from c in customers
from inv in c.invoices
select new {c, ci} // or I may specify columns, but rather not.
}
I have a feeling I am approaching this the wrong way. The goal is to call these objects from a controller and pass them up to a view, either direct or using a formViewModel class.

In the second case you are creating an annonymous type which has method scope. To pass an annonymous type outside the method boundary you need to change the return type to object. This however defeats the purpose of the annonymous type (as you lose the strong typing it provides) , requiring reflection to get access to the properties and their values for the said type.
If you want to maintain this structure as your return type you should create a class or struct consisting of properties to hold the customer and invoice values.

You cannot return an anonymous type from a function, they are strictly "inline" classes. You will need to create a concrete type to hold your members if you want to encapsulate them in a function.
Using a view model, as you mentioned, would be a good place to put them.
Here is a scottgu article about anonymous types. From the conclusion of the article:
Anonymous types are a convenient
language feature that enable
developers to concisely define inline
CLR types within code, without having
to explicitly provide a formal class
declaration of the type. Although
they can be used in lots of scenarios,
there are particularly useful when
querying and transforming/shaping data
with LINQ.
There's some good discussion in the comment thread on that page.

If you really want to, you can do this, but it is rather awkward.
public IQueryable<T> GetCustomersWithInvoices(T exampleObject)
{
return from c in customers
from inv in c.invoices
select new {c, ci} // or I may specify columns, but rather not.
}
var exampleObject = new {
Customer c = new Customer(),
Invoice i = new Invoice()
};
var returnedObjectOfAnonymousType = GetCustomersWithInvoices(exampleObject);
In this way, you can take advantage of type inference to get your method to return an anonymous type. You have to use this ugly method of passing in an example object to get it to work. I don't really recommend that you do this, but I believe that this is the only way to do it.

Related

In OOP, is function same things as a method? [duplicate]

Can someone provide a simple explanation of methods vs. functions in OOP context?
A function is a piece of code that is called by name. It can be passed data to operate on (i.e. the parameters) and can optionally return data (the return value). All data that is passed to a function is explicitly passed.
A method is a piece of code that is called by a name that is associated with an object. In most respects it is identical to a function except for two key differences:
A method is implicitly passed the object on which it was called.
A method is able to operate on data that is contained within the class (remembering that an object is an instance of a class - the class is the definition, the object is an instance of that data).
(this is a simplified explanation, ignoring issues of scope etc.)
A method is on an object or is static in class.
A function is independent of any object (and outside of any class).
For Java and C#, there are only methods.
For C, there are only functions.
For C++ and Python it would depend on whether or not you're in a class.
But in basic English:
Function: Standalone feature or functionality.
Method: One way of doing something, which has different approaches or methods, but related to the same aspect (aka class).
'method' is the object-oriented word for 'function'. That's pretty much all there is to it (ie., no real difference).
Unfortunately, I think a lot of the answers here are perpetuating or advancing the idea that there's some complex, meaningful difference.
Really - there isn't all that much to it, just different words for the same thing.
[late addition]
In fact, as Brian Neal pointed out in a comment to this question, the C++ standard never uses the term 'method' when refering to member functions. Some people may take that as an indication that C++ isn't really an object-oriented language; however, I prefer to take it as an indication that a pretty smart group of people didn't think there was a particularly strong reason to use a different term.
In general: methods are functions that belong to a class, functions can be on any other scope of the code so you could state that all methods are functions, but not all functions are methods:
Take the following python example:
class Door:
def open(self):
print 'hello stranger'
def knock_door():
a_door = Door()
Door.open(a_door)
knock_door()
The example given shows you a class called "Door" which has a method or action called "open", it is called a method because it was declared inside a class. There is another portion of code with "def" just below which defines a function, it is a function because it is not declared inside a class, this function calls the method we defined inside our class as you can see and finally the function is being called by itself.
As you can see you can call a function anywhere but if you want to call a method either you have to pass a new object of the same type as the class the method is declared (Class.method(object)) or you have to invoke the method inside the object (object.Method()), at least in python.
Think of methods as things only one entity can do, so if you have a Dog class it would make sense to have a bark function only inside that class and that would be a method, if you have also a Person class it could make sense to write a function "feed" for that doesn't belong to any class since both humans and dogs can be fed and you could call that a function since it does not belong to any class in particular.
Simple way to remember:
Function → Free (Free means it can be anywhere, no need to be in an object or class)
Method → Member (A member of an object or class)
A very general definition of the main difference between a Function and a Method:
Functions are defined outside of classes, while Methods are defined inside of and part of classes.
The idea behind Object Oriented paradigm is to "treat" the software is composed of .. well "objects". Objects in real world have properties, for instance if you have an Employee, the employee has a name, an employee id, a position, he belongs to a department etc. etc.
The object also know how to deal with its attributes and perform some operations on them. Let say if we want to know what an employee is doing right now we would ask him.
employe whatAreYouDoing.
That "whatAreYouDoing" is a "message" sent to the object. The object knows how to answer to that questions, it is said it has a "method" to resolve the question.
So, the way objects have to expose its behavior are called methods. Methods thus are the artifact object have to "do" something.
Other possible methods are
employee whatIsYourName
employee whatIsYourDepartmentsName
etc.
Functions in the other hand are ways a programming language has to compute some data, for instance you might have the function addValues( 8 , 8 ) that returns 16
// pseudo-code
function addValues( int x, int y ) return x + y
// call it
result = addValues( 8,8 )
print result // output is 16...
Since first popular programming languages ( such as fortran, c, pascal ) didn't cover the OO paradigm, they only call to these artifacts "functions".
for instance the previous function in C would be:
int addValues( int x, int y )
{
return x + y;
}
It is not "natural" to say an object has a "function" to perform some action, because functions are more related to mathematical stuff while an Employee has little mathematic on it, but you can have methods that do exactly the same as functions, for instance in Java this would be the equivalent addValues function.
public static int addValues( int x, int y ) {
return x + y;
}
Looks familiar? That´s because Java have its roots on C++ and C++ on C.
At the end is just a concept, in implementation they might look the same, but in the OO documentation these are called method.
Here´s an example of the previously Employee object in Java.
public class Employee {
Department department;
String name;
public String whatsYourName(){
return this.name;
}
public String whatsYourDeparmentsName(){
return this.department.name();
}
public String whatAreYouDoing(){
return "nothing";
}
// Ignore the following, only set here for completness
public Employee( String name ) {
this.name = name;
}
}
// Usage sample.
Employee employee = new Employee( "John" ); // Creates an employee called John
// If I want to display what is this employee doing I could use its methods.
// to know it.
String name = employee.whatIsYourName():
String doingWhat = employee.whatAreYouDoint();
// Print the info to the console.
System.out.printf("Employee %s is doing: %s", name, doingWhat );
Output:
Employee John is doing nothing.
The difference then, is on the "domain" where it is applied.
AppleScript have the idea of "natural language" matphor , that at some point OO had. For instance Smalltalk. I hope it may be reasonable easier for you to understand methods in objects after reading this.
NOTE: The code is not to be compiled, just to serve as an example. Feel free to modify the post and add Python example.
In OO world, the two are commonly used to mean the same thing.
From a pure Math and CS perspective, a function will always return the same result when called with the same arguments ( f(x,y) = (x + y) ). A method on the other hand, is typically associated with an instance of a class. Again though, most modern OO languages no longer use the term "function" for the most part. Many static methods can be quite like functions, as they typically have no state (not always true).
Let's say a function is a block of code (usually with its own scope, and sometimes with its own closure) that may receive some arguments and may also return a result.
A method is a function that is owned by an object (in some object oriented systems, it is more correct to say it is owned by a class). Being "owned" by a object/class means that you refer to the method through the object/class; for example, in Java if you want to invoke a method "open()" owned by an object "door" you need to write "door.open()".
Usually methods also gain some extra attributes describing their behaviour within the object/class, for example: visibility (related to the object oriented concept of encapsulation) which defines from which objects (or classes) the method can be invoked.
In many object oriented languages, all "functions" belong to some object (or class) and so in these languages there are no functions that are not methods.
Methods are functions of classes. In normal jargon, people interchange method and function all over. Basically you can think of them as the same thing (not sure if global functions are called methods).
http://en.wikipedia.org/wiki/Method_(computer_science)
A function is a mathematical concept. For example:
f(x,y) = sin(x) + cos(y)
says that function f() will return the sin of the first parameter added to the cosine of the second parameter. It's just math. As it happens sin() and cos() are also functions. A function has another property: all calls to a function with the same parameters, should return the same result.
A method, on the other hand, is a function that is related to an object in an object-oriented language. It has one implicit parameter: the object being acted upon (and it's state).
So, if you have an object Z with a method g(x), you might see the following:
Z.g(x) = sin(x) + cos(Z.y)
In this case, the parameter x is passed in, the same as in the function example earlier. However, the parameter to cos() is a value that lives inside the object Z. Z and the data that lives inside it (Z.y) are implicit parameters to Z's g() method.
Historically, there may have been a subtle difference with a "method" being something which does not return a value, and a "function" one which does.Each language has its own lexicon of terms with special meaning.
In "C", the word "function" means a program routine.
In Java, the term "function" does not have any special meaning. Whereas "method" means one of the routines that forms the implementation of a class.
In C# that would translate as:
public void DoSomething() {} // method
public int DoSomethingAndReturnMeANumber(){} // function
But really, I re-iterate that there is really no difference in the 2 concepts.
If you use the term "function" in informal discussions about Java, people will assume you meant "method" and carry on. Don't use it in proper documents or presentations about Java, or you will look silly.
Function or a method is a named callable piece of code which performs some operations and optionally returns a value.
In C language the term function is used. Java & C# people would say it a method (and a function in this case is defined within a class/object).
A C++ programmer might call it a function or sometimes method (depending on if they are writing procedural style c++ code or are doing object oriented way of C++, also a C/C++ only programmer would likely call it a function because term 'method' is less often used in C/C++ literature).
You use a function by just calling it's name like,
result = mySum(num1, num2);
You would call a method by referencing its object first like,
result = MyCalc.mySum(num1,num2);
Function is a set of logic that can be used to manipulate data.
While, Method is function that is used to manipulate the data of the object where it belongs.
So technically, if you have a function that is not completely related to your class but was declared in the class, its not a method; It's called a bad design.
In OO languages such as Object Pascal or C++, a "method" is a function associated with an object. So, for example, a "Dog" object might have a "bark" function and this would be considered a "Method". In contrast, the "StrLen" function stands alone (it provides the length of a string provided as an argument). It is thus just a "function." Javascript is technically Object Oriented as well but faces many limitations compared to a full-blown language like C++, C# or Pascal. Nonetheless, the distinction should still hold.
A couple of additional facts: C# is fully object oriented so you cannot create standalone "functions." In C# every function is bound to an object and is thus, technically, a "method." The kicker is that few people in C# refer to them as "methods" - they just use the term "functions" because there isn't any real distinction to be made.
Finally - just so any Pascal gurus don't jump on me here - Pascal also differentiates between "functions" (which return a value) and "procedures" which do not. C# does not make this distinction explicitly although you can, of course, choose to return a value or not.
Methods on a class act on the instance of the class, called the object.
class Example
{
public int data = 0; // Each instance of Example holds its internal data. This is a "field", or "member variable".
public void UpdateData() // .. and manipulates it (This is a method by the way)
{
data = data + 1;
}
public void PrintData() // This is also a method
{
Console.WriteLine(data);
}
}
class Program
{
public static void Main()
{
Example exampleObject1 = new Example();
Example exampleObject2 = new Example();
exampleObject1.UpdateData();
exampleObject1.UpdateData();
exampleObject2.UpdateData();
exampleObject1.PrintData(); // Prints "2"
exampleObject2.PrintData(); // Prints "1"
}
}
Since you mentioned Python, the following might be a useful illustration of the relationship between methods and objects in most modern object-oriented languages. In a nutshell what they call a "method" is just a function that gets passed an extra argument (as other answers have pointed out), but Python makes that more explicit than most languages.
# perfectly normal function
def hello(greetee):
print "Hello", greetee
# generalise a bit (still a function though)
def greet(greeting, greetee):
print greeting, greetee
# hide the greeting behind a layer of abstraction (still a function!)
def greet_with_greeter(greeter, greetee):
print greeter.greeting, greetee
# very simple class we can pass to greet_with_greeter
class Greeter(object):
def __init__(self, greeting):
self.greeting = greeting
# while we're at it, here's a method that uses self.greeting...
def greet(self, greetee):
print self.greeting, greetee
# save an object of class Greeter for later
hello_greeter = Greeter("Hello")
# now all of the following print the same message
hello("World")
greet("Hello", "World")
greet_with_greeter(hello_greeter, "World")
hello_greeter.greet("World")
Now compare the function greet_with_greeter and the method greet: the only difference is the name of the first parameter (in the function I called it "greeter", in the method I called it "self"). So I can use the greet method in exactly the same way as I use the greet_with_greeter function (using the "dot" syntax to get at it, since I defined it inside a class):
Greeter.greet(hello_greeter, "World")
So I've effectively turned a method into a function. Can I turn a function into a method? Well, as Python lets you mess with classes after they're defined, let's try:
Greeter.greet2 = greet_with_greeter
hello_greeter.greet2("World")
Yes, the function greet_with_greeter is now also known as the method greet2. This shows the only real difference between a method and a function: when you call a method "on" an object by calling object.method(args), the language magically turns it into method(object, args).
(OO purists might argue a method is something different from a function, and if you get into advanced Python or Ruby - or Smalltalk! - you will start to see their point. Also some languages give methods special access to bits of an object. But the main conceptual difference is still the hidden extra parameter.)
for me:
the function of a method and a function is the same if I agree that:
a function may return a value
may expect parameters
Just like any piece of code you may have objects you put in and you may have an object that comes as a result. During doing that they might change the state of an object but that would not change their basic functioning for me.
There might be a definition differencing in calling functions of objects or other codes. But isn't that something for a verbal differenciations and that's why people interchange them? The mentions example of computation I would be careful with. because I hire employes to do my calculations:
new Employer().calculateSum( 8, 8 );
By doing it that way I can rely on an employer being responsible for calculations. If he wants more money I free him and let the carbage collector's function of disposing unused employees do the rest and get a new employee.
Even arguing that a method is an objects function and a function is unconnected computation will not help me. The function descriptor itself and ideally the function's documentation will tell me what it needs and what it may return. The rest, like manipulating some object's state is not really transparent to me. I do expect both functions and methods to deliver and manipulate what they claim to without needing to know in detail how they do it.
Even a pure computational function might change the console's state or append to a logfile.
From my understanding a method is any operation which can be performed on a class. It is a general term used in programming.
In many languages methods are represented by functions and subroutines. The main distinction that most languages use for these is that functions may return a value back to the caller and a subroutine may not. However many modern languages only have functions, but these can optionally not return any value.
For example, lets say you want to describe a cat and you would like that to be able to yawn. You would create a Cat class, with a Yawn method, which would most likely be a function without any return value.
To a first order approximation, a method (in C++ style OO) is another word for a member function, that is a function that is part of a class.
In languages like C/C++ you can have functions which are not members of a class; you don't call a function not associated with a class a method.
IMHO people just wanted to invent new word for easier communication between programmers when they wanted to refer to functions inside objects.
If you are saying methods you mean functions inside the class.
If you are saying functions you mean simply functions outside the class.
The truth is that both words are used to describe functions. Even if you used it wrongly nothing wrong happens. Both words describe well what you want to achieve in your code.
Function is a code that has to play a role (a function) of doing something.
Method is a method to resolve the problem.
It does the same thing. It is the same thing. If you want to be super precise and go along with the convention you can call methods as the functions inside objects.
Let's not over complicate what should be a very simple answer. Methods and functions are the same thing. You call a function a function when it is outside of a class, and you call a function a method when it is written inside a class.
Function is the concept mainly belonging to Procedure oriented programming where a function is an an entity which can process data and returns you value
Method is the concept of Object Oriented programming where a method is a member of a class which mostly does processing on the class members.
I am not an expert, but this is what I know:
Function is C language term, it refers to a piece of code and the function name will be the identifier to use this function.
Method is the OO term, typically it has a this pointer in the function parameter. You can not invoke this piece of code like C, you need to use object to invoke it.
The invoke methods are also different. Here invoke meaning to find the address of this piece of code. C/C++, the linking time will use the function symbol to locate.
Objecive-C is different. Invoke meaning a C function to use data structure to find the address. It means everything is known at run time.
TL;DR
A Function is a piece of code to run.
A Method is a Function inside an Object.
Example of a function:
function sum(){
console.log("sum")l
}
Example of a Method:
const obj = {
a:1,
b:2,
sum(){
}
}
So thats why we say that a "this" keyword inside a Function is not very useful unless we use it with call, apply or bind .. because call, apply, bind will call that function as a method inside object ==> basically it converts function to method
I know many others have already answered, but I found following is a simple, yet effective single line answer. Though it doesn't look a lot better than others answers here, but if you read it carefully, it has everything you need to know about the method vs function.
A method is a function that has a defined receiver, in OOP terms, a method is a function on an instance of an object.
A class is the collection of some data and function optionally with a constructor.
While you creating an instance (copy,replication) of that particular class the constructor initialize the class and return an object.
Now the class become object (without constructor)
&
Functions are known as method in the object context.
So basically
Class <==new==>Object
Function <==new==>Method
In java the it is generally told as that the constructor name same as class name but in real that constructor is like instance block and static block but with having a user define return type(i.e. Class type)
While the class can have an static block,instance block,constructor, function
The object generally have only data & method.
Function - A function in an independent piece of code which includes some logic and must be called independently and are defined outside of class.
Method - A method is an independent piece of code which is called in reference to some object and are be defined inside the class.
General answer is:
method has object context (this, or class instance reference),
function has none context (null, or global, or static).
But answer to question is dependent on terminology of language you use.
In JavaScript (ES 6) you are free to customising function context (this) for any you desire, which is normally must be link to the (this) object instance context.
In Java world you always hear that "only OOP classes/objects, no functions", but if you watch in detailes to static methods in Java, they are really in global/null context (or context of classes, whithout instancing), so just functions whithout object. Java teachers could told you, that functions were rudiment of C in C++ and dropped in Java, but they told you it for simplification of history and avoiding unnecessary questions of newbies. If you see at Java after 7 version, you can find many elements of pure function programming (even not from C, but from older 1988 Lisp) for simplifying parallel computing, and it is not OOP classes style.
In C++ and D world things are stronger, and you have separated functions and objects with methods and fields. But in practice, you again see functions without this and methods whith this (with object context).
In FreePascal/Lazarus and Borland Pascal/Delphi things about separation terms of functions and objects (variables and fields) are usually similar to C++.
Objective-C comes from C world, so you must separate C functions and Objective-C objects with methods addon.
C# is very similar to Java, but has many C++ advantages.
In C++, sometimes, method is used to reflect the notion of member function of a class. However, recently I found a statement in the book «The C++ Programming Language 4th Edition», on page 586 "Derived Classes"
A virtual function is sometimes called a method.
This is a little bit confusing, but he said sometimes, so it roughly makes sense, C++ creator tends to see methods as functions can be invoked on objects and can behave polymorphic.

What are better ways to create a method that takes many arguments? (10+?)

I was looking at some code of a fellow developer, and almost cried. In the method definition there are 12 arguments. From my experience..this isn't good. If it were me, I would have sent in an object of some sort.
Is there another / more preferred way to do this (in other words, what's the best way to fix this and explain why)?
public long Save (
String today,
String name,
String desc,
int ID,
String otherNm,
DateTime dt,
int status,
String periodID,
String otherDt,
String submittedDt
)
ignore my poor variable names - they are examples
It highly depends on the language.
In a language without compile-time typechecking (e.g. python, javascript, etc.) you should use keyword arguments (common in python: you can access them like a dictionary passed in as an argument) or objects/dictionaries you manually pass in as arguments (common in javascript).
However the "argument hell" you described is sometimes "the right way to do things" for certain languages with compile-time typechecking, because using objects will obfuscate the semantics from the typechecker. The solution then would be to use a better language with compile-time typechecking which allows pattern-matching of objects as arguments.
Yes, use objects. Also, the function is probably doing too much if it needs all of this information, so use smaller functions.
Use objects.
class User { ... }
User user = ...
Save(user);
It decision provides easy way for adding new parameters.
It depends on how complex the function is. If it does something non-trivial with each of those arguments, it should probably be split. If it just passes them through, they should probably be collected in an object. But if it just creates a row in a table, it's not really big deal. It's less of a deal if your language supports keyword arguments.
I imagine the issue you're experiencing is being able to look at the method call and know what argument is receiving what value. This is a pernicious problem in a language like Java, which lacks something like keyword arguments or JSON hashes to pass named arguments.
In this situation, the Builder pattern is a useful solution. It's more objects, three total, but leads to more comprehensible code for the problem you're describing. So the three objects in this case would be as such:
Thing: stateful entity, typically immutable (i.e. getters only)
ThingBuilder: factory class, creates a Thing entity and sets its values.
ThingDAO: not necessary for using the Builder pattern, but addresses your question.
Interaction
/*
ThingBuilder is a static inner class of Thing, where each of its
"set" method calls returns the ThingBuilder instance being worked with
while the final "build()" call returns the instantiated Thing instance.
*/
Thing thing = Thing.createBuilder().
.setToday("2012/04/01")
.setName("Example")
// ...etc...
.build();
// the Thing instance as get methods for each property
thing.getName();
// get your reference to thingDAO however it's done
thingDAO.save(thing);
The result is you get named arguments and an immutable instance.

What's the most appropriate way to expose lists inside a class?

Imagine the following model:
A Table has many Rows
A Row has many Cells
What would be the preferable interface to deal with these classes in a "object oriented way"?
1 - Provide access to the properties rows / cells (Not necessarily exposing the underlying data structures, but creating for example a class RowCollection...)
my_table = new Table()
my_table.rows.add([1,2,3])
my_row = my_table.rows.get(0)
my_row.cells.get(0)
for(cell in my_row.cells) {}
...
2 - Or provide the methods directly in the Table and Row classes
my_table = new Table()
my_table.add_row([1,2,3])
my_row = my_table.get_row(0)
my_row.get_cell(0)
for(cell in my_row.get_cells) {}
...
3 - None of the above...
I think that the answer is largely subjective. If we go by your example, providing methods or properties of your class to return a value by a row/column reference might be appropriate. These could be implemented concurrently, eg:
myClass.Row[x].Column[y]
myClass.Column[y].Row[x]
myClass.Cell[x,y]
You might also decide that it is better to expose a list directly, if the data "rows" are finite:
myClass.SomeArrayOfValues[itemIndex]
I notice you using phrases like "tables" and "rows", so I might assume you wish to have your class represent a database or similar structure, but you might find that while it may be efficient to store the data that way, you might find that exposing the data in another form may make more sense to the user of your class.
In the end, how you choose to do this should really be designed to reflect the purpose of the data itself and the system you are modelling, and that can only be decided on a case-by-case basis.
Based on your comment regarding the usage, "The main use case is adding, sorting and iterating the values," I would probably not allow individual elements to be retrieved, but instead have the user provide a functor to act upon the stored elements. Expressed in C++.
class Table
{
public:
Table();
//Table(unsigned int numberOfRows, unsigned int numberOfCells);
void addRow();
void addCell();
//Throw exception if out of range or don't supply these functions if not needed by user.
void removeRow(unsigned int rowNumber);
void removeCell(unsigned int rowNumber, unsigned int cellNumber);
//Iterate over entire table
template<class Pred>
void forEach(Pred pred);
//Iterate over a specific row, throw exception if row is out of range.
template<class Pred>
void forEach(unsigned int row, Pred pred);
}
You will have to tailor the add/update/remove calls based on how you plan on inputting/updating data. This design is strongly oriented towards manipulating collections of elements. The positives of this design is that you are not committing your user to the specific underlying structure of how you are representing the Table. This is in keeping with the Law of Demeter.
If you need to access specific individual elements, you will want a different approach or make it an extension of what's already provided here.
Consider how many getters and setters you can get rid of. A robust OO design has objects exporting behavior to each other, not data. For example, the skeleton of a getter/setter model of a Person:
class Person:
def set_name(value):
def get_name:
def set_age(value):
def get_age:
def set_drink(value):
def get_drink:
def set_favorite_drink(value):
def get_favorite_drink:
And here's some (pseudo-)code that uses Person:
def order_drink(person)
if person.age >= 21:
puts "#{person.name} can have a drink"
person.drink = bar.order(person.favorite_drink)
else:
puts "#{person.name} cannot drink (legally)."
Here's how you can have a person with no getters or setters involved in ordering a drink:
class Person:
def order_drink_from(bar):
if self.age >= 21:
puts "#{self.name} can have a drink"
self.drink = bar.order(favorite_drink)
else:
puts "#{self.name} cannot drink (legally)"
used like this:
person.order_drink_from(bar)
I won't say that you'll never need getters in an OO program. But I will say this: setters, especially, ought to make you rethink the design. And every time you write either a getter or a setter, let a little voice in the back of your head ask you if there's a way to have the objects export behavior rather than data.
It depends on how you intend to access the Rows/Cells.
There is no one correct way of doing it - you need to decide how you want to access them and build your objects to expose them in the way you want to consume them.
It depends a lot on the data and what you plan to do with it.
Will users want individual cells? Individual rows/columns? Subsections of rows/columns?
Probably the cleanest way is to provide functor interfaces. Provide one or more functions that will run the functors on every element, or on a subset defined in the functor.
That may work less well if users need to access complex combinations of cells.

How do you return two values from a single method?

When your in a situation where you need to return two things in a single method, what is the best approach?
I understand the philosophy that a method should do one thing only, but say you have a method that runs a database select and you need to pull two columns. I'm assuming you only want to traverse through the database result set once, but you want to return two columns worth of data.
The options I have come up with:
Use global variables to hold returns. I personally try and avoid globals where I can.
Pass in two empty variables as parameters then assign the variables inside the method, which now is a void. I don't like the idea of methods that have a side effects.
Return a collection that contains two variables. This can lead to confusing code.
Build a container class to hold the double return. This is more self-documenting then a collection containing other collections, but it seems like it might be confusing to create a class just for the purpose of a return.
This is not entirely language-agnostic: in Lisp, you can actually return any number of values from a function, including (but not limited to) none, one, two, ...
(defun returns-two-values ()
(values 1 2))
The same thing holds for Scheme and Dylan. In Python, I would actually use a tuple containing 2 values like
def returns_two_values():
return (1, 2)
As others have pointed out, you can return multiple values using the out parameters in C#. In C++, you would use references.
void
returns_two_values(int& v1, int& v2)
{
v1 = 1; v2 = 2;
}
In C, your method would take pointers to locations, where your function should store the result values.
void
returns_two_values(int* v1, int* v2)
{
*v1 = 1; *v2 = 2;
}
For Java, I usually use either a dedicated class, or a pretty generic little helper (currently, there are two in my private "commons" library: Pair<F,S> and Triple<F,S,T>, both nothing more than simple immutable containers for 2 resp. 3 values)
I would create data transfer objects. If it is a group of information (first and last name) I would make a Name class and return that. #4 is the way to go. It seems like more work up front (which it is), but makes it up in clarity later.
If it is a list of records (rows in a database) I would return a Collection of some sort.
I would never use globals unless the app is trivial.
Not my own thoughts (Uncle Bob's):
If there's cohesion between those two variables - I've heard him say, you're missing a class where those two are fields. (He said the same thing about functions with long parameter lists.)
On the other hand, if there is no cohesion, then the function does more than one thing.
I think the most preferred approach is to build a container (may it be a class or a struct - if you don't want to create a separate class for this, struct is the way to go) that will hold all the parameters to be returned.
In the C/C++ world it would actually be quite common to pass two variables by reference (an example, your no. 2).
I think it all depends on the scenario.
Thinking from a C# mentality:
1: I would avoid globals as a solution to this problem, as it is accepted as bad practice.
4: If the two return values are uniquely tied together in some way or form that it could exist as its own object, then you can return a single object that holds the two values. If this object is only being designed and used for this method's return type, then it likely isn't the best solution.
3: A collection is a great option if the returned values are the same type and can be thought of as a collection. However, if the specific example needs 2 items, and each item is it's 'own' thing -> maybe one represents the beginning of something, and the other represents the end, and the returned items are not being used interchangably, then this may not be the best option.
2: I like this option the best, if 4, and 3 do not make sense for your scenario. As stated in 3, if you wanted to get two objects that represent the beginning and end items of something. Then I would use parameters by reference (or out parameters, again, depending on how it's all being used). This way your parameters can explicitly define their purpose: MethodCall(ref object StartObject, ref object EndObject)
Personally I try to use languages that allow functions to return something more than a simple integer value.
First, you should distinguish what you want: an arbitrary-length return or fixed-length return.
If you want your method to return an arbitrary number of arguments, you should stick to collection returns. Because the collections--whatever your language is--are specifically tied to fulfill such a task.
But sometimes you just need to return two values. How does returning two values--when you're sure it's always two values--differ from returning one value? No way it differs, I say! And modern languages, including perl, ruby, C++, python, ocaml etc allow function to return tuples, either built-in or as a third-party syntactic sugar (yes, I'm talking about boost::tuple). It looks like that:
tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}
Specifying an "out parameter", in my opinion, is overused due to the limitations of older languages and paradigms learned those days. But there still are many cases when it's usable (if your method needs to modify an object passed as parameter, that object being not the class that contains a method).
The conclusion is that there's no generic answer--each situation has its own solution. But one common thing there is: it's not violation of any paradigm that function returns several items. That's a language limitation later somehow transferred to human mind.
Python (like Lisp) also allows you to return any number of
values from a function, including (but not limited to)
none, one, two
def quadcube (x):
return x**2, x**3
a, b = quadcube(3)
Some languages make doing #3 native and easy. Example: Perl. "return ($a, $b);". Ditto Lisp.
Barring that, check if your language has a collection suited to the task, ala pair/tuple in C++
Barring that, create a pair/tuple class and/or collection and re-use it, especially if your language supports templating.
If your function has return value(s), it's presumably returning it/them for assignment to either a variable or an implied variable (to perform operations on, for instance.) Anything you can usefully express as a variable (or a testable value) should be fair game, and should dictate what you return.
Your example mentions a row or a set of rows from a SQL query. Then you reasonably should be ready to deal with those as objects or arrays, which suggests an appropriate answer to your question.
When your in a situation where you
need to return two things in a single
method, what is the best approach?
It depends on WHY you are returning two things.
Basically, as everyone here seems to agree, #2 and #4 are the two best answers...
I understand the philosophy that a
method should do one thing only, but
say you have a method that runs a
database select and you need to pull
two columns. I'm assuming you only
want to traverse through the database
result set once, but you want to
return two columns worth of data.
If the two pieces of data from the database are related, such as a customer's First Name and Last Name, I would indeed still consider this to be doing "one thing."
On the other hand, suppose you have come up with a strange SELECT statement that returns your company's gross sales total for a given date, and also reads the name of the customer that placed the first sale for today's date. Here you're doing two unrelated things!
If it's really true that performance of this strange SELECT statement is much better than doing two SELECT statements for the two different pieces of data, and both pieces of data really are needed on a frequent basis (so that the entire application would be slower if you didn't do it that way), then using this strange SELECT might be a good idea - but you better be prepared to demonstrate why your way really makes a difference in perceived response time.
The options I have come up with:
1 Use global variables to hold returns. I personally try and avoid
globals where I can.
There are some situations where creating a global is the right thing to do. But "returning two things from a function" is not one of those situations. Doing it for this purpose is just a Bad Idea.
2 Pass in two empty variables as parameters then assign the variables
inside the method, which now is a
void.
Yes, that's usually the best idea. This is exactly why "by reference" (or "output", depending on which language you're using) parameters exist.
I don't like the idea of methods that have a side effects.
Good theory, but you can take it too far. What would be the point of calling SaveCustomer() if that method didn't have a side-effect of saving the customer's data?
By Reference parameters are understood to be parameters that contain returned data.
3 Return a collection that contains two variables. This can lead to confusing code.
True. It wouldn't make sense, for instance, to return an array where element 0 was the first name and element 1 was the last name. This would be a Bad Idea.
4 Build a container class to hold the double return. This is more self-documenting then a collection containing other collections, but it seems like it might be confusing to create a class just for the purpose of a return.
Yes and no. As you say, I wouldn't want to create an object called FirstAndLastNames just to be used by one method. But if there was already an object which had basically this information, then it would make perfect sense to use it here.
If I was returning two of the exact same thing, a collection might be appropriate, but in general I would usually build a specialized class to hold exactly what I needed.
And if if you are returning two things today from those two columns, tomorrow you might want a third. Maintaining a custom object is going to be a lot easier than any of the other options.
Use var/out parameters or pass variables by reference, not by value. In Delphi:
function ReturnTwoValues(out Param1: Integer):Integer;
begin
Param1 := 10;
Result := 20;
end;
If you use var instead of out, you can pre-initialize the parameter.
With databases, you could have an out parameter per column and the result of the function would be a boolean indicating if the record is retrieved correctly or not. (Although I would use a single record class to hold the column values.)
As much as it pains me to do it, I find the most readable way to return multiple values in PHP (which is what I work with, mostly) is using a (multi-dimensional) array, like this:
function doStuff($someThing)
{
// do stuff
$status = 1;
$message = 'it worked, good job';
return array('status' => $status, 'message' => $message);
}
Not pretty, but it works and it's not terribly difficult to figure out what's going on.
I generally use tuples. I mainly work in C# and its very easy to design generic tuple constructs. I assume it would be very similar for most languages which have generics. As an aside, 1 is a terrible idea, and 3 only works when you are getting two returns that are the same type unless you work in a language where everything derives from the same basic type (i.e. object). 2 and 4 are also good choices. 2 doesn't introduce any side effects a priori, its just unwieldy.
Use std::vector, QList, or some managed library container to hold however many X you want to return:
QList<X> getMultipleItems()
{
QList<X> returnValue;
for (int i = 0; i < countOfItems; ++i)
{
returnValue.push_back(<your data here>);
}
return returnValue;
}
For the situation you described, pulling two fields from a single table, the appropriate answer is #4 given that two properties (fields) of the same entity (table) will exhibit strong cohesion.
Your concern that "it might be confusing to create a class just for the purpose of a return" is probably not that realistic. If your application is non-trivial you are likely going to need to re-use that class/object elsewhere anyway.
You should also consider whether the design of your method is primarily returning a single value, and you are getting another value for reference along with it, or if you really have a single returnable thing like first name - last name.
For instance, you might have an inventory module that queries the number of widgets you have in inventory. The return value you want to give is the actual number of widgets.. However, you may also want to record how often someone is querying inventory and return the number of queries so far. In that case it can be tempting to return both values together. However, remember that you have class vars availabe for storing data, so you can store an internal query count, and not return it every time, then use a second method call to retrieve the related value. Only group the two values together if they are truly related. If they are not, use separate methods to retrieve them separately.
Haskell also allows multiple return values using built in tuples:
sumAndDifference :: Int -> Int -> (Int, Int)
sumAndDifference x y = (x + y, x - y)
> let (s, d) = sumAndDifference 3 5 in s * d
-16
Being a pure language, options 1 and 2 are not allowed.
Even using a state monad, the return value contains (at least conceptually) a bag of all relevant state, including any changes the function just made. It's just a fancy convention for passing that state through a sequence of operations.
I will usually opt for approach #4 as I prefer the clarity of knowing what the function produces or calculate is it's return value (rather than byref parameters). Also, it lends to a rather "functional" style in program flow.
The disadvantage of option #4 with generic tuple classes is it isn't much better than returning a collection (the only gain is type safety).
public IList CalculateStuffCollection(int arg1, int arg2)
public Tuple<int, int> CalculateStuffType(int arg1, int arg2)
var resultCollection = CalculateStuffCollection(1,2);
var resultTuple = CalculateStuffTuple(1,2);
resultCollection[0] // Was it index 0 or 1 I wanted?
resultTuple.A // Was it A or B I wanted?
I would like a language that allowed me to return an immutable tuple of named variables (similar to a dictionary, but immutable, typesafe and statically checked). But, sadly, such an option isn't available to me in the world of VB.NET, it may be elsewhere.
I dislike option #2 because it breaks that "functional" style and forces you back into a procedural world (when often I don't want to do that just to call a simple method like TryParse).
I have sometimes used continuation-passing style to work around this, passing a function value as an argument, and returning that function call passing the multiple values.
Objects in place of function values in languages without first-class functions.
My choice is #4. Define a reference parameter in your function. That pointer references to a Value Object.
In PHP:
class TwoValuesVO {
public $expectedOne;
public $expectedTwo;
}
/* parameter $_vo references to a TwoValuesVO instance */
function twoValues( & $_vo ) {
$vo->expectedOne = 1;
$vo->expectedTwo = 2;
}
In Java:
class TwoValuesVO {
public int expectedOne;
public int expectedTwo;
}
class TwoValuesTest {
void twoValues( TwoValuesVO vo ) {
vo.expectedOne = 1;
vo.expectedTwo = 2;
}
}

applying separation of concerns

I wonder if you think that there is a need to refactor this class.( regarding separation of concern)
publi class CSVLIstMapping<T>
{
void ReadMappingFromAttirbutes();
void GetDataFromList();
}
ReadMappingFromAttributes - Reads the mapping from the type T and stores it in the class. Has a name of the list to use and a number of csvMappingColumns which contains the name of the property to set the value in and the name of csvcolumns.
GetObjectsFromList - uses a CVSListreader ( which is passed in via the constructor) to get the data from all row's as KeyValuePair ( Key = csvcolumnName , value = actually value) and after that it uses the mappinginformation( listname and csvMappingColumns ) to set the data in the object.
I cant decide if this class has 2 concerns or one. First I felt that it had two and started to refactor out the conversion from rows to object to another object. But after this it felt awkward to use the functionality, as I first had to create a mappingretriver, and after that I had to retrive the rows and pass it in together with the mapping to the "mapper" to convert the objects from the rows
/w
Sounds like two concerns to me: parsing and mapping/binding. I'd separate them. CSV parsing should be a well-defined problem. And you should care about more than mere mapping. What about validation? If you parse a date string, don't you want to make sure that it's valid before you bind it to an object attribute? I think you should.
Rule of thumb: if it's awkward, it's wrong.
I have to say I'm finding it hard to understand what you've written there, but I think it's likely that you need to refactor the class: the names seem unclear, any method called GetFoo() should really not be returning void, and it may be possible that the whole ReadMappingFromAttribute should just be constructor logic.