Rethrowing exception question - language-agnostic

I read several posts on exception handling/rethrowing exceptions on here (by looking at the highest voted threads), but I am slightly confused:
-Why would you not want the immediate catch block to handle an exception but rather something above it?
-Also, I read quite frequently that you should only handle exceptions which you can "handle". Does that mean actually doing something about it, such as retrying the operation?

You might want to catch an exception (e.g. file not found) and do some processing - e.g. if you open two files and the second file is missing, you will want to close the first file again before you continue, so that it isn't left open.
You might then want to tell the caller that an error occurred, so you re-throw the same exception or throw a new exception, describing the problem.
In some cases, if you get an exception, your code has no way of knowing if it is an error or not (e.g. if you are asked to load an XML file, but you get a File Not Found exception, is that an error, or should you return a blank XMl result?). In these cases you either want to re-throw the exception, or not handle it all all, and let the calling code decide how to deal with the problem.

Your second point is the answer to the first. Sometimes the lower-level functionality does not know enough about the context of the application to know what the right action should be. For example, if opening a file for reading fails because there is no file of that name, then the application might want to ask for a different file, or abort the whole operation, or whatever. At some level, some part of the application will take the responsibility to do the right thing, unless of course just having the program crash is an acceptable action to take.

Answering to your second question - you need to handle the exception in the immediate block only if can do anything about it: for example close connection to db, close streams, retry or retry with different params, log exception (if there will not be an exception generic handler on the higher levels). Probably only immediate block of code knows such details and can handle them. Calling blocks need to know that the error occurred they might know better what to do with exception.
For example immediate block works with a file. A caller might try to open a file from different locations(In the process of "probing") and ignore several errors as long as at least one succeeds. Another part of code might consider the very first failed attempt as an error. Caller block might chose to notify the user that an error is occurred, probably let her/him know some helpful info on how to fix the problem. Also it is nice to provide the means to notify support of the problem – some kind of dialog allowing user to ask for help, describe problem and send a message. In this message you might attach logs, some info about the environment like OS, versions of frameworks, programs, browser capabilities whatever you need to diagnose the problem (if user permits you to do so).

An exception is "handled" if the method which caught it can satisfy its construct. For example, the contract for a routine OpenRecentDocument which is called when the user selects an item from the "recent files" menu might specify that it must either (1) successfully open a document window, or (2) try unsuccessfully to open a document window, roll back any side-effects resulting from the attempt, and notify the user of the what happened. If OpenRecentDocument catches an exception while trying to open the file, but it is able to roll back any side effects from the attempt and notify the user, the routine will have satisfied its contract and should thus return without rethrowing the exception.
One unfortunate "gotcha" in all this is that there isn't any standard means by which routines which throw an exception can indicate whether their attempted operation has resulted in side-effects which could not be rolled back. There is no inherent way, for example, of distinguishing an InvalidOperationException which occurs unexpectedly while updating a shared data structure (which would imply that other open documents may have been corrupted), from an InvalidOperationException which occurs while updating the data associated with the document being loaded, even if one has anticipated the latter possibility and provided for it. The best one can do is either try to catch any InvalidOperationException which might occur in the latter situation near the spot that it occurs, encapsulate that exception in some other exception type, and throw that, or else have data structures maintain an "object corrupted" flag and ensure that if a data structure is found to be corrupt, all future operations on it will fail as cleanly as possible. Neither approach is at all elegant. The more common approach, which could probably be described as "hope for the best", usually works.

Related

Which exceptions should I handle?

I am designing a WinForms application.
At the moment, all my exceptions are being logged at the UI level.
However, for none of them, do I do anything other than logging. Is this indicative of a bad design?
Furthermore, in one method (.NET's method execute a command on a windows service), it can throw exceptions of type Win32Exception and InvalidOperationException.
With an exception like FileNotFound, I could prompt the user to provide another file (although .NET has methods built-in to check for the file's existence), but with exceptions like the above, they are down to low-level problems with the machine, so these can only be logged really.
Is this the right way to go with deciding which exceptions to catch? Also, should I catch or throw ArgumentNullException? It indicates a problem with the code, right?
(I'll use Eric Lippert's taxonomy of exceptions throughout the answer.)
If there is nothing you can do about it, then just log and bail out of the current operation, screen or the entire application, depending on the seriousness of the error. Just don't try to proceed in the face of fatal exceptions. In some extreme cases (like an AccessViolationException), just logging or even letting your finally blocks run may not be a good idea because you don't know what will happen if you run code in a corrupt process.
FileNotFoundException and other exogenous exceptions you should handle anyways. Even though you can check if a file exists beforehand, nothing prevents it from becoming inaccessible in between the check and its use. These exceptions depend on external conditions that you have no control over, so you should be prepared to handle them.
You should never catch ArgumentNullException or any other boneheaded exceptions. If it hurts when you do that, don't do it. If you pass a null argument when you shouldn't, then don't pass it. Fix the code so that it deals with the null reference beforehand.

what is the gist of exception handling

please verify me if I am right: when a program encounters a exception we should write code to handle that exception, the handler should do some recovery job, like rerun the program, but is not just telling us where we went wrong in real world application.
When you throw an exception you're saying:
"Something happened and I can't handle it here. I'm passing the buck!"
When you catch you say:
"Ok I can do something. Perhaps loop around and try again; maybe log an error message".
You can even choose to ignore the error but that's usually discouraged.
In general the thrower captures the state of the failure and the catcher acts on the failure.
In real life, exceptions don't always make error handling easier; but it helps keeps errors out of the main line code path. It's an alternate execution flow. You often hear this: "Exceptions should be used only for exceptional things."
This is a controversial topic, so I expect some to disagree with what I'm going to say.
Exceptions are for exceptional circumstances, namely, the following two classes of problems:
Program Bug
External Problems
In the former case, your program has gotten into a state it shouldn't be in. So you throw an exception and catch it at a level high enough where the program can gracefully continue. In general, this should be fairly high in your program. The reality is, if there's a bug in the middle of an operation, there's not much you can do to recover (after all, if you knew there was a bug, you'd fix it!). Best is to log it, let the user know and move on, if possible. Terminate the current operation, dialog, whatever, or even the whole program.
In the latter case, you are dealing with capricious and fickle universe. Things might go wrong through no fault of your own. In this case, you should try to detect errors as close to the source as you can and deal with them as best you can. If you sending an email to a flaky server results in an exception, it might be reasonable to try again (warning the user). If the database connection goes down, you could try again, but it might be better to give up and kill the current operation. It depends on how well you understand the external problems that might arise and what can actually be done about them.
If you have known error conditions, such as errors in user input or other data sources (e.g., XML parse error, user picked wrong choice on a form, etc.), it's probably best not to throw an exception, but instead gather and report the errors in a more structured fashion. In one project of mine, I have an error reporter class that can gather errors without interrupting program flow. Then those errors can be reported to the user, or logged.
Often times, I think the best approach is not to catch the error, especially if you don't have a specific response for the error. In general, I think the approach of "catch and try again" is flawed. The cause should be identified and corrected. You shouldn't just keep ramming into a brick wall.
Exceptions should be thrown when, and only when, a method/property/whatever is unable to fulfill its contract. The only time an exception should be caught without either rethrowing it or wrapping it in a new exception and throwing that is when the method that caught the exception can fulfill its contract despite the inner method's failure to fulfill its contract. While it may be hard to determine the optimal contract for a routine, once the contract is in place, deciding whether to throw an exception will be easy: do what the contract says.
It really depends on the error and how you want to handle it. In a lot of my automation systems, if something goes wrong, I want the program to send an email out with a specific error and then terminate. Other times I want to catch the error and run a different process to back out data that I had previously entered.
Sounds like you have the general idea down.

How should exceptions be handled when processing a collection?

Let's say you have a function (X) that takes a single object and does some work with it. It can fail in some way:
function X(obj) throws SomeException
And I have a collection of these objects, and want to run X on all of them. So I wrap that up in its own function:
function Y(objs)
foreach obj in objs
X(obj)
end
end
What is the best way of handling the exceptions returned by X?
One obvious choice would be to not catch the exception at all, causing the processing of the collection to stop at the first failure.
Another would be to catch each exception as it occurs and save it aside. At the end, you could then throw a new exception if there were any exceptions at all. You could optionally choose to include these exceptions as nested exceptions of the new exception.
Another would be to ignore the exception completely, returning something like a boolean array that marks success/failure, or even returning the array of exceptions that occurred.
It depends very much on the contxt of what you are doing.
If every item must be processed then breaking at the first exception would may be the best option.
If you are committing a bunch of items which have been parsed from a third party source and you are expecting some failures keeping a note of the failed items and returning a status object may well be the way to go.
I think all three that you listed are valid, and which one you pick depends on the specific use case - that is, which is most appropriate for your application. "Best practices" can't trump application logic, and well-written practices don't dictate logic.
There is no one right answer.
All of what you said is an option. You can do nothing, let it propagate. You can catch and immediately rethrow with more information about which object was being processed when the exception occurred, which is much better. You can catch and throw one exception at the end, optionally with all inner exceptions. You can also catch and log exception and not rethrow at all.
From time to time I've used all of these techniques. It really depends on what your app is specifically doing and your business requirements.
This would completely depend on the state of the list after completion.
If it is acceptable that certain items do not process correctly, then either swallow them or return a boolean indicating success/failure.
If it is required that all items process correctly, I would have the exception bubble up rather.
You might want to avoid creating an exception list, you might rather want to check the items before hand and return a list of items that do not meet the required state.
The answer depends entirely on what you're doing with your objects, and the context in which it happens.
If it's okay that not all are processed, then obviously you don't want to fail hard and terminate execution - allowing the calling code access to the exception details might be helpful, or it might not be.
If it's important that all are processed, then you return some value saying it failed, or let the exception bubble further up if the operation is vital to the program state.
This is a very slippery slope you're riding. Handling an exception requires the program to restore the state of the program to the state it had before the exception was thrown so it can meaningful continue. That's going to be mighty difficult to do, the collection obviously contains an object that cannot be processed. Restoring state would require restoring the collection as well.
Maybe that's possible. But not in the code in your snippet, it doesn't has any code that appears to be responsible for entering objects in the collection. You should not catch an exception if you don't know how to restore state.
Well I guess is pretty more of the same, but it stands a no right or wrong answer, just the more right or worg for some given case.
To capture and continuing rethrowing exceptions can be rather costy to the machine, but it can be your wanted behavior.
I can give two pointers:
- if you intend to discard the collection process if one is wrong just capture the exception and do whatever you may feel like it;
- if you want to assert whether some item is write or wrong, asserting all, you should capture them all, and if you feel like it, either just log it or discard it, or save all those 'inner exceptions' and rethrow or treat them all at the end of the process.
What is exactly the situation?

Why not catch general Exceptions

My VS just told me;
Warning 2 CA1031 : Microsoft.Design : Modify 'Program.Main(string[])' to catch a more specific exception than 'Exception' or rethrow the exception.
Why should I do that? If I do so, and don't catch all exceptions to handle them, my program crashes with the all-popular report-screen. I don't want my users to get such error-crap!
Why should I not catch all exceptions at once to display a nice warning to the user saying: "Something went wrong, don't care about it, I will handle it, just be patient"?
Edit: Just saw I have a dupe here, sorry for that Dupe
Edit2: To clarify things; I do exit the program after any exception has been catched! I just don't want my user to see that "report to microsoft" dialog that show up when an unhandled exception is raised in a console-application!
Swallowing exceptions is a dangerous practice because:
It can cause the user to think something succeeded when it actually failed.
It can put your application into states that you didn't plan for.
It complicates debugging, since it's much harder to find out where the failure happened when you're dealing with bizarre/broken behavior instead of a stack trace.
As you can probably imagine, some of these outcomes can be extremely catastrophic, so doing this right is an important habbit.
Best Practice
First off, code defensively so that exceptions don't occur any more than necessary. They're computationally expensive.
Handle the expected exceptions at a granular level (for example: FileNotFoundException) when possible.
For unexpected exceptions, you can do one of two things:
Let them bubble up normally and cause a crash
Catch them and fail gracefully
Fail Gracefully?
Let's say you're working in ASP.Net and you don't want to show the yellow screen of death to your users, but you also don't want problems to be hidden from the dev team.
In our applications, we usually catch unhandled exceptions in global.asax and then do logging and send out notification emails. We also show a more friendly error page, which can be configured in web.config using the customErrors tag.
That's our last line of defense, and if we end up getting an email we jump on it right away.
That type of pattern is not the same as just swallowing exceptions, where you have an empty Catch block that only exists to "pretend" that the exception did not occur.
Other Notes
In VS2010, there's something called intellitrace coming that will allow you to actually email the application state back home and step through code, examine variable values at the time of the exception, and so on. That's going to be extremely useful.
Because programs that swallow (catch) exceptions indiscriminately, (and then continue), cannot be relied upon to do what it is they are expected to do. This is because you have no idea what kind of exception was "ignored". What if there was an overflow or memory access error that causes the wrong amount to be debited from a financial account? What if it steers the ship into the iceberg instead of away from it ? Unexpected failures should always cause the application to terminate. That forces the development process to identify and correct the exceptions it finds, (crashes during demos are a wonderful motivator), and, in production, allows appropriately designed backup systems to react when the software experiences an "unexpected" inability to do what it was designed to do.
EDIT: To clarify distinctions between UI components, and service or middleware componentrs.
In Service or Middleware components, where there is no user interacting with the code component from within the same process space that the code is running in, the component needs to "pass On" the exception to whatever client component imnitiated the call it is currently processing. No matter the exception, it should make every possible attempt to do this. It is still the case, however, tjhat in cases where an unexpected, or unanticipated exception occurs, the component should finally terminate the process it is running in. For anticipated or expected exceptions, a velopment analysis should be done to determine whether or not, for that specific exception, the component and it's host process can continue to operate (handling future requests), or whether it should be terminated.
You should handle the exact exceptions you are capable of handling and let all others bubble up. If it displays a message to the user that means you don't quite know what you can handle.
Having worked on equipment used by emergency responders, I would rather the user see an ugly error message than to accidently swallow an exception that misleads the user into believing everything is "ok". Depending on your application, the consequence could be anything from nothing to a lost sale to a catastrophic loss of life.
If a person were going to catch all exception, show a better error dialog, and then quit the application, that's ok.. but if they are going to continue running after swallowing an unknown exception, I would fire a person for that. It's not ok. Ever.
Good coding is about practices that assume humans make mistakes. Assuming all "critical" exceptions have been caught and handled is a bad idea.
Simple answer: you are supposed to fix your bug. Find the place that throws the exception and unless it is beyond your control - fix it.
Also catching (without rethrowing) all kinds of exception violates exception neutrality. In general you do not want to do this (although catching exceptions in main does look like special case)
Since your warning message shows that this is in Main(), I'll assume that in lower levels, you do catch only more specific Exceptions.
For Main(), I'd consider two cases:
Your own (debugging) build, where you want all the exception information you can get: Do not catch any Exceptions here, so the debugger breaks and you have your call stack,
Your public releases, where you want the application to behave normally: Catch Exception and display a nice message. This is always better (for the average user) than the 'send report' window.
To do this nicely, just check if DEBUG is defined (and define it, if VS doesn't do this automatically):
#if DEBUG
yadda(); // Check only specific Exception types here
#else
try
{
yadda();
}
catch (Exception e)
{
ShowMessage(e); // Show friendly message to user
}
#endif
I'd disable the warning about catching general Exceptions, but only for your Main() function, catching Exception in any other method is unwise, as other posters have said already.
There is a way to suppress certain messages from code analysis. I've used this for this exact reason (catching the general exception for logging purposes) and it's been pretty handy. When you add this attribute, it shows you've at least acknowledged that you are breaking the rule for a specific reason. You also still get your warning for catch blocks that are incorrect (catching the general exception for purposes other than logging).
MSDN SuppressMessageAttribute
I am all for catching specific known exceptions and handling state...but I use general catch exceptions to quickly localize problems and pass errors up to calling methods which handle state just fine. During development as those are caught, they have a place right next to the general exception and are handled once in release.
I believe one should attempt to remove these once the code goes into production, but to constantly be nagged during the initial code creation is a bit much.
Hence turn off (uncheck) the warning by the project settings as found in Microsoft.CodeQuality.Analyzers. That is found in the project settings under Code Analysis:
All answers are good here. But I would mention one more option.
The intention of author to show some fancy message is understandable.
Also, default Windows error message is really ugly. Besides, if application is not submitted to "Windows Excellence Program" the developer will not receive information about this problem. So what is the point to use default runtime handler if it does not help?
The thing here is that default exception handler of CLR host ( https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/9x0wh2z3(v=vs.90)?redirectedfrom=MSDN ) works in a very safe way. The purpose of it is clear: log the error, send it to developer, set the return code of your process and kill it. The general way of how to change that is to write your own host. In this case you can provide your own way of handling exceptions.
Still, there is an easy solution which satisfies CA1031 and still most of your needs.
When catching the exception, you can handle it your own way (log, show the message etc) and at the end you can set the process result code and do the exit (using the mix of Thread.Abort and "Exit" methods, for example). Still, at the end of your catch block you can just put "throw;" (which will never be called because of ThreadAbortedException, but will satisfy the rule). Still there are some cases, like StackOverflowException, which can't be handled like that and you will see that default message box, for fixing which you need to fallback to custom CLR host option.
Additionally, just for your information, you application can run several threads (besides that one which execute Main method). To receive exceptions from all of them you can use AppDomain.UnhandledException. This event does not allow you to "mark" the exception as handled, still you can freeze the thread using Thread.Join() and then do the job (log, msgbox, exit) using another (one more) thread.
I understand all this looks a little tricky and may be not right, but we have to deal with the implementation of AppDomain.UnhandledException, ThreadAbortException, CorruptedState exceptions and default CLR host. All of this eventually does not leave us much of choice.
When you catch general exceptions, you get the side effect of potentially hiding run-time problems from the user which, in turn, can complicate debugging. Also, by catching general exception, you're ignoring a problem (which you're probably throwing elsewhere).
You can set up your try catch to catch multiple different behavior types and handle the exception based on the type. For most methods and properties in the framework, you can also see what exceptions they are capable of throwing. So unless you are catching an exception from an extremely small block of code, you should probably catch specific exceptions.
In VS you can setup a custom error page to show your users when something goes wrong instead of catching it in a try-catch. I'm assuming since you're using VS that you're using ASP .NET. If so add this tag to your Web.Config under the System.Web tag:
<customErrors mode="RemoteOnly" defaultRedirect="~/CustomErrorPage.aspx" redirectMode="ResponseRewrite" />
You can also catch all uncaught exceptions in the Global.asax file (if you don't have it already: Right-click on web project, select Add Item, and search for it). There are a bunch of application wide event handlers in that file like "Application_Error" that catches every exception that isn't caught within your application so you don't have to use Try-Catch all the time. This is good to use to send yourself an email if an exception occurs and possibly redirect them to your homepage or something if you don't want to use the customErrors tag above.
But ultimately you don't want to wrap your entire application in a try-catch nor do you want to catch a general Exception. Try-catches generally slow down your application and a lot of times if you catch every general exception than it could be possible that you wouldn't know a bug exists until months or years later because the try-catch caused you to overlook it.

When to use assertion over exceptions in domain classes

Are there any situations when you would use assertion instead of exceptions-handling inside domain classes...
Use exceptions for parameter validation and other checks which verify that the users of you classes use them as intended.
Use assertions for internal consistency checks, i.e. to indicate you screwed up, not the user of your class.
Thus, if users of your class see an assertion failure, they know it is (probably) an internal error in your code, not in their use of your code. On the other hand, if the get parameter validation exception, they know it's their fault.
Never. Assertions are not a valid form of error-handling. Use them to assist in identifying program errors during testing.
An assertion reflects a state that should not ever occur and was not expected, where the application cannot continue executing for one reason or another, whereas an exception indicates a state that is not considered "normal", but that was not unexpected, and from which it might be possible to recover.
As an example, if I allocate space on the heap, and this allocation fails, then I can't continue working, so I assert that the address returned is valid; where it is invalid, the assertion fails, and the program fails with it.
On the other hand, if I open a file for reading, and it doesn't exist, then it might be possible to recover from the situation, in which case an exception is thrown (and caught, and handled as far as possible).
In general, assertions are most useful during the debugging phase, whereas exceptions are considered part of regular program flow and error handling. The general consensus is that assertions should be disabled in production code (to shield users from apparent crashes), whereas I have read a school of thought that argues this is counter-productive, and that the user should see the assertion failure, so that they can properly report the problem.
Personally, I sometimes combine the two techniques; usually, if I'm catching an exception that I do not believe could be thrown. Taking the example above, if I check the file's existence before attempting to open it, then I do not expect an exception to be thrown, and if one is, then I tend to deal with this by raising an assertion in the relevant catch block. I find this a particularly useful technique in Java, where such exceptions are fully checked.