Different syntax for method invocation in OO languages - language-agnostic

I know:
C++, Java, and tons others:
object.method() , object.method(arg)
Objective-C:
[object method] , [object method:arg]
Smalltalk:
object method , object method: arg
PHP, Perl
object->method(), object->method(arg)
$object->method;
$object->method($arg1, $arg2, ...);
OCaml
object#method , object#method args
CLOS
(method object) , (method object arg)
And even, I have used:
method object
method(object)
Can you name other alternatives ways of sending a message to an object ( I think that would be the correct term ) in different programming languages?

Refer to
Wikipedia: Comparison of OO Languages -> Method call style

Most interesting may be the "generic function" notation - in CLOS (the O-O part of Common Lisp), they're called like (method object arg) (with defgeneric for method as a generic function and defmethod to define its specialization/override); in languages more oriented to algebraic notation, like Dylan and Python (e.g. with PEAK), the calls will be more like method(object, arg) instead.
The coolest thing about the generic/method approach (which Common Lisp pioneered, AFAIK) is that it doesn't have to treat the first object differently from all the others -- method dispatch can happen upon any combination of arguments' runtime types, not just the runtime type of one of the arguments (single-argument dispatching is obviously covered as a special case;-). Say goodbye to Visitor and all other variants (cfr e.g. this paper) which basically try to simulate multiple dispatching in single-dispatch languages!-)

Just for completeness’ sake:
While VB.NET normally uses the same style as C#, one can also omit the parentheses on methods and on parameterless functions/constructors:
stream.WriteLine "Hello"
Dim x = stream.ReadLine
But the IDE will automatically add the parentheses for parametrized method calls (oddly enough, it won’t do the same for functions and constructors).
Furthermore, VB.NET still knows the (somewhat antique) Call keyword which once again forces parentheses around parametrized method calls:
Call stream.WriteLine("Hello") '// is the same as'
stream.WriteLine("Hello")
'// This won’t compile:'
Call stream.WriteLine "Hello"

in Perl, its:
$object->method;
$object->method($arg1, $arg2, ...);
and the potentially dangerous indirect object syntax (which wont work if you have a sub named method in the current scope:
method $object $arg1, $arg2...;

Following on from Alex Martelli's comment, multi methods in the JVM language Nice
FiniteStateMachineMultiMethodExample
VisitorPatternMultiMethodExample
and other examples.

Related

In OOP, is function same things as a method? [duplicate]

Can someone provide a simple explanation of methods vs. functions in OOP context?
A function is a piece of code that is called by name. It can be passed data to operate on (i.e. the parameters) and can optionally return data (the return value). All data that is passed to a function is explicitly passed.
A method is a piece of code that is called by a name that is associated with an object. In most respects it is identical to a function except for two key differences:
A method is implicitly passed the object on which it was called.
A method is able to operate on data that is contained within the class (remembering that an object is an instance of a class - the class is the definition, the object is an instance of that data).
(this is a simplified explanation, ignoring issues of scope etc.)
A method is on an object or is static in class.
A function is independent of any object (and outside of any class).
For Java and C#, there are only methods.
For C, there are only functions.
For C++ and Python it would depend on whether or not you're in a class.
But in basic English:
Function: Standalone feature or functionality.
Method: One way of doing something, which has different approaches or methods, but related to the same aspect (aka class).
'method' is the object-oriented word for 'function'. That's pretty much all there is to it (ie., no real difference).
Unfortunately, I think a lot of the answers here are perpetuating or advancing the idea that there's some complex, meaningful difference.
Really - there isn't all that much to it, just different words for the same thing.
[late addition]
In fact, as Brian Neal pointed out in a comment to this question, the C++ standard never uses the term 'method' when refering to member functions. Some people may take that as an indication that C++ isn't really an object-oriented language; however, I prefer to take it as an indication that a pretty smart group of people didn't think there was a particularly strong reason to use a different term.
In general: methods are functions that belong to a class, functions can be on any other scope of the code so you could state that all methods are functions, but not all functions are methods:
Take the following python example:
class Door:
def open(self):
print 'hello stranger'
def knock_door():
a_door = Door()
Door.open(a_door)
knock_door()
The example given shows you a class called "Door" which has a method or action called "open", it is called a method because it was declared inside a class. There is another portion of code with "def" just below which defines a function, it is a function because it is not declared inside a class, this function calls the method we defined inside our class as you can see and finally the function is being called by itself.
As you can see you can call a function anywhere but if you want to call a method either you have to pass a new object of the same type as the class the method is declared (Class.method(object)) or you have to invoke the method inside the object (object.Method()), at least in python.
Think of methods as things only one entity can do, so if you have a Dog class it would make sense to have a bark function only inside that class and that would be a method, if you have also a Person class it could make sense to write a function "feed" for that doesn't belong to any class since both humans and dogs can be fed and you could call that a function since it does not belong to any class in particular.
Simple way to remember:
Function → Free (Free means it can be anywhere, no need to be in an object or class)
Method → Member (A member of an object or class)
A very general definition of the main difference between a Function and a Method:
Functions are defined outside of classes, while Methods are defined inside of and part of classes.
The idea behind Object Oriented paradigm is to "treat" the software is composed of .. well "objects". Objects in real world have properties, for instance if you have an Employee, the employee has a name, an employee id, a position, he belongs to a department etc. etc.
The object also know how to deal with its attributes and perform some operations on them. Let say if we want to know what an employee is doing right now we would ask him.
employe whatAreYouDoing.
That "whatAreYouDoing" is a "message" sent to the object. The object knows how to answer to that questions, it is said it has a "method" to resolve the question.
So, the way objects have to expose its behavior are called methods. Methods thus are the artifact object have to "do" something.
Other possible methods are
employee whatIsYourName
employee whatIsYourDepartmentsName
etc.
Functions in the other hand are ways a programming language has to compute some data, for instance you might have the function addValues( 8 , 8 ) that returns 16
// pseudo-code
function addValues( int x, int y ) return x + y
// call it
result = addValues( 8,8 )
print result // output is 16...
Since first popular programming languages ( such as fortran, c, pascal ) didn't cover the OO paradigm, they only call to these artifacts "functions".
for instance the previous function in C would be:
int addValues( int x, int y )
{
return x + y;
}
It is not "natural" to say an object has a "function" to perform some action, because functions are more related to mathematical stuff while an Employee has little mathematic on it, but you can have methods that do exactly the same as functions, for instance in Java this would be the equivalent addValues function.
public static int addValues( int x, int y ) {
return x + y;
}
Looks familiar? That´s because Java have its roots on C++ and C++ on C.
At the end is just a concept, in implementation they might look the same, but in the OO documentation these are called method.
Here´s an example of the previously Employee object in Java.
public class Employee {
Department department;
String name;
public String whatsYourName(){
return this.name;
}
public String whatsYourDeparmentsName(){
return this.department.name();
}
public String whatAreYouDoing(){
return "nothing";
}
// Ignore the following, only set here for completness
public Employee( String name ) {
this.name = name;
}
}
// Usage sample.
Employee employee = new Employee( "John" ); // Creates an employee called John
// If I want to display what is this employee doing I could use its methods.
// to know it.
String name = employee.whatIsYourName():
String doingWhat = employee.whatAreYouDoint();
// Print the info to the console.
System.out.printf("Employee %s is doing: %s", name, doingWhat );
Output:
Employee John is doing nothing.
The difference then, is on the "domain" where it is applied.
AppleScript have the idea of "natural language" matphor , that at some point OO had. For instance Smalltalk. I hope it may be reasonable easier for you to understand methods in objects after reading this.
NOTE: The code is not to be compiled, just to serve as an example. Feel free to modify the post and add Python example.
In OO world, the two are commonly used to mean the same thing.
From a pure Math and CS perspective, a function will always return the same result when called with the same arguments ( f(x,y) = (x + y) ). A method on the other hand, is typically associated with an instance of a class. Again though, most modern OO languages no longer use the term "function" for the most part. Many static methods can be quite like functions, as they typically have no state (not always true).
Let's say a function is a block of code (usually with its own scope, and sometimes with its own closure) that may receive some arguments and may also return a result.
A method is a function that is owned by an object (in some object oriented systems, it is more correct to say it is owned by a class). Being "owned" by a object/class means that you refer to the method through the object/class; for example, in Java if you want to invoke a method "open()" owned by an object "door" you need to write "door.open()".
Usually methods also gain some extra attributes describing their behaviour within the object/class, for example: visibility (related to the object oriented concept of encapsulation) which defines from which objects (or classes) the method can be invoked.
In many object oriented languages, all "functions" belong to some object (or class) and so in these languages there are no functions that are not methods.
Methods are functions of classes. In normal jargon, people interchange method and function all over. Basically you can think of them as the same thing (not sure if global functions are called methods).
http://en.wikipedia.org/wiki/Method_(computer_science)
A function is a mathematical concept. For example:
f(x,y) = sin(x) + cos(y)
says that function f() will return the sin of the first parameter added to the cosine of the second parameter. It's just math. As it happens sin() and cos() are also functions. A function has another property: all calls to a function with the same parameters, should return the same result.
A method, on the other hand, is a function that is related to an object in an object-oriented language. It has one implicit parameter: the object being acted upon (and it's state).
So, if you have an object Z with a method g(x), you might see the following:
Z.g(x) = sin(x) + cos(Z.y)
In this case, the parameter x is passed in, the same as in the function example earlier. However, the parameter to cos() is a value that lives inside the object Z. Z and the data that lives inside it (Z.y) are implicit parameters to Z's g() method.
Historically, there may have been a subtle difference with a "method" being something which does not return a value, and a "function" one which does.Each language has its own lexicon of terms with special meaning.
In "C", the word "function" means a program routine.
In Java, the term "function" does not have any special meaning. Whereas "method" means one of the routines that forms the implementation of a class.
In C# that would translate as:
public void DoSomething() {} // method
public int DoSomethingAndReturnMeANumber(){} // function
But really, I re-iterate that there is really no difference in the 2 concepts.
If you use the term "function" in informal discussions about Java, people will assume you meant "method" and carry on. Don't use it in proper documents or presentations about Java, or you will look silly.
Function or a method is a named callable piece of code which performs some operations and optionally returns a value.
In C language the term function is used. Java & C# people would say it a method (and a function in this case is defined within a class/object).
A C++ programmer might call it a function or sometimes method (depending on if they are writing procedural style c++ code or are doing object oriented way of C++, also a C/C++ only programmer would likely call it a function because term 'method' is less often used in C/C++ literature).
You use a function by just calling it's name like,
result = mySum(num1, num2);
You would call a method by referencing its object first like,
result = MyCalc.mySum(num1,num2);
Function is a set of logic that can be used to manipulate data.
While, Method is function that is used to manipulate the data of the object where it belongs.
So technically, if you have a function that is not completely related to your class but was declared in the class, its not a method; It's called a bad design.
In OO languages such as Object Pascal or C++, a "method" is a function associated with an object. So, for example, a "Dog" object might have a "bark" function and this would be considered a "Method". In contrast, the "StrLen" function stands alone (it provides the length of a string provided as an argument). It is thus just a "function." Javascript is technically Object Oriented as well but faces many limitations compared to a full-blown language like C++, C# or Pascal. Nonetheless, the distinction should still hold.
A couple of additional facts: C# is fully object oriented so you cannot create standalone "functions." In C# every function is bound to an object and is thus, technically, a "method." The kicker is that few people in C# refer to them as "methods" - they just use the term "functions" because there isn't any real distinction to be made.
Finally - just so any Pascal gurus don't jump on me here - Pascal also differentiates between "functions" (which return a value) and "procedures" which do not. C# does not make this distinction explicitly although you can, of course, choose to return a value or not.
Methods on a class act on the instance of the class, called the object.
class Example
{
public int data = 0; // Each instance of Example holds its internal data. This is a "field", or "member variable".
public void UpdateData() // .. and manipulates it (This is a method by the way)
{
data = data + 1;
}
public void PrintData() // This is also a method
{
Console.WriteLine(data);
}
}
class Program
{
public static void Main()
{
Example exampleObject1 = new Example();
Example exampleObject2 = new Example();
exampleObject1.UpdateData();
exampleObject1.UpdateData();
exampleObject2.UpdateData();
exampleObject1.PrintData(); // Prints "2"
exampleObject2.PrintData(); // Prints "1"
}
}
Since you mentioned Python, the following might be a useful illustration of the relationship between methods and objects in most modern object-oriented languages. In a nutshell what they call a "method" is just a function that gets passed an extra argument (as other answers have pointed out), but Python makes that more explicit than most languages.
# perfectly normal function
def hello(greetee):
print "Hello", greetee
# generalise a bit (still a function though)
def greet(greeting, greetee):
print greeting, greetee
# hide the greeting behind a layer of abstraction (still a function!)
def greet_with_greeter(greeter, greetee):
print greeter.greeting, greetee
# very simple class we can pass to greet_with_greeter
class Greeter(object):
def __init__(self, greeting):
self.greeting = greeting
# while we're at it, here's a method that uses self.greeting...
def greet(self, greetee):
print self.greeting, greetee
# save an object of class Greeter for later
hello_greeter = Greeter("Hello")
# now all of the following print the same message
hello("World")
greet("Hello", "World")
greet_with_greeter(hello_greeter, "World")
hello_greeter.greet("World")
Now compare the function greet_with_greeter and the method greet: the only difference is the name of the first parameter (in the function I called it "greeter", in the method I called it "self"). So I can use the greet method in exactly the same way as I use the greet_with_greeter function (using the "dot" syntax to get at it, since I defined it inside a class):
Greeter.greet(hello_greeter, "World")
So I've effectively turned a method into a function. Can I turn a function into a method? Well, as Python lets you mess with classes after they're defined, let's try:
Greeter.greet2 = greet_with_greeter
hello_greeter.greet2("World")
Yes, the function greet_with_greeter is now also known as the method greet2. This shows the only real difference between a method and a function: when you call a method "on" an object by calling object.method(args), the language magically turns it into method(object, args).
(OO purists might argue a method is something different from a function, and if you get into advanced Python or Ruby - or Smalltalk! - you will start to see their point. Also some languages give methods special access to bits of an object. But the main conceptual difference is still the hidden extra parameter.)
for me:
the function of a method and a function is the same if I agree that:
a function may return a value
may expect parameters
Just like any piece of code you may have objects you put in and you may have an object that comes as a result. During doing that they might change the state of an object but that would not change their basic functioning for me.
There might be a definition differencing in calling functions of objects or other codes. But isn't that something for a verbal differenciations and that's why people interchange them? The mentions example of computation I would be careful with. because I hire employes to do my calculations:
new Employer().calculateSum( 8, 8 );
By doing it that way I can rely on an employer being responsible for calculations. If he wants more money I free him and let the carbage collector's function of disposing unused employees do the rest and get a new employee.
Even arguing that a method is an objects function and a function is unconnected computation will not help me. The function descriptor itself and ideally the function's documentation will tell me what it needs and what it may return. The rest, like manipulating some object's state is not really transparent to me. I do expect both functions and methods to deliver and manipulate what they claim to without needing to know in detail how they do it.
Even a pure computational function might change the console's state or append to a logfile.
From my understanding a method is any operation which can be performed on a class. It is a general term used in programming.
In many languages methods are represented by functions and subroutines. The main distinction that most languages use for these is that functions may return a value back to the caller and a subroutine may not. However many modern languages only have functions, but these can optionally not return any value.
For example, lets say you want to describe a cat and you would like that to be able to yawn. You would create a Cat class, with a Yawn method, which would most likely be a function without any return value.
To a first order approximation, a method (in C++ style OO) is another word for a member function, that is a function that is part of a class.
In languages like C/C++ you can have functions which are not members of a class; you don't call a function not associated with a class a method.
IMHO people just wanted to invent new word for easier communication between programmers when they wanted to refer to functions inside objects.
If you are saying methods you mean functions inside the class.
If you are saying functions you mean simply functions outside the class.
The truth is that both words are used to describe functions. Even if you used it wrongly nothing wrong happens. Both words describe well what you want to achieve in your code.
Function is a code that has to play a role (a function) of doing something.
Method is a method to resolve the problem.
It does the same thing. It is the same thing. If you want to be super precise and go along with the convention you can call methods as the functions inside objects.
Let's not over complicate what should be a very simple answer. Methods and functions are the same thing. You call a function a function when it is outside of a class, and you call a function a method when it is written inside a class.
Function is the concept mainly belonging to Procedure oriented programming where a function is an an entity which can process data and returns you value
Method is the concept of Object Oriented programming where a method is a member of a class which mostly does processing on the class members.
I am not an expert, but this is what I know:
Function is C language term, it refers to a piece of code and the function name will be the identifier to use this function.
Method is the OO term, typically it has a this pointer in the function parameter. You can not invoke this piece of code like C, you need to use object to invoke it.
The invoke methods are also different. Here invoke meaning to find the address of this piece of code. C/C++, the linking time will use the function symbol to locate.
Objecive-C is different. Invoke meaning a C function to use data structure to find the address. It means everything is known at run time.
TL;DR
A Function is a piece of code to run.
A Method is a Function inside an Object.
Example of a function:
function sum(){
console.log("sum")l
}
Example of a Method:
const obj = {
a:1,
b:2,
sum(){
}
}
So thats why we say that a "this" keyword inside a Function is not very useful unless we use it with call, apply or bind .. because call, apply, bind will call that function as a method inside object ==> basically it converts function to method
I know many others have already answered, but I found following is a simple, yet effective single line answer. Though it doesn't look a lot better than others answers here, but if you read it carefully, it has everything you need to know about the method vs function.
A method is a function that has a defined receiver, in OOP terms, a method is a function on an instance of an object.
A class is the collection of some data and function optionally with a constructor.
While you creating an instance (copy,replication) of that particular class the constructor initialize the class and return an object.
Now the class become object (without constructor)
&
Functions are known as method in the object context.
So basically
Class <==new==>Object
Function <==new==>Method
In java the it is generally told as that the constructor name same as class name but in real that constructor is like instance block and static block but with having a user define return type(i.e. Class type)
While the class can have an static block,instance block,constructor, function
The object generally have only data & method.
Function - A function in an independent piece of code which includes some logic and must be called independently and are defined outside of class.
Method - A method is an independent piece of code which is called in reference to some object and are be defined inside the class.
General answer is:
method has object context (this, or class instance reference),
function has none context (null, or global, or static).
But answer to question is dependent on terminology of language you use.
In JavaScript (ES 6) you are free to customising function context (this) for any you desire, which is normally must be link to the (this) object instance context.
In Java world you always hear that "only OOP classes/objects, no functions", but if you watch in detailes to static methods in Java, they are really in global/null context (or context of classes, whithout instancing), so just functions whithout object. Java teachers could told you, that functions were rudiment of C in C++ and dropped in Java, but they told you it for simplification of history and avoiding unnecessary questions of newbies. If you see at Java after 7 version, you can find many elements of pure function programming (even not from C, but from older 1988 Lisp) for simplifying parallel computing, and it is not OOP classes style.
In C++ and D world things are stronger, and you have separated functions and objects with methods and fields. But in practice, you again see functions without this and methods whith this (with object context).
In FreePascal/Lazarus and Borland Pascal/Delphi things about separation terms of functions and objects (variables and fields) are usually similar to C++.
Objective-C comes from C world, so you must separate C functions and Objective-C objects with methods addon.
C# is very similar to Java, but has many C++ advantages.
In C++, sometimes, method is used to reflect the notion of member function of a class. However, recently I found a statement in the book «The C++ Programming Language 4th Edition», on page 586 "Derived Classes"
A virtual function is sometimes called a method.
This is a little bit confusing, but he said sometimes, so it roughly makes sense, C++ creator tends to see methods as functions can be invoked on objects and can behave polymorphic.

Magic methods on other programming languages

Python has such methods as __add__, __mul__, __cmp__ and so on (called magic methods), which are used as a class methods and can give a different meaning to adding(+), multiplying(*), comparing(==), ... two instances of a class. My question is do other languages have a similar method? I'm familiar with Java, C++, ruby and PHP, but never came across such a thing. I know all four have a constructor method which corresponds to __init__, but what about other magic methods?
I tried googling "Magic methods in other programming languages" but nothing related showed up, probably they got different names on different languages.
In general, having too much "magic" in a language is a sign of bad language design. Maybe that is why there are not many languages which have magic methods?
Magic like this creates a two-class system: the language designer can add new magic methods to the language, but the programmer is restricted to only use the methods that the High Priest Of Language Design allows them to. In general, it should be possible for the programmer to do as much possible without requiring to change the language specification.
For example, in Scala, +, -, *, /, ==, !=, <, >, <=, >=, ::, |, &, ||, &&, **, ^, +=, -=, *=, /=, and so on and so forth, are simply legal identifiers. So, if you want to implement your own version of multiplication for your own objects, you just write a method named *. This is just a boring old standard method, there is absolutely nothing "magic" about it.
Conversely, any method can be called using operator notation, i.e. without a dot. And any method that takes exactly one argument can be called without parentheses in operator notation.
This does not only apply to methods. Also, any type constructor with exactly two type arguments can be used in infix notation, so if I have
class ↔️[A, B]
I can do
class Foo extends (String ↔️ Int)
which is the same as
class Foo extends ↔️[String, Int]
Well … I kinda lied: there is some syntactic sugar in Scala:
foo() is translated to foo.apply() if there is no method named foo in scope. This allows you to effectively overload the function call operator.
foo.bar = baz is translated to foo.bar_=(baz). This allows you to effectively overload property assignment. (This is how you write setters in Scala.)
foo(bar) = baz is translated to foo.update(bar, baz). This allows you to effectively overload index assignment. (This is how you write array or dictionary access in Scala, for example).
!foo (and a couple of others) are translated to foo.unary_!.
foo += bar will try to call the += method of foo, i.e. it is equivalent to foo.+=(bar). But if this fails and foo is a valid lvalue, and foo has a method named +, then Scala will also try foo = foo + bar instead.
Also, precedence, associativity, and fixity are fixed in Scala: they are determined by the first character of the method name. I.e. all methods starting with * have the same precedence, all methods starting with - have the same precedence, and so on.
Haskell goes a step further: there is no fundamental difference between functions and operators. Every function can be used in function call notation and in operator notation. The only difference is lexical: if the function name consists of operator characters, then when I want to use it in function call notation, I have to wrap it in parentheses. OTOH, if the function name consists of alphanumeric characters and I want to use it in operator notation, I need to wrap it in backticks. So, the following are equivalent:
a + b
(+) a b
a `plus` b
plus a b
For operator usage of functions, you can freely define the fixity, associativity, and precedence, e.g.:
infixr 15 <!==!>
In Ruby, there is a pre-defined set of operators that has corresponding methods, e.g.:
def +(other)
plus(other)
end
In C++ operator overloading is what your are looking for.
Java has no native support for operator overloading (Reference).
C has no operator overloading (Reference). Thus, a lot of add, mult and so on functions are written. Often those are macros, because then they can be used for different types. IMHO this is why I like C++ better.
#Alex gave reference to a nice overview of operator overlaoding.

How to define my function from a string?

This is normal definition of some function as I know:
real function f(x)
real x
f = (sin(x))**2*exp(-x)
end function f
But I want to define a function from some string, for example the program will ask me to write it, and then it will define the function f in a program. Is this possible in Fortran?
What you are looking for is possible in reflective programming languages, and is not possible in Fortran.
Quote from the link above:
A language supporting reflection provides a number of features available at runtime that would otherwise be very obscure to accomplish in a lower-level language. Some of these features are the abilities to:
Discover and modify source code constructions (such as code blocks, classes, methods, protocols, etc.) as a first-class object at runtime.
Convert a string matching the symbolic name of a class or function into a reference to or invocation of that class or function.
Evaluate a string as if it were a source code statement at runtime.
Create a new interpreter for the language's bytecode to give a new meaning or purpose for a programming construct.
I worked on a project once that tried to achieve something similar. We read in a string that contained a string with named variables and mathematical operations (a function if you will). In this string the variables then got replaced by their numerical values and the terms were evaluated.
The basic idea is not to too difficult, but it requires a lot of string manipulations - and it is not a function in the context of a programming language.
We did it like this:
Recursively divide the string at +,-,/,*, but remember to honor brackets
If this is not possible (without violating bracketing), evaluate the remaining string:
Does it contain a mathematical expression like cos? Yes => recurse into arguments
No => evaluate the mathematical expression (no variables allowed, but they got replaced)
This works quite well, but it requires:
Splitting strings
Matching in strings
Replacing strings with other strings, etc.
This is not trivial to do in Fortran, so if you have other options (like calling an external tool/script that returns the value), I would look into that - especially if you are new to Fortran!

What are better ways to create a method that takes many arguments? (10+?)

I was looking at some code of a fellow developer, and almost cried. In the method definition there are 12 arguments. From my experience..this isn't good. If it were me, I would have sent in an object of some sort.
Is there another / more preferred way to do this (in other words, what's the best way to fix this and explain why)?
public long Save (
String today,
String name,
String desc,
int ID,
String otherNm,
DateTime dt,
int status,
String periodID,
String otherDt,
String submittedDt
)
ignore my poor variable names - they are examples
It highly depends on the language.
In a language without compile-time typechecking (e.g. python, javascript, etc.) you should use keyword arguments (common in python: you can access them like a dictionary passed in as an argument) or objects/dictionaries you manually pass in as arguments (common in javascript).
However the "argument hell" you described is sometimes "the right way to do things" for certain languages with compile-time typechecking, because using objects will obfuscate the semantics from the typechecker. The solution then would be to use a better language with compile-time typechecking which allows pattern-matching of objects as arguments.
Yes, use objects. Also, the function is probably doing too much if it needs all of this information, so use smaller functions.
Use objects.
class User { ... }
User user = ...
Save(user);
It decision provides easy way for adding new parameters.
It depends on how complex the function is. If it does something non-trivial with each of those arguments, it should probably be split. If it just passes them through, they should probably be collected in an object. But if it just creates a row in a table, it's not really big deal. It's less of a deal if your language supports keyword arguments.
I imagine the issue you're experiencing is being able to look at the method call and know what argument is receiving what value. This is a pernicious problem in a language like Java, which lacks something like keyword arguments or JSON hashes to pass named arguments.
In this situation, the Builder pattern is a useful solution. It's more objects, three total, but leads to more comprehensible code for the problem you're describing. So the three objects in this case would be as such:
Thing: stateful entity, typically immutable (i.e. getters only)
ThingBuilder: factory class, creates a Thing entity and sets its values.
ThingDAO: not necessary for using the Builder pattern, but addresses your question.
Interaction
/*
ThingBuilder is a static inner class of Thing, where each of its
"set" method calls returns the ThingBuilder instance being worked with
while the final "build()" call returns the instantiated Thing instance.
*/
Thing thing = Thing.createBuilder().
.setToday("2012/04/01")
.setName("Example")
// ...etc...
.build();
// the Thing instance as get methods for each property
thing.getName();
// get your reference to thingDAO however it's done
thingDAO.save(thing);
The result is you get named arguments and an immutable instance.

What are the definitions of named method and named function?

I have read the question Difference between method and function in Scala and many articles about differences between method and function. I got a feeling that a 'method' is just a "named function" defined as a method in a class, a trait or an object. A 'function' represents things like the "anonymous function" or "function literal" or "function object" in those articles. An evidence can be found in the book Programming in Scala http://www.artima.com/shop/programming_in_scala_2ed , page 141, section 8.1, "The most common way to define a function is as a member of some object. Such a function is called a method."
However, when I checked the Scala Language Reference http://www.scala-lang.org/docu/files/ScalaReference.pdf, there are concepts like named method. In page 91, Section 6.20 Return expressions: "A return expression return e must occur inside the body of some enclosing named
method or function." You can also find the term "named function" in the same page and other places.
So my question is, in Scala, do method, named method, and named function refer to the same concept? Where do you get the definition of named function?
In code List(1, 2).map(_ + 1), the original expression _ + 1 is a named method, then the method is converted into a function. What kind of function, anonymous function, function object, named function?
In my understanding, Scala only has two types of function: a named function that is a method; an anonymous function that is a function literal. Function literal is compiled into a function object of trait FunctionN for it to be used in the pure object-oriented world of Scala.
However, for a regular named funciton/method such as _ + 1 in the above code, why does Scala transform it into another function object?
At the language level, there are only two concepts,
Methods are fundamental building blocks of Scala. Methods are always named. Methods live in classes or traits. Methods are a construct native to the JVM, and thus are the same in both Scala and Java. Methods in Scala (unlike functions) may have special features: they can be abstracted over type parameters, their arguments can have default values or be implicit, etc.
Function objects are just instances of a function trait (Function1, Function2, ...). The function is evaluated when the apply method on the function object is called. There is special syntax for defining unnamed "anonymous" functions (aka, "function literals"). A function is just a value, and as such can be named (e.g., val f: (Int => Int) = (x => x)). The type A => B is shorthand for Function1[A, B].
In the linked SO question, it was mentioned that some references (like the Scala spec) use the word "function" imprecisely to mean either "method" or "function object". I guess part of the reason is that methods can be automatically converted to function objects, depending on the context. Note, however, that the opposite conversion wouldn't make sense: a method is not a first-class value that lives on the heap with its own independent existence. Rather, a method is inextricably linked to the class in which it is defined.
The answers to the linked question cover this fairly well, but to address your specific queries:
method => The thing you define with the def keyword
named method => The same, all methods have names
named function => a function that has been assigned to a value, or converted from a method. As contrasted with an anonymous function.
The difference between a method and a Function is somewhat like the difference between an int primitive and a boxed Integer in Java.
In general discussion, it's common to hear both described as being "integers". This normally isn't a problem, but you must take care to be precise wherever the distinction is relevant.
Likewise, a method will be automatically converted to a Function (and therefore an object) when your program demands it, much like boxing a primitive. So it's not entirely wrong to refer to a method as being a function.
UPDATE
So how does it work?
When you attempt to pass a method as the argument to e.g. List[A].map, the compiler will generate an inner class (with a synthetic name) that derives Function1[A,B], and an apply method that delegates to the method you originally supplied. An instance of this will then be passed as the actual argument.