Best free way to store 20 million rows a day? - mysql

Daily 20-25 million rows that will be removed at midnight for next days data. Can mySQL handle 25 million indexed rows? What would be another good solution?

You give very little information on the context but sometimes not using a database and instead a binary/plain text file is just fine and can -- depending on your requirements -- be much more efficient and maintainable. e.g if it's sensor data storing it in a binary file with each record at a known offset could be a good solution. You saying that the data would be deleted every 24h seems to indicate that you might not need some the properties of a relational database solution such as ACID, replication, integrated backup and so on, so perhaps a flat file approach is just fine?

Our MySQL database has over 300 million rows indexed and we only ever experience problems with complex joins running a little slow - most can be optimized though.
Handling the rows was no problem - the key to our performance was good indexes.
Considering you are dropping the information at midnight, i would also look at MySQL partitioning which would allow you to drop that part of the table whilst allowing the next day to continue inserting if need be.

The issue is not the number of rows itself -- it's what you do with the database. Are you doing only inserts during the day followed by some batch report? Or, are you doing thousands of queries per second on the data? Inserts/Updates/Deletes? If you slam enough load at any database platform, you can max it out with a single table and a single row (taking it to the most extreme). I used MySQL 4.1 w/ MyISAM (hardly the most modern of anything) on a site with a 40M row user table. It did < 5ms queries, I think. We were rendering pages in less than 200ms. However, we had lots and lots of caching set up, so the number of queries wasn't too high. And, we were doing simple statements like SELECT * FROM USER WHERE USER_NAME = 'SMITH'
Can you comment more on your use case?

If you are using Windows, you could do worse than use SqlExpress 2008, which should easily handle that load, depending on how many indexes you are creating on it. So long as you keep < 4GB total db size, it shouldn't be a problem.

From my experience, mySQL tends to not scale well at all. If you must have a free solution for this I would highly recommend postgreSQL.
Also (this may or may not be an issue for you), but keep in mind that if you're dealing with that much data, the maximum size of a mySQL database is 4 terabytes, if I remember correctly.
I don't think there is a practical limit on the max number of rows in mySQL, so if you MUST use mySQL, I think it would work for what you want to do, but personally for a production system I wouldn't recommend it.

As a general solution I'd recommend PostgreSQL too, but depending on your specific needs, other solutions might be better/faster. For example, if you do not need to query your data while it is being written, TokyoCabinet (the table based API / TDB) might be faster and more lightweight/robust.

I haven't looked into them in mysql, but this sounds like a perfect application for table partitions

use only as an index database and store it in the form of file approach would be more effective because you will remove within 24 hours and the process will be faster also not burden your server

Related

Distributed database use cases

At the moment i do have a mysql database, and the data iam collecting is 5 Terrabyte a year. I will save my data all the time, i dont think i want to delete something very early.
I ask myself if i should use a distributed database because my data will grow every year. And after 5 years i will have 25 Terrabyte without index. (just calculated the raw data i save every day)
i have 5 tables and the most queries are joins over multiple tables.
And i need to access mostly 1-2 columns over many rows at a specific timestamp.
Would a distributed database be a prefered database than only a single mysql database?
Paritioning will be difficult, because all my tables are really high connected.
I know it depends on the queries and on the database table design and i can also have a distributed mysql database.
i just want to know when i should think about a distributed database.
Would this be a use case? or could mysql handle this large dataset?
EDIT:
in average i will have 1500 clients writing data per second, they affect all tables.
i just need the old dataset for analytics. Like machine learning and
pattern matching.
also a client should be able to see the historical data
Your question is about "distributed", but I see more serious questions that need answering first.
"Highly indexed 5TB" will slow to a crawl. An index is a BTree. To add a new row to an index means locating the block in that tree where the item belongs, then read-modify-write that block. But...
If the index is AUTO_INCREMENT or TIMESTAMP (or similar things), then the blocks being modified are 'always' at the 'end' of the BTree. So virtually all of the reads and writes are cacheable. That is, updating such an index is very low overhead.
If the index is 'random', such as UUID, GUID, md5, etc, then the block to update is rarely found in cache. That is, updating this one index for this one row is likely to cost a pair of IOPs. Even with SSDs, you are likely to not keep up. (Assuming you don't have several TB of RAM.)
If the index is somewhere between sequential and random (say, some kind of "name"), then there might be thousands of "hot spots" in the BTree, and these might be cacheable.
Bottom line: If you cannot avoid random indexes, your project is doomed.
Next issue... The queries. If you need to scan 5TB for a SELECT, that will take time. If this is a Data Warehouse type of application and you need to, say, summarize last month's data, then building and maintaining Summary Tables will be very important. Furthermore, this can obviate the need for some of the indexes on the 'Fact' table, thereby possibly eliminating my concern about indexes.
"See the historical data" -- See individual rows? Or just see summary info? (Again, if it is like DW, one rarely needs to see old datapoints.) If summarization will suffice, then most of the 25TB can be avoided.
Do you have a machine with 25TB online? If not, that may force you to have multiple machines. But then you will have the complexity of running queries across them.
5TB is estimated from INT = 4 bytes, etc? If using InnoDB, you need to multiple by 2 to 3 to get the actual footprint. Furthermore, if you need to modify a table in the future, such action probably needs to copy the table over, so that doubles the disk space needed. Your 25TB becomes more like 100TB of storage.
PARTITIONing has very few valid use cases, so I don't want to discuss that until knowing more.
"Sharding" (splitting across machines) is possibly what you mean by "distributed". With multiple tables, you need to think hard about how to split up the data so that JOINs will continue to work.
The 5TB is huge -- Do everything you can to shrink it -- Use smaller datatypes, normalize, etc. But don't "over-normalize", you could end up with terrible performance. (We need to see the queries!)
There are many directions to take a multi-TB db. We really need more info about your tables and queries before we can be more specific.
It's really impossible to provide a specific answer to such a wide question.
In general, I recommend only worrying about performance once you can prove that you have a problem; if you're worried, it's much better to set up a test rig, populate it with representative data, and see what happens.
"Can MySQL handle 5 - 25 TB of data?" Yes. No. Depends. If - as you say - you have no indexes, your queries may slow down a long time before you get to 5TB. If it's 5TB / year of highly indexable data it might be fine.
The most common solution to this question is to keep a "transactional" database for all the "regular" work, and a datawarehouse for reporting, using a regular Extract/Transform/Load job to move the data across, and archive it. The data warehouse typically has a schema optimized for querying, usually entirely unlike the original schema.
If you want to keep everything logically consistent, you might use sharding and clustering - a sort-a-kind-a out of the box feature of MySQL.
I would not, however, roll my own "distributed database" solution. It's much harder than you might think.

randomized code in mysql database

I think I'd better ask this question instead of guessing around without any experiment.
We are planning to add a new column as code
The code needs to have the following features:
It has to be unique.
Better to be a string, it's much easier for us to migrate data
Has to be random with enough space to avoid collision.
I am planning to just use UUID.
create table code(
id char(36),
unique index index1 (id)
) type=innodb;
Our operation behavior:
insert new code (at most 20K every day)
get row by code (very heavily, we may need to get every row in the database in limited time like 10 minutes).
Now I am worry about performance a little bit. We already have 400K row in our database. In the future it could grow to 10M or 30M.
Do you have any suggestion or see any problem?
BTW: I am not able to use auto incremented int because it's not randomized.
Go ahead. You won't get any problems neither with mysql nor with UUID.
UUIDs generated randomly have enough states that there will be for certain no collision. (Indeed it's still a chance but its 1 over 10^31 in case of 30M entries.)
On the other Hand: Why bother with uuid (which divides your random in 5 groups with no sense at all) when you can as easily use SecureRandom to just generate 16 byte values and use them?
According to this answer: How to store uuid as number? it is faster to store them in binary in mysq.
You want to read this, too: UUID performance in MySQL?
When using mysql you should think about concepts for backup. Mysql will handle big databases quiet easily, but exporting/importing 30M rows can take some time.
For mysql row limits see this question: How many rows in a database are TOO MANY?
I would suggest not to use MySQL for these cases (at least not the main storage that you actively search from).
There are number of different other technologies such as:
Apache Lucene
Apache Solr
Elastic Search
and more others...
These tools are build for fast searches on big data sets. It the above look like overkill you might simply use one of the NoSQL dbs, it will give you much more performance in your case.
There are huge number of articles comparing performance and limitation between all of these.

Can MySQL Cluster handle a terabyte database

I have to look into solutions for providing a MySQL database that can handle data volumes in the terabyte range and be highly available (five nines). Each database row is likely to have a timestamp and up to 30 float values. The expected workload is up to 2500 inserts/sec. Queries are likely to be less frequent but could be large (maybe involving 100Gb of data) though probably only involving single tables.
I have been looking at MySQL Cluster given that is their HA offering. Due to the volume of data I would need to make use of disk based storage. Realistically I think only the timestamps could be held in memory and all other data would need to be stored on disk.
Does anyone have experience of using MySQL Cluster on a database of this scale? Is it even viable? How does disk based storage affect performance?
I am also open to other suggestions for how to achieve the desired availability for this volume of data. For example, would it be better to use a third party libary like Sequoia to handle the clustering of standard MySQL instances? Or a more straight forward solution based on MySQL replication?
The only condition is that it must be a MySQL based solution. I don't think that MySQL is the best way to go for the data we are dealing with but it is a hard requirement.
Speed wise, it can be handled. Size wise, the question is not the size of your data, but rather the size of your index as the indices must fit fully within memory.
I'd be happy to offer a better answer, but high-end database work is very task-dependent. I'd need to know a lot more about what's going on with the data to be of further help.
Okay, I did read the part about mySQL being a hard requirement.
So with that said, let me first point out that the workload you're talking about -- 2500 inserts/sec, rare queries, queries likely to have result sets of up to 10 percent of the whole data set -- is just about pessimal for any relational data base system.
(This rather reminds me of a project, long ago, where I had a hard requirement to load 100 megabytes of program data over a 9600 baud RS-422 line (also a hard requirement) in less than 300 seconds (also a hard requirement.) The fact that 1kbyte/sec × 300 seconds = 300kbytes didn't seem to communicate.)
Then there's the part about "contain up to 30 floats." The phrasing at least suggests that the number of samples per insert is variable, which suggests in turn some normaliztion issues -- or else needing to make each row 30 entries wide and use NULLs.
But with all that said, okay, you're talking about 300Kbytes/sec and 2500 TPS (assuming this really is a sequence of unrelated samples). This set of benchmarks, at least, suggests it's not out of the realm of possibility.
This article is really helpful in identifying what can slow down a large MySQL database.
Possibly try out hibernate shards and run MySQL on 10 nodes with 1/2 terabyte each so you can handle 5 terabytes then ;) well over your limit I think?

What techniques are most effective for dealing with millions of records?

I once had a MySQL database table containing 25 million records, which made even a simple COUNT(*) query takes minute to execute. I ended up making partitions, separating them into a couple tables. What i'm asking is, is there any pattern or design techniques to handle this kind of problem (huge number of records)? Is MSSQL or Oracle better in handling lots of records?
P.S
the COUNT(*) problem stated above is just an example case, in reality the app does crud functionality and some aggregate query (for reporting), but nothing really complicated. It's just that it takes quite a while (minutes) to execute some these queries because of the table volume
See Why MySQL could be slow with large tables and COUNT(*) vs COUNT(col)
Make sure you have an index on the column you're counting. If your server has plenty of RAM, consider increasing MySQL's buffer size. Make sure your disks are configured correctly -- DMA enabled, not sharing a drive or cable with the swap partition, etc.
What you're asking with "SELECT COUNT(*)" is not easy.
In MySQL, the MyISAM non-transactional engine optimises this by keeping a record count, so SELECT COUNT(*) will be very quick.
However, if you're using a transactional engine, SELECT COUNT(*) is basically saying:
Exactly how many records exist in this table in my transaction ?
To do this, the engine needs to scan the entire table; it probably knows roughly how many records exist in the table already, but to get an exact answer for a particular transaction, it needs a scan. This isn't going to be fast using MySQL innodb, it's not going to be fast in Oracle, or anything else. The whole table MUST be read (excluding things stored separately by the engine, such as BLOBs)
Having the whole table in ram will make it a bit faster, but it's still not going to be fast.
If your application relies on frequent, accurate counts, you may want to make a summary table which is updated by a trigger or some other means.
If your application relies on frequent, less accurate counts, you could maintain summary data with a scheduled task (which may impact performance of other operations less).
Many performance issues around large tables relate to indexing problems, or lack of indexing all together. I'd definitely make sure you are familiar with indexing techniques and the specifics of the database you plan to use.
With regards to your slow count(*) on the huge table, i would assume you were using the InnoDB table type in MySQL. I have some tables with over 100 million records using MyISAM under MySQL and the count(*) is very quick.
With regards to MySQL in particular, there are even slight indexing differences between InnoDB and MyISAM tables which are the two most commonly used table types. It's worth understanding the pros and cons of each and how to use them.
What kind of access to the data do you need? I've used HBase (based on Google's BigTable) loaded with a vast amount of data (~30 million rows) as the backend for an application which could return results within a matter of seconds. However, it's not really appropriate if you need "real time" access - i.e. to power a website. Its column-oriented nature is also a fairly radical change if you're used to row-oriented DBMS.
Is count(*) on the whole table actually something you do a lot?
InnoDB will have to do a full table scan to count the rows, which is obviously a major performance issue if counting all of them is something you actually want to do. But that doesn't mean that other operations on the table will be slow.
With the right indexes, MySQL will be very fast at retrieving data from tables much bigger than that. The problem with indexes is that they can hurt insert speeds, particularly for large tables as insert performance drops dramatically once the space required for the index reaches a certain threshold - presumably the size it will keep in memory. But if you only need modest insert speeds, MySQL should do everything you need.
Any other database will have similar tradeoffs between retrieve speed and insert speed; they may or may not be better for your application. But I would look first at getting the indexes right, and maybe rewriting your queries, before you try other databases. For what it's worth, we picked MySQL originally because we found it performed best.
Note that MyISAM tables in MySQL store the total size of the table. They maintain this because it's useful to the optimiser in some cases, but a side effect is that count(*) on the whole table is really fast. That doesn't necessarily mean they're faster than InnoDB at anything else.
I answered a similar question in This Stackoverflow Posting in some detail, describing the merits of the architectures of both systems. To some extent it was done from a data warehousing point of view but many of the differences also matter on transactional systems.
However, 25 million rows is not a VLDB and if you are having performance problems you should look to indexing and tuning. You don't need to go to Oracle to support a 25 million row database - you've got about 3 orders of magnitude to go before you're truly in VLDB territory.
You are asking for a books worth of answer and I therefore propose you get a good book on databases. There are many.
To get you started, here are some database basics:
First, you need a great data model based not just on what data you need to store but on usage patterns. Good database performance starts with good schema design.
Second, place indicies on columns based upon expected lookup AND update needs as update performance is often overlooked.
Third, don't put functions in where clauses if at all possible.
Fourth, use an -ahem- RDBMS engine that is of quality design. I would respectfully submit that while it has improved greatly in the recent past, mysql does not qualify. (Apologies to those who wish to argue it has finally made the grade in recent times.) There is no longer any need to choose between high-price and quality; Postgres (aka PostgreSql) is available open-source and is truly fantastic - and has all the plug-ins available to meet your needs.
Finally, learn what you are asking a database engine to do - gain some insight into internals - so you can better judge what kinds of things are expensive and why.
I'm going to second #Mark Baker, and say that you need to build indices on your tables.
For other queries than the one you selected, you should also be aware that using constructs such as IN() is faster than a series of OR statements in the query. There are lots of little steps you can take to speed-up individual queries.
Indexing is key to performance with this number of records, but how you write the queries can make a big difference as well. Specific performance tuning methods vary by database, but in general, avoid returning more records or fields than you actually need, make sure all join fields are indexed (as well as common where clause fields), avoid cursors (although I think this is less true in Oracle than SQL Server I don't know about mySQL).
Hardware can also be a bottleneck especially if you are running things besides the database server on the same machine.
Performance tuning is a very technical subject and can't really be answered well in a format like this. I suggest you get a performance tuning book and read it. Here is a link to one for mySQL
http://www.amazon.com/High-Performance-MySQL-Optimization-Replication/dp/0596101716

How big can a MySQL database get before performance starts to degrade

At what point does a MySQL database start to lose performance?
Does physical database size matter?
Do number of records matter?
Is any performance degradation linear or exponential?
I have what I believe to be a large database, with roughly 15M records which take up almost 2GB. Based on these numbers, is there any incentive for me to clean the data out, or am I safe to allow it to continue scaling for a few more years?
The physical database size doesn't matter. The number of records don't matter.
In my experience the biggest problem that you are going to run in to is not size, but the number of queries you can handle at a time. Most likely you are going to have to move to a master/slave configuration so that the read queries can run against the slaves and the write queries run against the master. However if you are not ready for this yet, you can always tweak your indexes for the queries you are running to speed up the response times. Also there is a lot of tweaking you can do to the network stack and kernel in Linux that will help.
I have had mine get up to 10GB, with only a moderate number of connections and it handled the requests just fine.
I would focus first on your indexes, then have a server admin look at your OS, and if all that doesn't help it might be time to implement a master/slave configuration.
In general this is a very subtle issue and not trivial whatsoever. I encourage you to read mysqlperformanceblog.com and High Performance MySQL. I really think there is no general answer for this.
I'm working on a project which has a MySQL database with almost 1TB of data. The most important scalability factor is RAM. If the indexes of your tables fit into memory and your queries are highly optimized, you can serve a reasonable amount of requests with a average machine.
The number of records do matter, depending of how your tables look like. It's a difference to have a lot of varchar fields or only a couple of ints or longs.
The physical size of the database matters as well: think of backups, for instance. Depending on your engine, your physical db files on grow, but don't shrink, for instance with innodb. So deleting a lot of rows, doesn't help to shrink your physical files.
There's a lot to this issues and as in a lot of cases the devil is in the details.
The database size does matter. If you have more than one table with more than a million records, then performance starts indeed to degrade. The number of records does of course affect the performance: MySQL can be slow with large tables. If you hit one million records you will get performance problems if the indices are not set right (for example no indices for fields in "WHERE statements" or "ON conditions" in joins). If you hit 10 million records, you will start to get performance problems even if you have all your indices right. Hardware upgrades - adding more memory and more processor power, especially memory - often help to reduce the most severe problems by increasing the performance again, at least to a certain degree. For example 37 signals went from 32 GB RAM to 128GB of RAM for the Basecamp database server.
I'm currently managing a MySQL database on Amazon's cloud infrastructure that has grown to 160 GB. Query performance is fine. What has become a nightmare is backups, restores, adding slaves, or anything else that deals with the whole dataset, or even DDL on large tables. Getting a clean import of a dump file has become problematic. In order to make the process stable enough to automate, various choices needed to be made to prioritize stability over performance. If we ever had to recover from a disaster using a SQL backup, we'd be down for days.
Horizontally scaling SQL is also pretty painful, and in most cases leads to using it in ways you probably did not intend when you chose to put your data in SQL in the first place. Shards, read slaves, multi-master, et al, they are all really shitty solutions that add complexity to everything you ever do with the DB, and not one of them solves the problem; only mitigates it in some ways. I would strongly suggest looking at moving some of your data out of MySQL (or really any SQL) when you start approaching a dataset of a size where these types of things become an issue.
Update: a few years later, and our dataset has grown to about 800 GiB. In addition, we have a single table which is 200+ GiB and a few others in the 50-100 GiB range. Everything I said before holds. It still performs just fine, but the problems of running full dataset operations have become worse.
I would focus first on your indexes, than have a server admin look at your OS, and if all that doesn't help it might be time for a master/slave configuration.
That's true. Another thing that usually works is to just reduce the quantity of data that's repeatedly worked with. If you have "old data" and "new data" and 99% of your queries work with new data, just move all the old data to another table - and don't look at it ;)
-> Have a look at partitioning.
2GB and about 15M records is a very small database - I've run much bigger ones on a pentium III(!) and everything has still run pretty fast.. If yours is slow it is a database/application design problem, not a mysql one.
It's kind of pointless to talk about "database performance", "query performance" is a better term here. And the answer is: it depends on the query, data that it operates on, indexes, hardware, etc. You can get an idea of how many rows are going to be scanned and what indexes are going to be used with EXPLAIN syntax.
2GB does not really count as a "large" database - it's more of a medium size.
I once was called upon to look at a mysql that had "stopped working". I discovered that the DB files were residing on a Network Appliance filer mounted with NFS2 and with a maximum file size of 2GB. And sure enough, the table that had stopped accepting transactions was exactly 2GB on disk. But with regards to the performance curve I'm told that it was working like a champ right up until it didn't work at all! This experience always serves for me as a nice reminder that there're always dimensions above and below the one you naturally suspect.
Also watch out for complex joins. Transaction complexity can be a big factor in addition to transaction volume.
Refactoring heavy queries sometimes offers a big performance boost.
A point to consider is also the purpose of the system and the data in the day to day.
For example, for a system with GPS monitoring of cars is not relevant query data from the positions of the car in previous months.
Therefore the data can be passed to other historical tables for possible consultation and reduce the execution times of the day to day queries.
Performance can degrade in a matter of few thousand rows if database is not designed properly.
If you have proper indexes, use proper engines (don't use MyISAM where multiple DMLs are expected), use partitioning, allocate correct memory depending on the use and of course have good server configuration, MySQL can handle data even in terabytes!
There are always ways to improve the database performance.
It depends on your query and validation.
For example, i worked with a table of 100 000 drugs which has a column generic name where it has more than 15 characters for each drug in that table .I put a query to compare the generic name of drugs between two tables.The query takes more minutes to run.The Same,if you compare the drugs using the drug index,using an id column (as said above), it takes only few seconds.
Database size DOES matter in terms of bytes and table's rows number. You will notice a huge performance difference between a light database and a blob filled one. Once my application got stuck because I put binary images inside fields instead of keeping images in files on the disk and putting only file names in database. Iterating a large number of rows on the other hand is not for free.
No it doesnt really matter. The MySQL speed is about 7 Million rows per second. So you can scale it quite a bit
Query performance mainly depends on the number of records it needs to scan, indexes plays a high role in it and index data size is proportional to number of rows and number of indexes.
Queries with indexed field conditions along with full value would be returned in 1ms generally, but starts_with, IN, Between, obviously contains conditions might take more time with more records to scan.
Also you will face lot of maintenance issues with DDL, like ALTER, DROP will be slow and difficult with more live traffic even for adding a index or new columns.
Generally its advisable to cluster the Database into as many clusters as required (500GB would be a general benchmark, as said by others it depends on many factors and can vary based on use cases) that way it gives better isolation and gives independence to scale specific clusters (more suited in case of B2B)