When to check function/method parameters? - function

when writing small functions I often have the case that some parameters are given to a function which itself only passes them to different small functions to serve its purpose.
For example (C#-ish Syntax):
public void FunctionA(object param)
{
DoA(param);
DoB(param);
DoC(param);
// etc.
}
private void DoA(object param)
{
DoD(param);
}
private void DoD(object param)
{
// Error if param == null
param.DoX();
}
So the parameters are not used inside the called function but "somewhere" in the depths of the small functions that do the job.
So when is it best to check if my param-Object is null?
When checking in FunctionA:
Pro:
-There is no overhead through the use of further methods which at last will do nothing because object is null.
Con:
-My syntactically wonderful FunctionA is dirtied by ugly validation code.
When checking only when param-object is used:
Pro:
-My syntactically wonderful FunctionA keeps a joy to read :)
Cons:
-There will be overhead through calling methods which will do nothing because the param-object is null.
-Further cons I don't think about at the moment.

Always put it as far down the call stack as possible, so that if you later refactor the code and something else calls DoD other than DoA you have the check in place and don't have to rework your parameter checks. The overhead of a small null check and possibly a few extra method calls is going to be trivial in most cases and doing the check an extra few times is not something you should be worrying about.

Unless you think the value is likely to be null the vast majority of the time, I'd put the validation in DoD(). If you put it in FunctionA() you'll have to repeat the validation code later when you decide FunctionB() also needs to use DoD(). To me, the extra overhead is worth not having to repeat myself.

As a guideline, I make a habit of it to check every parameter that is used by the method, even including my own private variables. I would therefore only check for nil in your DoD method.
You might want to check out Bertrand Meyers Design By Contract mantra.

Fail early. Unless a partial result is preferable to no result at all, execution should stop as soon as the code can detect that there is a problem. Why should the code run through several methods when the result downstream is going to be an invalid or missing argument?
If it is possible that the downstream methods could be called separately then validation could be handled by a call to ca common validation methed as has already been suggested.

Always check everything :) Coming from the deep bowels of coding libraries for embedded systems, this is the method I'd use:
public void FunctionA(object param)
{
assert(param != null && param.canDoX());
DoA(param);
DoB(param);
DoC(param);
// etc.
}
private void DoA(object param)
{
assert(param != null && param.canDoX());
DoD(param);
}
private void DoD(object param)
{
assert(param != null && param.canDoX());
if ( param != null )
param.DoX();
else
// Signal error, for instance by throwing a runtime exception
// This error-handling is then verified by a unit test that
// uses a release build of the code.
}
To de-clutter this, the obvious solution is to break out the validation to a separate validator function. Using a C-style preprocessor, or just sticking to asserts, it should be trivial to have this "paranoid" validation excluded from release builds.

It's the caller's responsibility to pass a valid parameter. In this case:
if(param != null)
{
FunctionA(param);
}

Related

Are exceptions fundamental, or can they be replaced with conditions?

I am attempting to understand from where exception conditions derive. My question is at the end, but I will present an example that might make it clearer.
Take this Java code, for example. It has the path to a file and set-up a File object. If the path is null, an exception is thrown.
String path = getPathName();
try {
File file = new File(path);
} catch (NullPointerException e) {
// ...
}
This is hardly an exceptional circumstance, though, and if we could modify it in such a way that this might be preferrable:
String path = getPathName();
if (path == null) {
path = DEFAULT_PATH;
}
File file = new File(path); # we've removed the need for an exception
But moving further, we run into a new exception when we try and make the File readable.
try {
file.setReadable(true);
} catch (SecurityException e) {
// ...
}
We can skirt around this issue by checking two conditions:
SecurityManager sm = System.getSecurityManager();
if (sm != null && sm.checkWrite(path)) {
// modify the SecurityManager
} else {
file.setReadable(true);
}
With this example in mind, on to my question...
If we move down the stack, going from Java to the OS, etc., is it possible to replace all exception handling code with if-else branches? Or is there some root cause of exceptions (hardware?) that means they are "baked" into programming?
If we move down the stack, going from Java to the OS, etc., is it possible to replace all exception handling code with if-else branches?
Yes. This is how it used to be done, and still is in languages without exceptions. Exceptions are used because they are easier in a number of senses. The primary advantages are that cases not anticipated by the programmer can be aggregated in a general handler; and that information about the exceptional condition does not need to be explicitly preserved in every single function until it is properly handled.
Or is there some root cause of exceptions (hardware?) that means they are "baked" into programming?
Also yes. In general, unexpected hardware conditions need to be handled in some way, unless you are comfortable with undefined behaviour in such cases.
If all the methods in a program returned a pointer/reference to some kind of "exception" object (for other return values, pass in a pointer or reference to a caller-allocated storage location), and if every call to every method which might directly or indirectly want to throw an exception were bracketed with something like:
ret = callFunction( ...parameters...);
if (ret != NULL)
return AddToExceptionStacktrace(ret, ...info about this call site... );
then there would be no need for any other form of exception handling (note that if the type supports scoped variables, the "return" statement would have to insert code to clean them up before it actually returns to the caller).
Unfortunately, that's a lot of extra code. This approach would be workable in a language which had only "checked" exceptions (meaning a method can neither throw exceptions nor pass them through unless it is declared as doing so), but adding that overhead to every function which might directly or indirectly call a function which throws an exception would be very expensive. Exception-handling mechanisms generally eliminate 99% of the extra overhead in the no-exceptions case, and the expense of increasing the overhead in the "exception" case.

Exceptions and cancelling

This might be a bit of a stupid question but it has been bugging me so here goes
I know that the normal advice is that Exceptions are only meant to be used in exceptional circumstances but I also read people advocating to use exceptions when a method fails to fulfil its contract
Cancellation seems to me sit in a bit of a grey area between these two cases
Without exceptions if your class has a lot of cancelable actions your code ends up back checking error codes all over the place
Can cancelling be considered exceptional in this context?
Exceptions are most efficient for rare conditions that need non-local handling. It sounds like that applies here. So it is purely a stylistic question. Non-local control transfer can be more difficult to think about, but it will probably also mean shorter code. I would base the decision based on what language this is and how much of the existing code is already designed with exceptions. If you have exception-safe cleanup code already, go ahead and use them.
I wouldn't use an "exception" in its literal definition. What you could opt for is capturing the cancellation as a user driven value, a Boolean perhaps, that indicates that a user canceled out of an action, and use this Boolean to not perform the exhaustive error condition checks.
it depends on the language you are using.
in php for example its a common practice to throw an exception and catch it to interrupt for example a loop or recursion that is called within an object where its not sufficient to just jump up to the parent function.
consider this example:
<?php
class hideAndSeekWithOnlyOneOtherPlayer {
public function seek() {
foreach($rooms as $room) {
if($this->checkRoom($room)) {
$this->shoutThatIFoundYou();
return;
}
}
$this->shoutThatICantFindYou();
}
function checkRoom($room) {
$hideouts = $this->getPossibleHideoutsForRoom($room);
return $this->checkHideouts($hideouts);
}
function checkHideouts($hideouts) {
foreach($hideouts as $hideout) {
return $this->checkHideout($hideout);
}
return false;
}
function checkHideout($hideout) {
$this->walkToHideout();
return $this->seeIfPersonIsInsideHideout();
}
}
?>
its annoying to always pass the boolean value from one function to another, instead you could just throw an excemption in seeIfPersonIsInsideHideout() and dont care for the return values at all!
maby this is a bad example because it really gets important when you have multiple cases that can occour. then you have to bass back a constant or string or integer that you check for in an case statement etc.
its much better (easier to code and undestand, less error potential) to define your own exception class then!

Is using an if() coupled with an immediate return an accepted practise?

Is using an if coupled with an immediate return like in the example below an acceptable practise instead of having a if with a block of code inside {} ? Are these equivalent in practise or is there a disadvantage to one of the approaches ?
An example in Java:
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
ServletContext sc = this.getServletContext();
// Throw exception for fatal error (Servlet not defined in web.xml ?)
if( sc == null )
return; // old-style programming
// Careful with silent bugs ! Correct way of handling this is:
// throw new RuntimeException( "BookDetail: ServletContext is null" );
BookList bookList = WebUtil.getBookList( sc );
Martin Fowler would favour the early return, and calls the idea a Guard Clause.
Personally, I don't like it in Java, as I prefer one return per method. However this is subjective and I may be in the minority.
I've blogged about this for and against.
That is not a return, it's an exception. The code is perfectly ok tho.
Even if you'd replace that throw with a "return something", it would still be ok.
I think it comes down to readability. The code should function the same either way.
I use stuff like this all the time
Function Blah() As Boolean
If expr Then
Return False
End If
Do Other work...
Return result
End Function
For error conditions, generally it's best to throw an exception - exception handling was invented to get rid of the manual return code style error checking in C that comprises about 30% of a C program.
However, early returns are fine - they are far more readable than adding an extra scope with curly braces.
if (!_cache.has_key(key))
return null;
return _cache[key]
Is better than:
if (_cache_has_key(key))
{
return _cache[key]
}
else
return null;
And it only gets more obvious the more early returns that you add, 5 early returns beats the hell out of 5 nested if statements.
Note that I didn't return null on an error condition, it's expected that often the key won't be in the cache - but it still means the caller has to write code to check the result. In .NET there's a better pattern of returning a boolean, and setting the result via an out parameter. The methods beginning with Try usually follow this pattern:
Foo foo;
if (!TryGetCachedFoo("myfoo", foo))
{
foo = new Foo(...);
AddToCache("myfoo", foo);
}
// do something with foo
As long as you're using them for conditional escapes as the first thing in the routine. I think the fact that they are obvious in that location, and avoid at least one level of indentation outweighs the negative of having a multiple returns.
In the example you give, I'd favor throwing an exception because a null ServletContext is usually a sign that something has gone wrong. However, there are times when checking whether a parameter is null and returning immediately from the method is both useful and valid.
For instance, if you are gathering contact information about a user and the user has the option of providing a phone number. In that case, you may have a method that validates that the phone number contains all numbers, has the correct number of digits, etc, but which would immediately return if the phone number was empty or null.
public void validatePhone(String phoneNumber) throws ValidationException {
if (phoneNumber == null || phoneNumber.equals("")) {
return;
}
//do validation stuff, throwing exception if not valid
In your example, there is no return after the if statement; you are throwing an exception. (edit: I see you have changed the code since I posted this answer).
There are purists who think that you should have only one return statement in a method (at the end of the method). There's some merit to that idea - it makes the code more clear, it makes it easier to see what can be returned for the method, and especially when you need to cleanup resources (especially in a language without garbage collection; or in Java where you need to close for example an InputStream) it's more clear and easier if you have just one return at the bottom, and do the cleanup code just before the return.
I would not have any objection against the code in your example, however.
I have a few (subjective, or not) remarks:
I always use accolades with a if even the block contains only one line
I don't like to have many return on one method
I don't think that this null check is necessary. If getServletContext() returns null, then you have a much bigger problem with your webapp that should definitely be fixed. In that case, having a NullPointerException later in the code is an exceptional error so I wouldn't bother handling it.

Should a function have only one return statement?

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Are there good reasons why it's a better practice to have only one return statement in a function?
Or is it okay to return from a function as soon as it is logically correct to do so, meaning there may be many return statements in the function?
I often have several statements at the start of a method to return for "easy" situations. For example, this:
public void DoStuff(Foo foo)
{
if (foo != null)
{
...
}
}
... can be made more readable (IMHO) like this:
public void DoStuff(Foo foo)
{
if (foo == null) return;
...
}
So yes, I think it's fine to have multiple "exit points" from a function/method.
Nobody has mentioned or quoted Code Complete so I'll do it.
17.1 return
Minimize the number of returns in each routine. It's harder to understand a routine if, reading it at the bottom, you're unaware of the possibility that it returned somewhere above.
Use a return when it enhances readability. In certain routines, once you know the answer, you want to return it to the calling routine immediately. If the routine is defined in such a way that it doesn't require any cleanup, not returning immediately means that you have to write more code.
I would say it would be incredibly unwise to decide arbitrarily against multiple exit points as I have found the technique to be useful in practice over and over again, in fact I have often refactored existing code to multiple exit points for clarity. We can compare the two approaches thus:-
string fooBar(string s, int? i) {
string ret = "";
if(!string.IsNullOrEmpty(s) && i != null) {
var res = someFunction(s, i);
bool passed = true;
foreach(var r in res) {
if(!r.Passed) {
passed = false;
break;
}
}
if(passed) {
// Rest of code...
}
}
return ret;
}
Compare this to the code where multiple exit points are permitted:-
string fooBar(string s, int? i) {
var ret = "";
if(string.IsNullOrEmpty(s) || i == null) return null;
var res = someFunction(s, i);
foreach(var r in res) {
if(!r.Passed) return null;
}
// Rest of code...
return ret;
}
I think the latter is considerably clearer. As far as I can tell the criticism of multiple exit points is a rather archaic point of view these days.
I currently am working on a codebase where two of the people working on it blindly subscribe to the "single point of exit" theory and I can tell you that from experience, it's a horrible horrible practice. It makes code extremely difficult to maintain and I'll show you why.
With the "single point of exit" theory, you inevitably wind up with code that looks like this:
function()
{
HRESULT error = S_OK;
if(SUCCEEDED(Operation1()))
{
if(SUCCEEDED(Operation2()))
{
if(SUCCEEDED(Operation3()))
{
if(SUCCEEDED(Operation4()))
{
}
else
{
error = OPERATION4FAILED;
}
}
else
{
error = OPERATION3FAILED;
}
}
else
{
error = OPERATION2FAILED;
}
}
else
{
error = OPERATION1FAILED;
}
return error;
}
Not only does this make the code very hard to follow, but now say later on you need to go back and add an operation in between 1 and 2. You have to indent just about the entire freaking function, and good luck making sure all of your if/else conditions and braces are matched up properly.
This method makes code maintenance extremely difficult and error prone.
Structured programming says you should only ever have one return statement per function. This is to limit the complexity. Many people such as Martin Fowler argue that it is simpler to write functions with multiple return statements. He presents this argument in the classic refactoring book he wrote. This works well if you follow his other advice and write small functions. I agree with this point of view and only strict structured programming purists adhere to single return statements per function.
As Kent Beck notes when discussing guard clauses in Implementation Patterns making a routine have a single entry and exit point ...
"was to prevent the confusion possible
when jumping into and out of many
locations in the same routine. It made
good sense when applied to FORTRAN or
assembly language programs written
with lots of global data where even
understanding which statements were
executed was hard work ... with small methods and mostly local data, it is needlessly conservative."
I find a function written with guard clauses much easier to follow than one long nested bunch of if then else statements.
In a function that has no side-effects, there's no good reason to have more than a single return and you should write them in a functional style. In a method with side-effects, things are more sequential (time-indexed), so you write in an imperative style, using the return statement as a command to stop executing.
In other words, when possible, favor this style
return a > 0 ?
positively(a):
negatively(a);
over this
if (a > 0)
return positively(a);
else
return negatively(a);
If you find yourself writing several layers of nested conditions, there's probably a way you can refactor that, using predicate list for example. If you find that your ifs and elses are far apart syntactically, you might want to break that down into smaller functions. A conditional block that spans more than a screenful of text is hard to read.
There's no hard and fast rule that applies to every language. Something like having a single return statement won't make your code good. But good code will tend to allow you to write your functions that way.
I've seen it in coding standards for C++ that were a hang-over from C, as if you don't have RAII or other automatic memory management then you have to clean up for each return, which either means cut-and-paste of the clean-up or a goto (logically the same as 'finally' in managed languages), both of which are considered bad form. If your practices are to use smart pointers and collections in C++ or another automatic memory system, then there isn't a strong reason for it, and it become all about readability, and more of a judgement call.
I lean to the idea that return statements in the middle of the function are bad. You can use returns to build a few guard clauses at the top of the function, and of course tell the compiler what to return at the end of the function without issue, but returns in the middle of the function can be easy to miss and can make the function harder to interpret.
Are there good reasons why it's a better practice to have only one return statement in a function?
Yes, there are:
The single exit point gives an excellent place to assert your post-conditions.
Being able to put a debugger breakpoint on the one return at the end of the function is often useful.
Fewer returns means less complexity. Linear code is generally simpler to understand.
If trying to simplify a function to a single return causes complexity, then that's incentive to refactor to smaller, more general, easier-to-understand functions.
If you're in a language without destructors or if you don't use RAII, then a single return reduces the number of places you have to clean up.
Some languages require a single exit point (e.g., Pascal and Eiffel).
The question is often posed as a false dichotomy between multiple returns or deeply nested if statements. There's almost always a third solution which is very linear (no deep nesting) with only a single exit point.
Update: Apparently MISRA guidelines promote single exit, too.
To be clear, I'm not saying it's always wrong to have multiple returns. But given otherwise equivalent solutions, there are lots of good reasons to prefer the one with a single return.
Having a single exit point does provide an advantage in debugging, because it allows you to set a single breakpoint at the end of a function to see what value is actually going to be returned.
In general I try to have only a single exit point from a function. There are times, however, that doing so actually ends up creating a more complex function body than is necessary, in which case it's better to have multiple exit points. It really has to be a "judgement call" based on the resulting complexity, but the goal should be as few exit points as possible without sacrificing complexity and understandability.
No, because we don't live in the 1970s any more. If your function is long enough that multiple returns are a problem, it's too long.
(Quite apart from the fact that any multi-line function in a language with exceptions will have multiple exit points anyway.)
My preference would be for single exit unless it really complicates things. I have found that in some cases, multiple exist points can mask other more significant design problems:
public void DoStuff(Foo foo)
{
if (foo == null) return;
}
On seeing this code, I would immediately ask:
Is 'foo' ever null?
If so, how many clients of 'DoStuff' ever call the function with a null 'foo'?
Depending on the answers to these questions it might be that
the check is pointless as it never is true (ie. it should be an assertion)
the check is very rarely true and so it may be better to change those specific caller functions as they should probably take some other action anyway.
In both of the above cases the code can probably be reworked with an assertion to ensure that 'foo' is never null and the relevant callers changed.
There are two other reasons (specific I think to C++ code) where multiple exists can actually have a negative affect. They are code size, and compiler optimizations.
A non-POD C++ object in scope at the exit of a function will have its destructor called. Where there are several return statements, it may be the case that there are different objects in scope and so the list of destructors to call will be different. The compiler therefore needs to generate code for each return statement:
void foo (int i, int j) {
A a;
if (i > 0) {
B b;
return ; // Call dtor for 'b' followed by 'a'
}
if (i == j) {
C c;
B b;
return ; // Call dtor for 'b', 'c' and then 'a'
}
return 'a' // Call dtor for 'a'
}
If code size is an issue - then this may be something worth avoiding.
The other issue relates to "Named Return Value OptimiZation" (aka Copy Elision, ISO C++ '03 12.8/15). C++ allows an implementation to skip calling the copy constructor if it can:
A foo () {
A a1;
// do something
return a1;
}
void bar () {
A a2 ( foo() );
}
Just taking the code as is, the object 'a1' is constructed in 'foo' and then its copy construct will be called to construct 'a2'. However, copy elision allows the compiler to construct 'a1' in the same place on the stack as 'a2'. There is therefore no need to "copy" the object when the function returns.
Multiple exit points complicates the work of the compiler in trying to detect this, and at least for a relatively recent version of VC++ the optimization did not take place where the function body had multiple returns. See Named Return Value Optimization in Visual C++ 2005 for more details.
Having a single exit point reduces Cyclomatic Complexity and therefore, in theory, reduces the probability that you will introduce bugs into your code when you change it. Practice however, tends to suggest that a more pragmatic approach is needed. I therefore tend to aim to have a single exit point, but allow my code to have several if that is more readable.
I force myself to use only one return statement, as it will in a sense generate code smell. Let me explain:
function isCorrect($param1, $param2, $param3) {
$toret = false;
if ($param1 != $param2) {
if ($param1 == ($param3 * 2)) {
if ($param2 == ($param3 / 3)) {
$toret = true;
} else {
$error = 'Error 3';
}
} else {
$error = 'Error 2';
}
} else {
$error = 'Error 1';
}
return $toret;
}
(The conditions are arbritary...)
The more conditions, the larger the function gets, the more difficult it is to read. So if you're attuned to the code smell, you'll realise it, and want to refactor the code. Two possible solutions are:
Multiple returns
Refactoring into separate functions
Multiple Returns
function isCorrect($param1, $param2, $param3) {
if ($param1 == $param2) { $error = 'Error 1'; return false; }
if ($param1 != ($param3 * 2)) { $error = 'Error 2'; return false; }
if ($param2 != ($param3 / 3)) { $error = 'Error 3'; return false; }
return true;
}
Separate Functions
function isEqual($param1, $param2) {
return $param1 == $param2;
}
function isDouble($param1, $param2) {
return $param1 == ($param2 * 2);
}
function isThird($param1, $param2) {
return $param1 == ($param2 / 3);
}
function isCorrect($param1, $param2, $param3) {
return !isEqual($param1, $param2)
&& isDouble($param1, $param3)
&& isThird($param2, $param3);
}
Granted, it is longer and a bit messy, but in the process of refactoring the function this way, we've
created a number of reusable functions,
made the function more human readable, and
the focus of the functions is on why the values are correct.
I would say you should have as many as required, or any that make the code cleaner (such as guard clauses).
I have personally never heard/seen any "best practices" say that you should have only one return statement.
For the most part, I tend to exit a function as soon as possible based on a logic path (guard clauses are an excellent example of this).
I believe that multiple returns are usually good (in the code that I write in C#). The single-return style is a holdover from C. But you probably aren't coding in C.
There is no law requiring only one exit point for a method in all programming languages. Some people insist on the superiority of this style, and sometimes they elevate it to a "rule" or "law" but this belief is not backed up by any evidence or research.
More than one return style may be a bad habit in C code, where resources have to be explicitly de-allocated, but languages such as Java, C#, Python or JavaScript that have constructs such as automatic garbage collection and try..finally blocks (and using blocks in C#), and this argument does not apply - in these languages, it is very uncommon to need centralised manual resource deallocation.
There are cases where a single return is more readable, and cases where it isn't. See if it reduces the number of lines of code, makes the logic clearer or reduces the number of braces and indents or temporary variables.
Therefore, use as many returns as suits your artistic sensibilities, because it is a layout and readability issue, not a technical one.
I have talked about this at greater length on my blog.
There are good things to say about having a single exit-point, just as there are bad things to say about the inevitable "arrow" programming that results.
If using multiple exit points during input validation or resource allocation, I try to put all the 'error-exits' very visibly at the top of the function.
Both the Spartan Programming article of the "SSDSLPedia" and the single function exit point article of the "Portland Pattern Repository's Wiki" have some insightful arguments around this. Also, of course, there is this post to consider.
If you really want a single exit-point (in any non-exception-enabled language) for example in order to release resources in one single place, I find the careful application of goto to be good; see for example this rather contrived example (compressed to save screen real-estate):
int f(int y) {
int value = -1;
void *data = NULL;
if (y < 0)
goto clean;
if ((data = malloc(123)) == NULL)
goto clean;
/* More code */
value = 1;
clean:
free(data);
return value;
}
Personally I, in general, dislike arrow programming more than I dislike multiple exit-points, although both are useful when applied correctly. The best, of course, is to structure your program to require neither. Breaking down your function into multiple chunks usually help :)
Although when doing so, I find I end up with multiple exit points anyway as in this example, where some larger function has been broken down into several smaller functions:
int g(int y) {
value = 0;
if ((value = g0(y, value)) == -1)
return -1;
if ((value = g1(y, value)) == -1)
return -1;
return g2(y, value);
}
Depending on the project or coding guidelines, most of the boiler-plate code could be replaced by macros. As a side note, breaking it down this way makes the functions g0, g1 ,g2 very easy to test individually.
Obviously, in an OO and exception-enabled language, I wouldn't use if-statements like that (or at all, if I could get away with it with little enough effort), and the code would be much more plain. And non-arrowy. And most of the non-final returns would probably be exceptions.
In short;
Few returns are better than many returns
More than one return is better than huge arrows, and guard clauses are generally ok.
Exceptions could/should probably replace most 'guard clauses' when possible.
You know the adage - beauty is in the eyes of the beholder.
Some people swear by NetBeans and some by IntelliJ IDEA, some by Python and some by PHP.
In some shops you could lose your job if you insist on doing this:
public void hello()
{
if (....)
{
....
}
}
The question is all about visibility and maintainability.
I am addicted to using boolean algebra to reduce and simplify logic and use of state machines. However, there were past colleagues who believed my employ of "mathematical techniques" in coding is unsuitable, because it would not be visible and maintainable. And that would be a bad practice. Sorry people, the techniques I employ is very visible and maintainable to me - because when I return to the code six months later, I would understand the code clearly rather seeing a mess of proverbial spaghetti.
Hey buddy (like a former client used to say) do what you want as long as you know how to fix it when I need you to fix it.
I remember 20 years ago, a colleague of mine was fired for employing what today would be called agile development strategy. He had a meticulous incremental plan. But his manager was yelling at him "You can't incrementally release features to users! You must stick with the waterfall." His response to the manager was that incremental development would be more precise to customer's needs. He believed in developing for the customers needs, but the manager believed in coding to "customer's requirement".
We are frequently guilty for breaking data normalization, MVP and MVC boundaries. We inline instead of constructing a function. We take shortcuts.
Personally, I believe that PHP is bad practice, but what do I know. All the theoretical arguments boils down to trying fulfill one set of rules
quality = precision, maintainability
and profitability.
All other rules fade into the background. And of course this rule never fades:
Laziness is the virtue of a good
programmer.
I lean towards using guard clauses to return early and otherwise exit at the end of a method. The single entry and exit rule has historical significance and was particularly helpful when dealing with legacy code that ran to 10 A4 pages for a single C++ method with multiple returns (and many defects). More recently, accepted good practice is to keep methods small which makes multiple exits less of an impedance to understanding. In the following Kronoz example copied from above, the question is what occurs in //Rest of code...?:
void string fooBar(string s, int? i) {
if(string.IsNullOrEmpty(s) || i == null) return null;
var res = someFunction(s, i);
foreach(var r in res) {
if(!r.Passed) return null;
}
// Rest of code...
return ret;
}
I realise the example is somewhat contrived but I would be tempted to refactor the foreach loop into a LINQ statement that could then be considered a guard clause. Again, in a contrived example the intent of the code isn't apparent and someFunction() may have some other side effect or the result may be used in the // Rest of code....
if (string.IsNullOrEmpty(s) || i == null) return null;
if (someFunction(s, i).Any(r => !r.Passed)) return null;
Giving the following refactored function:
void string fooBar(string s, int? i) {
if (string.IsNullOrEmpty(s) || i == null) return null;
if (someFunction(s, i).Any(r => !r.Passed)) return null;
// Rest of code...
return ret;
}
One good reason I can think of is for code maintenance: you have a single point of exit. If you want to change the format of the result,..., it's just much simpler to implement. Also, for debugging, you can just stick a breakpoint there :)
Having said that, I once had to work in a library where the coding standards imposed 'one return statement per function', and I found it pretty tough. I write lots of numerical computations code, and there often are 'special cases', so the code ended up being quite hard to follow...
Multiple exit points are fine for small enough functions -- that is, a function that can be viewed on one screen length on its entirety. If a lengthy function likewise includes multiple exit points, it's a sign that the function can be chopped up further.
That said I avoid multiple-exit functions unless absolutely necessary. I have felt pain of bugs that are due to some stray return in some obscure line in more complex functions.
I've worked with terrible coding standards that forced a single exit path on you and the result is nearly always unstructured spaghetti if the function is anything but trivial -- you end up with lots of breaks and continues that just get in the way.
Single exit point - all other things equal - makes code significantly more readable.
But there's a catch: popular construction
resulttype res;
if if if...
return res;
is a fake, "res=" is not much better than "return". It has single return statement, but multiple points where function actually ends.
If you have function with multiple returns (or "res="s), it's often a good idea to break it into several smaller functions with single exit point.
My usual policy is to have only one return statement at the end of a function unless the complexity of the code is greatly reduced by adding more. In fact, I'm rather a fan of Eiffel, which enforces the only one return rule by having no return statement (there's just a auto-created 'result' variable to put your result in).
There certainly are cases where code can be made clearer with multiple returns than the obvious version without them would be. One could argue that more rework is needed if you have a function that is too complex to be understandable without multiple return statements, but sometimes it's good to be pragmatic about such things.
If you end up with more than a few returns there may be something wrong with your code. Otherwise I would agree that sometimes it is nice to be able to return from multiple places in a subroutine, especially when it make the code cleaner.
Perl 6: Bad Example
sub Int_to_String( Int i ){
given( i ){
when 0 { return "zero" }
when 1 { return "one" }
when 2 { return "two" }
when 3 { return "three" }
when 4 { return "four" }
...
default { return undef }
}
}
would be better written like this
Perl 6: Good Example
#Int_to_String = qw{
zero
one
two
three
four
...
}
sub Int_to_String( Int i ){
return undef if i < 0;
return undef unless i < #Int_to_String.length;
return #Int_to_String[i]
}
Note this is was just a quick example
I vote for Single return at the end as a guideline. This helps a common code clean-up handling ... For example, take a look at the following code ...
void ProcessMyFile (char *szFileName)
{
FILE *fp = NULL;
char *pbyBuffer = NULL:
do {
fp = fopen (szFileName, "r");
if (NULL == fp) {
break;
}
pbyBuffer = malloc (__SOME__SIZE___);
if (NULL == pbyBuffer) {
break;
}
/*** Do some processing with file ***/
} while (0);
if (pbyBuffer) {
free (pbyBuffer);
}
if (fp) {
fclose (fp);
}
}
This is probably an unusual perspective, but I think that anyone who believes that multiple return statements are to be favoured has never had to use a debugger on a microprocessor that supports only 4 hardware breakpoints. ;-)
While the issues of "arrow code" are completely correct, one issue that seems to go away when using multiple return statements is in the situation where you are using a debugger. You have no convenient catch-all position to put a breakpoint to guarantee that you're going to see the exit and hence the return condition.
The more return statements you have in a function, the higher complexity in that one method. If you find yourself wondering if you have too many return statements, you might want to ask yourself if you have too many lines of code in that function.
But, not, there is nothing wrong with one/many return statements. In some languages, it is a better practice (C++) than in others (C).

Exception handling: Contract vs Exceptional approach

I know two approaches to Exception handling, lets have a look at them.
Contract approach.
When a method does not do what it says it will do in the method header, it will throw an exception. Thus the method "promises" that it will do the operation, and if it fails for some reason, it will throw an exception.
Exceptional approach.
Only throw exceptions when something truly weird happens. You should not use exceptions when you can resolve the situation with normal control flow (If statements). You don't use Exceptions for control flow, as you might in the contract approach.
Lets use both approaches in different cases:
We have a Customer class that has a method called OrderProduct.
contract approach:
class Customer
{
public void OrderProduct(Product product)
{
if((m_credit - product.Price) < 0)
throw new NoCreditException("Not enough credit!");
// do stuff
}
}
exceptional approach:
class Customer
{
public bool OrderProduct(Product product)
{
if((m_credit - product.Price) < 0)
return false;
// do stuff
return true;
}
}
if !(customer.OrderProduct(product))
Console.WriteLine("Not enough credit!");
else
// go on with your life
Here I prefer the exceptional approach, as it is not truly Exceptional that a customer has no money assuming he did not win the lottery.
But here is a situation I err on the contract style.
Exceptional:
class CarController
{
// returns null if car creation failed.
public Car CreateCar(string model)
{
// something went wrong, wrong model
return null;
}
}
When I call a method called CreateCar, I damn wel expect a Car instance instead of some lousy null pointer, which can ravage my running code a dozen lines later. Thus I prefer contract to this one:
class CarController
{
public Car CreateCar(string model)
{
// something went wrong, wrong model
throw new CarModelNotKnownException("Model unkown");
return new Car();
}
}
Which do style do you use? What do you think is best general approach to Exceptions?
I favor what you call the "contract" approach. Returning nulls or other special values to indicate errors isn't necessary in a language that supports exceptions. I find it much easier to understand code when it doesn't have a bunch of "if (result == NULL)" or "if (result == -1)" clauses mixed in with what could be very simple, straightforward logic.
My usual approach is to use contract to handle any kind of error due to "client" invocation, that is, due to an external error (i.e ArgumentNullException).
Every error on the arguments is not handled. An exception is raised and the "client" is in charge of handling it. On the other hand, for internal errors always try to correct them (as if you can't get a database connection for some reason) and only if you can't handle it reraise the exception.
It's important to keep in mind that most unhandled exception at such level will not be able to be handled by the client anyway so they will just probably go up to the most general exception handler, so if such an exception occurs you are probably FUBAR anyway.
I believe that if you are building a class which will be used by an external program (or will be reused by other programs) then you should use the contract approach. A good example of this is an API of any kind.
If you are actually interested in exceptions and want to think about how to use them to construct robust systems, consider reading Making reliable distributed systems in the presence of software errors.
Both approaches are right. What that means is that a contract should be written in such a way as to specify for all cases that are not truly exceptional a behavior that does not require throwing an exception.
Note that some situations may or may not be exceptional based upon what the caller of the code is expecting. If the caller is expecting that a dictionary will contain a certain item, and absence of that item would indicate a severe problem, then failure to find the item is an exceptional condition and should cause an exception to be thrown. If, however, the caller doesn't really know if an item exists, and is equally prepared to handle its presence or its absence, then absence of the item would be an expected condition and should not cause an exception. The best way to handle such variations in caller expectation is to have a contract specify two methods: a DoSomething method and a TryDoSomething method, e.g.
TValue GetValue(TKey Key);
bool TryGetValue(TKey Key, ref TValue value);
Note that, while the standard 'try' pattern is as illustrated above, some alternatives may also be helpful if one is designing an interface which produces items:
// In case of failure, set ok false and return default<TValue>.
TValue TryGetResult(ref bool ok, TParam param);
// In case of failure, indicate particular problem in GetKeyErrorInfo
// and return default<TValue>.
TValue TryGetResult(ref GetKeyErrorInfo errorInfo, ref TParam param);
Note that using something like the normal TryGetResult pattern within an interface will make the interface invariant with respect to the result type; using one of the patterns above will allow the interface to be covariant with respect to the result type. Also, it will allow the result to be used in a 'var' declaration:
var myThingResult = myThing.TryGetSomeValue(ref ok, whatever);
if (ok) { do_whatever }
Not quite the standard approach, but in some cases the advantages may justify it.