Game programming where no "game specific" libraries exist - language-agnostic

If one wanted to program a game in an unusual language, but no library or functions exist to manipulate graphics, how would this be accomplished? By writing your own low level routines?

You are standing by a house. A road runs off to the east, and south there is a narrow path leading around the back of the house.
There is a mailbox here.
What do you do? _

By interfacing to OpenGL, it's graphics-card independent API.
For a concrete example of what that means and how it's done, have a look at the OpenGL bindings for Python
Look here for bindings to other languages.
Why do you have to do this?
Well, graphics programming is highly dependent on the hardware (i.e. graphics card), and there are many of them. OpenGL is the standard language that they all understand. (I think the same can be said about Direct3D, but that's owned by Microsoft, while OpenGL is more open).

Find out how it interfaces with C libraries, then use that to make an interface to OpenGL, DirectX, or OpenAL. Alternatively you can port something else, like say SDLlib. In a weird case you might want to embed a language that has the library you'd like. Say if it's Java3D and you want to compile it with Mono 2.2. I'm not sure that's even possible, but one of the mono-project changes is Java support. Of course on Mono you have other game library options.

If you plan to use graphics hardware, you need to have its drivers and OpenGL or DirectX.

If you're programming this for some exotic piece of limited hardware, there's only so much you could do. If you're simply not given access to draw to the screen other than in some extremely limited manner (perhaps all you can do is render a string of text), then there's nothing you can do.
If you're doing this on an ordinary computer but your language of choice simply doesn't have any OpenGL or DirectX bindings, then you'll need to write some yourself.

Conventional wisdom would suggest to "use the best tool for the job", if there are no existing libraries to manipulate graphics for your language, it's likely not the best tool for the job.

Related

Scala libraries for a GUI with vector graphics

If I wanted to create a "good old" desktop GUI program with some basic selectable vector graphics (arrows, colored boxes, text) to show mostly text and some diagrams (no need for 3D or particles, etc.) that then can be edited by the user, which Scala library would I use, and why? I'd want to build a tool for something similar to drawing diagrams.
Mostly I don't want to use things like D3.js or other web SVG stuff because it is painfully slow and can't show the amounts of content I want it to. But if there are exceptional advantages by using, say, Scala.js, for this purpose, it could be still of interest if there are no better means.
Alternatively, someone can point me to where this had been discussed? Did not find anything on Google or here.
Scala-Swing is a wrapper for Java Swing which is quite nice. As you may know, below Swing lies Java2D, so you will most likely want to look for Java2D based libraries. There aren't that many for Scala that I'm aware of, but more for Java (which you can easily use).
JFreeChart and scala-chart - more for charting
JGraph
JUNG
Processing might have some libraries for your use case
JHotDraw - not sure it's still maintained
NetBeans - not sure it's still maintained
Prefuse
And of course, if it's simple enough, there is nothing wrong with using Java2D directly.

Extending embedded Python in C++ - Design to interact with C++ instances

There are several packages out there that help in automating the task of writing bindings between C\C++ and other languages.
In my case, I'd like to bind Python, some options for such packages are: SWIG, Boost.Python and Robin.
It seems that the straight forward process is to use these packages to create C\C++ linkable libraries (with mostly static functions) and have the higher language be extended using them.
However, my situation is that I already have a developed working system in C++ therefore plan to embed Python into it so that future development will be in Python.
It's not clear to me how, and if at all possible, to use these packages in helping to extend embedded Python in such a way that the Python code would be able to interact with the various Singleton instances already running in the system, and instantiate C++ classes and interact with them.
What I'm looking for is an insight regarding the design best fitted for this situation.
Boost.python lets you do a lot of those things right out of the box, especially if you use smart pointers. You can even inherit from C++ classes in Python, then pass instances of those back to your C++ code and have everything still work. My favorite resource on how to do various stuff is this (especially check out the "How To" section): http://wiki.python.org/moin/boost.python/ .
Boost.python is especially good if you're using smart pointers or intrusive pointers, as those translate transparently into PyObject reference counting. Also, it's very good at making factory functions look like Python constructors, which makes for very clean Python APIs.
If you're not using smart pointers, it's still possible to do all the things you want, but you have to mess with various return and lifetime policies, which can give you a headache.
To make it short: There is the modern alternative pybind11.
Long version: I also had to embed python. The C++ Python interface is small so I decided to use the C Api. That turned out to be a nightmare. Exposing classes lets you write tons of complicated boilerplate code. Boost::Python greatly avoids this by using readable interface definitions. However I found that boost lacks a sophisticated documentation and dor some things you still have to call the Python api. Further their build system seems to give people troubles. I cant tell since i use packages provided by the system. Finally I tried the boost python fork pybind11 and have to say that it is really convenient and fixes some shortcomings of boost like the necessity of the use of the Python Api, ability to use lambdas, the lack of an easy comprehensible documentation and automatic exception translation. Further it is header only and does not pull the huge boost dependency on deployment, so I can definitively recommend it.

What are the pro and cons of using Haxe over Actionscript-3?

I'm thinking about using Haxe in place of AS3.
What are the disadventages of that? I can think about:
Difficulties with using native AS3 libraries.
Difficulity of debugging after language translation.
Haxe is quite young, it may have some rough edges. Does it?
Does any one of you have expirience with Haxe dark sides?
What are the adventages? I've heard:
Performance.
Multiple targets (But I don't see how that is useful)
Better typing that AS3
Maybe better syntax.
Haxe is big enough that there should be more. What are the pros of Haxe?
Edit:
If there are no real disadvantages then why Haxe is not replacing AS3?
Your first point is surely true. Some "native" libraries (such as Flex) may require a little of gym to be included in your project. In the vast majority of cases it is a quite smooth process. Haxe supports multiple -swf-lib which permit to have the code of the imported assets immediately available in your application. Note that the imported libs are not just embedded but are recognized as code asset, so if your IDE is integrated with Haxe you will have type completion for that too.
About the debugging there are no issues at all for the translation, that because the language is not translated to AS3 but directly compiled to AVM2 bytecode. When the -debug switch is on, the full stack trace with source code references (filename, line and position) is fully preserved. An uncaught exception will point you exactly at the line of code that generated it.
Haxe is not really that young and for sure the AVM2 output is the one with the best support of all. There are no rough edges in my opinion.
Of the pros you have outlined I want to underline that multiple targets can be huge. Of course to take really advantage of it you can't really rely on external libs specific for AS3. Even so there are always big chunks of code that you want/can reuse across projects.
To mention a few other advantages:
macros are a recent addition which add a huge pool of possibilities.
Molehill API is already available for Haxe (SVN version) and Nicolas is working on a Shader system that makes it even bigger.
Haxe is evolving constantly bringing new (important) features at each release.

Framework vs. Toolkit vs. Library [duplicate]

This question already has answers here:
What is the difference between a framework and a library? [closed]
(22 answers)
Closed 6 years ago.
What is the difference between a Framework, a Toolkit and a Library?
The most important difference, and in fact the defining difference between a library and a framework is Inversion of Control.
What does this mean? Well, it means that when you call a library, you are in control. But with a framework, the control is inverted: the framework calls you. (This is called the Hollywood Principle: Don't call Us, We'll call You.) This is pretty much the definition of a framework. If it doesn't have Inversion of Control, it's not a framework. (I'm looking at you, .NET!)
Basically, all the control flow is already in the framework, and there's just a bunch of predefined white spots that you can fill out with your code.
A library on the other hand is a collection of functionality that you can call.
I don't know if the term toolkit is really well defined. Just the word "kit" seems to suggest some kind of modularity, i.e. a set of independent libraries that you can pick and choose from. What, then, makes a toolkit different from just a bunch of independent libraries? Integration: if you just have a bunch of independent libraries, there is no guarantee that they will work well together, whereas the libraries in a toolkit have been designed to work well together – you just don't have to use all of them.
But that's really just my interpretation of the term. Unlike library and framework, which are well-defined, I don't think that there is a widely accepted definition of toolkit.
Martin Fowler discusses the difference between a library and a framework in his article on Inversion of Control:
Inversion of Control is a key part of
what makes a framework different to a
library. A library is essentially a
set of functions that you can call,
these days usually organized into
classes. Each call does some work and
returns control to the client.
A framework embodies some abstract
design, with more behavior built in.
In order to use it you need to insert
your behavior into various places in
the framework either by subclassing or
by plugging in your own classes. The
framework's code then calls your code
at these points.
To summarize: your code calls a library but a framework calls your code.
Diagram
If you are a more visual learner, here is a diagram that makes it clearer:
(Credits: http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks)
The answer provided by Barrass is probably the most complete. However, the explanation could easily be stated more clearly. Most people miss the fact that these are all nested concepts. So let me lay it out for you.
When writing code:
eventually you discover sections of code that you're repeating in your program, so you refactor those into Functions/Methods.
eventually, after having written a few programs, you find yourself copying functions you already made into new programs. To save yourself time you bundle those functions into Libraries.
eventually you find yourself creating the same kind of user interfaces every time you make use of certain libraries. So you refactor your work and create a Toolkit that allows you to create your UIs more easily from generic method calls.
eventually, you've written so many apps that use the same toolkits and libraries that you create a Framework that has a generic version of this boilerplate code already provided so all you need to do is design the look of the UI and handle the events that result from user interaction.
Generally speaking, this completely explains the differences between the terms.
Introduction
There are various terms relating to collections of related code, which have both historical (pre-1994/5 for the purposes of this answer) and current implications, and the reader should be aware of both, particularly when reading classic texts on computing/programming from the historic era.
Library
Both historically, and currently, a library is a collection of code relating to a specific task, or set of closely related tasks which operate at roughly the same level of abstraction. It generally lacks any purpose or intent of its own, and is intended to be used by (consumed) and integrated with client code to assist client code in executing its tasks.
Toolkit
Historically, a toolkit is a more focused library, with a defined and specific purpose. Currently, this term has fallen out of favour, and is used almost exclusively (to this author's knowledge) for graphical widgets, and GUI components in the current era. A toolkit will most often operate at a higher layer of abstraction than a library, and will often consume and use libraries itself. Unlike libraries, toolkit code will often be used to execute the task of the client code, such as building a window, resizing a window, etc. The lower levels of abstraction within a toolkit are either fixed, or can themselves be operated on by client code in a proscribed manner. (Think Window style, which can either be fixed, or which could be altered in advance by client code.)
Framework
Historically, a framework was a suite of inter-related libraries and modules which were separated into either 'General' or 'Specific' categories. General frameworks were intended to offer a comprehensive and integrated platform for building applications by offering general functionality, such as cross platform memory management, multi-threading abstractions, dynamic structures (and generic structures in general). Historical general frameworks (Without dependency injection, see below) have almost universally been superseded by polymorphic templated (parameterised) packaged language offerings in OO languages, such as the STL for C++, or in packaged libraries for non-OO languages (guaranteed Solaris C headers). General frameworks operated at differing layers of abstraction, but universally low level, and like libraries relied on the client code carrying out it's specific tasks with their assistance.
'Specific' frameworks were historically developed for single (but often sprawling) tasks, such as "Command and Control" systems for industrial systems, and early networking stacks, and operated at a high level of abstraction and like toolkits were used to carry out execution of the client codes tasks.
Currently, the definition of a framework has become more focused and taken on the "Inversion of Control" principle as mentioned elsewhere as a guiding principle, so program flow, as well as execution is carried out by the framework. Frameworks are still however targeted either towards a specific output; an application for a specific OS for example (MFC for MS Windows for example), or for more general purpose work (Spring framework for example).
SDK: "Software Development Kit"
An SDK is a collection of tools to assist the programmer to create and deploy code/content which is very specifically targeted to either run on a very particular platform or in a very particular manner. An SDK can consist of simply a set of libraries which must be used in a specific way only by the client code and which can be compiled as normal, up to a set of binary tools which create or adapt binary assets to produce its (the SDK's) output.
Engine
An Engine (In code collection terms) is a binary which will run bespoke content or process input data in some way. Game and Graphics engines are perhaps the most prevalent users of this term, and are almost universally used with an SDK to target the engine itself, such as the UDK (Unreal Development Kit) but other engines also exist, such as Search engines and RDBMS engines.
An engine will often, but not always, allow only a few of its internals to be accessible to its clients. Most often to either target a different architecture, change the presentation of the output of the engine, or for tuning purposes. Open Source Engines are by definition open to clients to change and alter as required, and some propriety engines are fixed completely. The most often used engines in the world however, are almost certainly JavaScript Engines. Embedded into every browser everywhere, there are a whole host of JavaScript engines which will take JavaScript as an input, process it, and then output to render.
API: "Application Programming Interface"
The final term I am answering is a personal bugbear of mine: API, was historically used to describe the external interface of an application or environment which, itself was capable of running independently, or at least of carrying out its tasks without any necessary client intervention after initial execution. Applications such as Databases, Word Processors and Windows systems would expose a fixed set of internal hooks or objects to the external interface which a client could then call/modify/use, etc to carry out capabilities which the original application could carry out. API's varied between how much functionality was available through the API, and also, how much of the core application was (re)used by the client code. (For example, a word processing API may require the full application to be background loaded when each instance of the client code runs, or perhaps just one of its linked libraries; whereas a running windowing system would create internal objects to be managed by itself and pass back handles to the client code to be utilised instead.
Currently, the term API has a much broader range, and is often used to describe almost every other term within this answer. Indeed, the most common definition applied to this term is that an API offers up a contracted external interface to another piece of software (Client code to the API). In practice this means that an API is language dependent, and has a concrete implementation which is provided by one of the above code collections, such as a library, toolkit, or framework.
To look at a specific area, protocols, for example, an API is different to a protocol which is a more generic term representing a set of rules, however an individual implementation of a specific protocol/protocol suite that exposes an external interface to other software would most often be called an API.
Remark
As noted above, historic and current definitions of the above terms have shifted, and this can be seen to be down to advances in scientific understanding of the underlying computing principles and paradigms, and also down to the emergence of particular patterns of software. In particular, the GUI and Windowing systems of the early nineties helped to define many of these terms, but since the effective hybridisation of OS Kernel and Windowing system for mass consumer operating systems (bar perhaps Linux), and the mass adoption of dependency injection/inversion of control as a mechanism to consume libraries and frameworks, these terms have had to change their respective meanings.
P.S. (A year later)
After thinking carefully about this subject for over a year I reject the IoC principle as the defining difference between a framework and a library. There ARE a large number of popular authors who say that it is, but there are an almost equal number of people who say that it isn't. There are simply too many 'Frameworks' out there which DO NOT use IoC to say that it is the defining principle. A search for embedded or micro controller frameworks reveals a whole plethora which do NOT use IoC and I now believe that the .NET language and CLR is an acceptable descendant of the "general" framework. To say that IoC is the defining characteristic is simply too rigid for me to accept I'm afraid, and rejects out of hand anything putting itself forward as a framework which matches the historical representation as mentioned above.
For details of non-IoC frameworks, see, as mentioned above, many embedded and micro frameworks, as well as any historical framework in a language that does not provide callback through the language (OK. Callbacks can be hacked for any device with a modern register system, but not by the average programmer), and obviously, the .NET framework.
A library is simply a collection of methods/functions wrapped up into a package that can be imported into a code project and re-used.
A framework is a robust library or collection of libraries that provides a "foundation" for your code. A framework follows the Inversion of Control pattern. For example, the .NET framework is a large collection of cohesive libraries in which you build your application on top of. You can argue there isn't a big difference between a framework and a library, but when people say "framework" it typically implies a larger, more robust suite of libraries which will play an integral part of an application.
I think of a toolkit the same way I think of an SDK. It comes with documentation, examples, libraries, wrappers, etc. Again, you can say this is the same as a framework and you would probably be right to do so.
They can almost all be used interchangeably.
very, very similar, a framework is usually a bit more developed and complete then a library, and a toolkit can simply be a collection of similar librarys and frameworks.
a really good question that is maybe even the slightest bit subjective in nature, but I believe that is about the best answer I could give.
Library
I think it's unanimous that a library is code already coded that you can use so as not to have to code it again. The code must be organized in a way that allows you to look up the functionality you want and use it from your own code.
Most programming languages come with standard libraries, especially some code that implements some kind of collection. This is always for the convenience that you don't have to code these things yourself. Similarly, most programming languages have construct to allow you to look up functionality from libraries, with things like dynamic linking, namespaces, etc.
So code that finds itself often needed to be re-used is great code to be put inside a library.
Toolkit
A set of tools used for a particular purpose. This is unanimous. The question is, what is considered a tool and what isn't. I'd say there's no fixed definition, it depends on the context of the thing calling itself a toolkit. Example of tools could be libraries, widgets, scripts, programs, editors, documentation, servers, debuggers, etc.
Another thing to note is the "particular purpose". This is always true, but the scope of the purpose can easily change based on who made the toolkit. So it can easily be a programmer's toolkit, or it can be a string parsing toolkit. One is so broad, it could have tool touching everything programming related, while the other is more precise.
SDKs are generally toolkits, in that they try and bundle a set of tools (often of multiple kind) into a single package.
I think the common thread is that a tool does something for you, either completely, or it helps you do it. And a toolkit is simply a set of tools which all perform or help you perform a particular set of activities.
Framework
Frameworks aren't quite as unanimously defined. It seems to be a bit of a blanket term for anything that can frame your code. Which would mean: any structure that underlies or supports your code.
This implies that you build your code against a framework, whereas you build a library against your code.
But, it seems that sometimes the word framework is used in the same sense as toolkit or even library. The .Net Framework is mostly a toolkit, because it's composed of the FCL which is a library, and the CLR, which is a virtual machine. So you would consider it a toolkit to C# development on Windows. Mono being a toolkit for C# development on Linux. Yet they called it a framework. It makes sense to think of it this way too, since it kinds of frame your code, but a frame should more support and hold things together, then do any kind of work, so my opinion is this is not the way you should use the word.
And I think the industry is trying to move into having framework mean an already written program with missing pieces that you must provide or customize. Which I think is a good thing, since toolkit and library are great precise terms for other usages of "framework".
Framework: installed on you machine and allowing you to interact with it. without the framework you can't send programming commands to your machine
Library: aims to solve a certain problem (or several problems related to the same category)
Toolkit: a collection of many pieces of code that can solve multiple problems on multiple issues (just like a toolbox)
It's a little bit subjective I think. The toolkit is the easiest. It's just a bunch of methods, classes that can be use.
The library vs the framework question I make difference by the way to use them. I read somewhere the perfect answer a long time ago. The framework calls your code, but on the other hand your code calls the library.
In relation with the correct answer from Mittag:
a simple example. Let's say you implement the ISerializable interface (.Net) in one of your classes. You make use of the framework qualities of .Net then, rather than it's library qualities. You fill in the "white spots" (as mittag said) and you have the skeleton completed. You must know in advance how the framework is going to "react" with your code. Actually .net IS a framework, and here is where i disagree with the view of Mittag.
The full, complete answer to your question is given very lucidly in Chapter 19 (the whole chapter devoted to just this theme) of this book, which is a very good book by the way (not at all "just for Smalltalk").
Others have noted that .net may be both a framework and a library and a toolkit depending on which part you use but perhaps an example helps. Entity Framework for dealing with databases is a part of .net that does use the inversion of control pattern. You let it know your models it figures out what to do with them. As a programmer it requires you to understand "the mind of the framework", or more realistically the mind of the designer and what they are going to do with your inputs. datareader and related calls, on the other hand, are simply a tool to go get or put data to and from table/view and make it available to you. It would never understand how to take a parent child relationship and translate it from object to relational, you'd use multiple tools to do that. But you would have much more control on how that data was stored, when, transactions, etc.

runnable pseudocode?

I am attempting to determine prior art for the following idea:
1) user types in some code in a language called (insert_name_here);
2) user chooses a destination language from a list of well-known output candidates (javascript, ruby, perl, python);
3) the processor translates insert_name_here into runnable code in destination language;
4) the processor then runs the code using the relevant system call based on the chosen language
The reason this works is because there is a pre-established 1 to 1 mapping between all language constructs from insert_name_here to all supported destination languages.
(Disclaimer: This obviously does not produce "elegant" code that is well-tailored to the destination language. It simply does a rudimentary translation that is runnable. The purpose is to allow developers to get a quick-and-dirty implementation of algorithms in several different languages for those cases where they do not feel like re-inventing the wheel, but are required for whatever reason to work with a specific language on a specific project.)
Does this already exist?
The .NET CLR is designed such that C++.Net, C#.Net, and VB.Net all compile to the same machine language, and you can "decompile" that CLI back in to any one of those languages.
So yes, I would say it already exists though not exactly as you describe.
There are converters available for different languages. The problem you are going to have is dealing with libraries. While mapping between language statements might be easy, finding mappings between library functions will be very difficult.
I'm not really sure how useful that type of code generator would be. Why would you want to write something in one language and then immediately convert it to something else? I can see the rationale for 4th Gen languages that convert diagrams or models into code but I don't really see the point of your effort.
Yes, a program that transform a program from one representation to another does exist. It's called a "compiler".
And as to your question whether that is always possible: as long as your target language is at least as powerful as the source language, then it is possible. So, if your target language is Turing-complete, then it is always possible, because there can be no language that is more powerful than a Turing-complete language.
However, there does not need to be a dumb 1:1 mapping.
For example: the Microsoft Volta compiler which compiles CIL bytecode to JavaScript sourcecode has a problem: .NET has threads, JavaScript doesn't. But you can implement threads with continuations. Well, JavaScript doesn't have continuations either, but you can implement continuations with exceptions. So, Volta transforms the CIL to CPS and then implements CPS with exceptions. (Newer versions of JavaScript have semi-coroutines in the form of generators; those could also be used, but Volta is intended to work across a wide range of JavaScript versions, including obviously JScript in Internet Explorer.)
This seems a little bizarre. If you're using the term "prior art" in its most common form, you're discussing a potentially patentable idea. If that is the case, you have:
1/ Published the idea, starting the clock running on patent filing - I'm assuming, perhaps incorrectly, that you're based in the U.S. Other jurisdictions may have other rules.
2/ Told the entire planet your idea, which means it's pretty much useless to try and patent it, unless you act very fast.
If you're not thinking about patenting this and were just using the term "prior art" in a laypersons sense, I apologize. I work for a company that takes patents very seriously and it's drilled into us, in great detail, what we're allowed to do with information before filing.
Having said that, patentable ideas must be novel, useful and non-obvious. I would think that your idea would not pass on the third of these since you're describing a language translator which would have the prior art of the many pascal-to-c and fortran-to-c converters out there.
The one glimmer of hope would be the ability of your idea to generate one of multiple output languages (which p2c and f2c don't do) but I think even that would be covered by the likes of cross compilers (such as gcc) which turn source into one of many different object languages.
IBM has a product called Visual Age Generator in which you code in one (proprietary) language and it's converted into COBOL/C/Java/others to run on different target platforms from PCs to the big honkin' System z mainframes, so there's your first problem (thinking about patenting an idea that IBM, the biggest patenter in the world, is already using).
Tons of them. p2c, f2c, and the original implementation s of C++ and Objective C strike me immediately. Beyond that, it's kind of hard to distinguish what you're describing from any compiler, especially for us old guys whose compilers generated ASM code for an intermediate represetation anyway.