Code Golf: Ulam Spiral - language-agnostic

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
The Challenge
The shortest code by character count to output Ulam's spiral with a spiral size given by user input.
Ulam's spiral is one method to map prime numbers. The spiral starts from the number 1 being in the center (1 is not a prime) and generating a spiral around it, marking all prime numbers as the character '*'. A non prime will be printed as a space ' '.
alt text http://liranuna.com/junk/ulam.gif
Test cases
Input:
2
Output:
* *
*
*
Input:
3
Output:
* *
* *
* **
*
*
Input:
5
Output:
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
Code count includes input/output (i.e full program).

Python - 203 Characters
_________________________________________________________
/x=input();y=x-1;w=x+y;A=[];R=range;k,j,s,t=R(4) \
| for i in R(2,w*w): |
| A+=[(x,y)]*all(i%d for d in R(2,i)) |
| if i==s:j,k,s,t=k,-j,s+t/2,t+1 |
| x+=j;y+=k |
| for y in R(w):print"".join(" *"[(x,y)in A]for x in R(w)) |
\_________________________________________________________/
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
x=input();y=x-1;w=x+y
A=[];R=range;k,j,s,t=R(4)
for i in R(2,w*w):
A+=[(x,y)]*all(i%d for d in R(2,i))
if i==s:j,k=k,-j;s,t=s+t/2,t+1
x+=j;y+=k
for y in R(w):print"".join(" *"[(x,y)in A]for x in R(w))
How it works
The idea is to fill A with x,y coords that need to be printed as '*'
The algorithm starts at the cell corresponding to 2, so the special case of testing 1 for primality is avoided.
x,y is the cell of interest
j,k keep track of whether we need to inc or dec x or y to get to the next cell
s is the value of i at the next corner
t keeps track of the increment to s
all(i%d for d in R(2,i)) does the primality check
The last line is rather clumsy. It iterates over all the cells and decides whether to place a space or an asterisk

MATLAB: 182 167 156 characters
Script ulam.m:
A=1;b=ones(1,4);for i=0:(input('')-2),c=b(4);b=b+i*8+(2:2:8);A=[b(2):-1:b(1);(b(2)+1:b(3)-1)' A (b(1)-1:-1:c+1)';b(3):b(4)];end;disp(char(isprime(A)*10+32))
And formatted a little nicer:
A = 1;
b = ones(1,4);
for i = 0:(input('')-2),
c = b(4);
b = b+i*8+(2:2:8);
A = [b(2):-1:b(1); (b(2)+1:b(3)-1)' A (b(1)-1:-1:c+1)'; b(3):b(4)];
end;
disp(char(isprime(A)*10+32))
Test cases:
>> ulam
2
* *
*
*
>> ulam
3
* *
* *
* **
*
*
>> ulam
5
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *

Golfscript - 92 Characters
~.(:S+,:R{S\-:|;R{S-:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+:$,{)$\%!},,2==}%n}%
97 characters
~.(:S+,:R{S\-:|;R{S-:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
99 characters
~.(:S+,{S-}%:R{~):|;R{:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
100 characters
~:S.(+,{S(-}%:R{~):|;R{:$|>' *'1/[|$.|]2/#:d|~)$<!^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%
101 characters
~:S.(+,{S(-}%:R{~):v;R{:$v>:d;' *'1/[v$.v]2/v~)$<!d^=~:$;:y.*4*$-y-)2d*$y-*+.1=3*+:$,2>{$\%!},!=}%n}%

C, 208 206 201 200 199 196 194 193 194 193 188 185 183 180 176 Bytes
(if newlines are removed):
main(int u,char**b){
for(int v,x,y,S=v=**++b-48;--v>-S;putchar(10))
for(u=-S;++u<S;){
x=u;y=v;v>-u^v<u?:(x=v,y=u);
x=4*y*y-x-y+1+2*(v<u)*(x-y);
for(y=1;x%++y;);
putchar(y^x?32:42);}}
Compiled with
> gcc -std=c99 -o ulam ulam.c
Warning. This program is slow, because is does a trial division up to 2^31. But is does produce the required output:
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
In nicely formatted C and with redundant #includes:
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char** argv) {
int u,v,x,y,d,S = atoi(argv[1]);
/* v is the y coordinate of grid */
for (v=S; v>=-S; --v)
/* u is the x coordinate. The second operand (!putchar...) of the boolean or
* is only ececuted a a end of a x line and it prints a newline (10) */
for (u=-S; u<=S || !putchar(10); ++u) {
/* x,y are u,v after "normalizing" the coordintes to quadrant 0
normalizing is done with the two comparisions, swapping and and
an additional term later */
d = v<u;
x=u;
y=v;
if (v<=-u ^ d) {
x=v;
y=u;
}
/* reuse x, x is now the number at grid (u,v) */
x = 4*y*y -x-y+1 +2*d*(x-y);
/* primality test, y resused as loop variable, won't win a speed contest */
for (y=2; y<x && x%y; ++y)
;
putchar(y!=x?' ':'*');
}
}
It works by transforming the coordinates of the grid to the appropriate number and then performing the primality test, intead of drawing in a snake-like manner. The different equations for the four "quadrants" can be collapsed into one with swapping x and y and an additional term for "backward counting".

Ruby 1.8.7, 194 chars
n=2*gets.to_i-1
r=n**2
l,c=[nil]*r,r/2
r.times{|i|l[c]=i+1;c=i==0||l[c-n]&&!l[c+1]?c+1:l[c-1]&&!l[c-n]?c-n:l[c+n]?c-1:c+n}
r.times{|i|print"1"*l[i]!~/^1?$|^(11+?)\1+$/?'*':' ',i%n==n-1?"\n":''}
For some reason, ruby1.9 wants another space on line 4:
r.times{|i|l[c]=i+1;c=i==0||l[c-n]&&!l[c+1]?c+1:l[c-1]&&!l[c-n]?c-n :l[c+n]?c-1:c+n}

Python - 171
drhirsch's C ported to python.
S=input();R=range(-S+1,S)
for w in R:
p="";v=-w
for u in R:d=v<u;x,y=[(u,v),(v,u)][(w>=u)^d];x=4*y*y-x-y+1+2*d*(x-y);p+=" *"[(x>1)*all(x%f for f in range(2,x))]
print p
echo 20 |python ulam.py
* * * * * *
* * * * * *
* * * * *
* * * * * *
* * * *
* * * * * *
* * * * * *
* * * * * * *
* * * * * * *
* * * * *
* * * * * * * *
* * * * * * *
* * * * *
* * * * * *
* * * * * * * * *
* * *
* * * * * * * * * *
* * * * * * * * * *
* * * *
* * ** * * * * * *
* * * *
* *
* * * * * * * * * * *
* * * * * * * *
* *
* * * * * * * *
* * * * * * *
* * * * *
* * * * * *
* * * * * * * * *
* * * *
* * * * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * *
* * * * * *
* *
* * * * * *

MATLAB, 56 characters
based on #gnovice solution, improved by using MATLAB's spiral function :)
disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
Test Cases:
>> disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
2
* *
*
*
>> disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
3
* *
* *
* **
*
*
>> disp(char(isprime(flipud(spiral(2*input('')-1)))*10+32))
5
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *

J solution: 197 173 165 161 bytes (so far)
this does not use the method mentioned in the comments to the OP
p=:j./<.-:$g=:1$~(,])n=:<:+:".1!:1]3
d=:j.r=:1
(m=:3 :'if.y<*:n do.if.0=t=:<:t do.d=:d*0j1[t=:<.r=:r+0.5 end.m>:y[g=:y(<+.p=:p+d)}g end.')t=:2
1!:2&2(1 p:g){' *'

My first code golf!
Ruby, 309 301 283 271 265 characters
s=gets.to_i;d=s*2-1;a=Array.new(d){' '*d}
e=d**2;p='*'*e;2.upto(e){|i|2.upto(e/i){|j|p[i*j-1]=' '}};p[0]=' '
s.times{|i|k=s-i-1;l=2*i;m=l+1;o=l-1
m.times{|j|n=j+k;a[k][n]=p[l**2-j];a[n][k]=p[l**2+j];a[k+l][n]=p[m**2-m+j]}
l.times{|j|a[j+k][k+l]=p[o**2+o-j]}}
puts a

Python 2.x, 220C 213C 207C 204C 201C 198C 196C 188C
Special thanks to gnibbler for some hints in #stackoverflow on Freenode. Output includes a leading and trailing newline.
import math
v=input()*2
w=v-1
a=['\n']*w*v
p=w*v/2
for c in range(1,w*w):a[p]=' *'[(c>1)*all(c%d for d in range(2,c))];x=int(math.sqrt(c-1));p+=(-1)**x*((x*x<c<=x*x+x)*w+1)
print''.join(a)
(Python 3 compatibility would require extra chars; this uses input, the print statement and / for integer division.)

Ruby - 158 Characters
Same algorithm as this one, just the prime test is different
p=(v=(w=gets.to_i*2)-1)*w/2-1
a='
'*v*w
d=0
(v*v).times{|i|a[p]="1"*(i+1)!~/^1?$|^(11+?)\1+$/?42:32;d=(a[p+(z=[w,-1,-w,1])[d-1]]<32)?(d-1):d%4;p+=z[d]}
puts a

Haskell - 224 characters
(%)=zipWith(++)
r x=[x]
l 1=r[1]
l n=r[a,a-1..b]++(m r[a+1..]%l s%m r[b-1,b-2..])++r[d-s*2..d]where{d=(n*2-1)^2;b=d-s*6;a=d-s*4;s=n-1}
p[_]='*'
p _=' '
i n=p[x|x<-[2..n],n`mod`x==0]
m=map
main=interact$unlines.m(m i).l.read
i'm not the best at haskell so there is probably some more shrinkage that can occur here
output from echo 6 | runghc ulam.hs
* *
* *
* * * *
* * *
* * *
* ** *
* * *
* *
* * * *
* *
*
this is a different algorithm (similar to #drhirsch's) unfortunately i cannot seem to get it below 239 characters
p[_]='*'
p _=' '
main=interact$unlines.u.read
i n=p[x|x<-[2..n],n`mod`x==0]
u(n+1)=map(map(i.f.o).zip[-n..n].replicate((n+1)*2-1))[n,n-1..(-n)]
f(x,y,z)=4*y*y-x-y+1+if z then 2*(x-y)else 0
o(u,v)=if(v> -u)==(v<u)then(v,u,v<u)else(u,v,v<u)

First post! (oh wait, this isn't SlashDot?)
My entry for Team Clojure, 685 528 characters.
(defn ulam[n] (let [z (atom [1 0 0 {[0 0] " "}])
m [[0 1 1 0][2 -1 0 -1][2 0 -1 0][2 0 0 1][2 0 1 0]]
p (fn [x] (if (some #(zero? (rem x %)) (range 2 x)) " " "*"))]
(doseq [r (range 1 (inc n)) q (range (count m)) [a b dx dy] [(m q)]
s (range (+ (* a r) b))]
(let [i (inc (first #z)) x (+ dx (#z 1)) y (+ dy (#z 2))]
(reset! z [i x y (assoc (last #z) [x y] (p i))])))
(doseq [y (range (- n) (inc n))] (doseq [x (range (- n) (inc n))]
(print ((last #z) [x y]))) (println))))
(ulam (dec (.nextInt (java.util.Scanner. System/in))))---
Input:
5
Output:
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *
Input:
10
Output:
* * * *
* * *
* * *
* * *
* * * *
* * *
* * * * * *
* * * * *
* * *
* * ** * * *
* * *
* *
* * * * * *
* * * *
* *
* * * * *
* *
* * *
* * * *

Not as beautiful as the previous C entry, but here's mine.
note: I'm posting because it takes a different approach than the previous one, mainly
there's no coordinate remapping
it gives the same results as the tests
it works with input > 9 (two digits - no -47 trick)
enum directions_e { dx, up, sx, dn } direction;
int main (int argc, char **argv) {
int len = atoi(argv[1]);
int offset = 2*len-1;
int size = offset*offset;
char *matrix = malloc(size);
int startfrom = 2*len*(len-1);
matrix[startfrom] = 1;
int next = startfrom;
int count = 1;
int i, step = 1;
direction = dx ;
for (;; step++ )
do {
for ( i = 0 ; i < step ; i++ ) {
switch ( direction ) {
case dx:
next++;
break;
case up:
next = next - offset;
break;
case sx:
next--;
break;
case dn:
next = next + offset;
}
int div = ++count;
do {
div--;
} while ( count % div );
if ( div > 1 ) {
matrix[next] = ' ';
}
else {
matrix[next] = '*';
}
if (count >= size) goto dontusegoto;
}
direction = ++direction % 4;
} while ( direction %2);
dontusegoto:
for ( i = 0 ; i < size ; i++ ) {
putchar(matrix[i]);
if ( !((i+1) % offset) ) putchar('\n');
}
return 0;
}
which, adequately translated in unreadable C, becomes 339 chars.
compile with: gcc -o ulam_compr ulam_compr.c works on osx
i686-apple-darwin9-gcc-4.0.1 (GCC) 4.0.1 (Apple Inc. build 5465)
and debian Lenny.
main(int a,char**v){
int l=atoi(v[1]),o=2*l-1,z=o*o,n=2*l*(l-1),c=1,i,s=1,d;
char*m=malloc(z);
m[n]=1;
for(;;s++)do{
for(i=0;i<s;i++){
if(d==0)n++;
else if(d==1)n-=o;
else if(d==2)n--;
else n+=o;
int j=++c;
while(c%--j);
if(j>1)m[n]=' ';else m[n]='*';
if(c>=z)goto g;
}d=++d%4;}while(d%2);
g:for(i=0;i<z;i++){
putchar(m[i]);
if(!((i+1)%o))putchar('\n');
}
}
Here is some output:
$ ./ulam_compr 3
* *
* *
* **
*
*
$ ./ulam_compr 5
* *
* *
* * *
* * *
* ** *
* *
* *
* *
* *

Python - 176
This one starts with a big long list of newline characters and replaces all of them except for the ones that are needed at the end of the lines.
Starting at the centre, the algorithm peeps around the lefthand corner at each step. If there is a newline character there, turn left otherwise keep going forward.
w=input()*2;v=w-1;a=['\n']*v*w;p=w/2*v-1;d=0;z=[w,-1,-w,1]
for i in range(v*v):a[p]=' *'[i and all((i+1)%f for f in range(2,i))];d=d%4-(a[p+z[d-1]]<' ');p+=z[d]
print"".join(a)
Python - 177
Using a string avoids "join" but ends up one byte longer since the string is immutable
w=input()*2;v=w-1;a='\n'*v*w;p=w/2*v-1;d=0;z=[w,-1,-w,1]
for i in range(v*v):a=a[:p]+' *'[i and all((i+1)%f for f in range(2,i))]+a[p+1:];d=d%4-(a[p+z[d-1]]<' ');p+=z[d]
print a

Python, 299 characters:
from sys import *
def t(n):
if n==1:return ' '
for i in range(2,n):
if n%i==0:return ' '
return '*'
i=int(stdin.readline())
s=i*2-1
o=['\n']*(s+1)*s
c=1
g=2
d=0
p=(s+2)*(i-1)
for n in range(s**2):
o[p]=t(n+1);p+=[1,-s-1,-1,s+1][d%4];g-=1
if g==c:d+=1
if g==0:d+=1;c+=1;g=2*c
print ''.join(o)

Lua, 302 characters
s=...t={" "}n=2 function p()for j=2,n-1 do if n%j==0 then n=n+1 return" "end
end n=n+1 return"*"end for i=2,s do for k=#t,1,-1 do t[k+1]=t[k]..p()end
t[1]=""for k=1,i*2-1 do t[1]=p()..t[1]end for k=2,#t do t[k]=p()..t[k]end
t[#t+1]=""for k=1,i*2-1 do t[#t]=t[#t]..p()end end print(table.concat(t,"\n"))
Output from lua ulam.lua 6:
* *
* *
* * * *
* * *
* * *
* ** *
* * *
* *
* * * *
* *
*

Python 284 266 256 243 242 240 char
I wanted to try recursion, I'm sure it may be heavily shortened:
r=range
def f(n):
if n<2:return[[4]]
s=2*n-1;z=s*s;c=[r(z-2*s+2,z-3*s+2,-1)];e=1
for i in f(n-1):c+=[[c[0][0]+e]+i+[c[0][-1]-e]];e+=1
c+=[r(z-s+1,z+1)];return c
for l in f(input()):print''.join(' *'[all(x%f for f in r(2,x))]for x in l)
edited under suggestion in comments

Mathematica 243
l = Length; t = Table; f = Flatten;
h#m_ := With[{x = l#m[[1]], y = l#m}, f[{{Reverse#t[w + y + (x y), {w, x + 2}]},
t[f[{(x y) + x + y + 2 + w, m[[w]], (x y) + y - w + 1}], {w, y}],
{t[2 + y + x + y + w + (x y), {w, x + 2}]}}, 1]];
m_~g~z_ := Nest[h, m, z] /. {_?PrimeQ -> "\[Bullet]", _Integer -> ""};
Grid[{{1}}~g~#, Frame -> All] &
Usage
13 windings:
Grid[{{1}}~g~#, Frame -> All] &[13]

Related

MySQL - MOD() return 1 instead of 0

I have the following MySQL code that according to me should return 0:
mod( mod((180 / (30.4166666667 * 24 * 60)),1) * 30.4166666667,1) * 24 as HoursWorked
=> return 3.000
mod(mod(mod((180 / (30.4166666667 * 24 * 60)),1) * 30.4166666667,1) * 24,1) as ModHoursWorked
=> return 1
What am I missing?
the division must be floored
select mod(mod(mod(( floor(180 / (30.4166666667 * 24 * 60)) ),1) * 30.4166666667,1) * 24,1) ;
This worked:
SELECT truncate(mod(mod(mod((180 / (30.4166666667 * 24 * 60)),1) * 30.4166666667, 1) * 24, 1), 0) AS ModHoursWorked; => return 0

Octave goes in Waiting... when solve() function is used

I've installed and loaded the symbolic package that becomes available from optim package to obtain the syms function (like in MATLAB) but when I use solve() function the command window goes in Waiting mode like
Waiting..........
My code is given below:
syms s T K D1 D2 D3 theta1 theta2 theta3 J1 J2 J3
eq1 = (s * D1 + K + J1 * s ^ 2)* theta1 - K * theta2 == T;
eq2 = -K * theta1 + (J2 * s ^ 2 + K + D2 * s) * theta2 - D2 * s * theta3 == 0;
eq3 = -D2 * s * theta2 + (D3 * s + J3 * s ^ 2 + D2 * s) * theta3 == 0;
S = solve(eq1, eq2, eq3)
but if I manually solve it by inverse method, it gives the answer instantly. Kindly help to solve this bug.

Apache POI rate formula not working if data is big

Rate Formula is not working as expected for big values...
RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0) in physical file it returns 0.05819488005
if the same formula we tried to set through POI returns 0.009056339275922086..
Even we tried to save the excel and open same 0.009056339275922086 is returned..
Code used to set in POI :
XSSFWorkbook workbook = new XSSFWorkbook();
XSSFRow row = sheet.createRow(1);
XSSFCell cell = row.createCell(1);
cell.setCellType(CellType.NUMERIC);
cell.setCellFormula("RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0)");
FormulaEvaluator evaluator = workbook.getCreationHelper().createFormulaEvaluator();
evaluator.evaluateInCell(cell);
cell.getNumericCellValue();
The Rate function of apache poi states that it "// find root by Newton secant method". That's nonsense since Secant method is only a Quasi-Newton method. And "If the initial values are not close enough to the root, then there is no guarantee that the secant method converges.".
So the default guess of 0.1 seems not "close enough" and so if we are using cell.setCellFormula("RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0, 0, 0.06)"); - note the explicit setting of type and guess properties and having the guess property "close enough" to the result of 0.05819488005- then the formula evaluates properly.
If apache poi really would use Newton's method, then the function would evaluate properly also using the default guess of 0.1. The disadvantage of Newton's method is that it requires the evaluation of both f and its derivative f′ at every step. So it may be slower than the Secant method in some cases.
Example:
import java.io.FileOutputStream;
import org.apache.poi.ss.usermodel.*;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
import org.apache.poi.xssf.usermodel.XSSFSheet;
public class ExcelRATEFunction {
private static double calculateRateNewton(double nper, double pmt, double pv, double fv, double type, double guess) {
int FINANCIAL_MAX_ITERATIONS = 20;
double FINANCIAL_PRECISION = 0.0000001;
double y, y1, xN = 0, f = 0, i = 0;
double rate = guess;
//find root by Newtons method (https://en.wikipedia.org/wiki/Newton%27s_method), not secant method!
//Formula see: https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_Derivation_of_Financial_Formulas#PV.2C_FV.2C_PMT.2C_NPER.2C_RATE
f = Math.pow(1 + rate, nper);
y = pv * f + pmt * ((f - 1) / rate) * (1 + rate * type) + fv;
//first derivative:
//y1 = (pmt * nper * type * Math.pow(rate,2) * f - pmt * f - pmt * rate * f + pmt * nper * rate * f + pmt * rate + pmt + nper * pv * Math.pow(rate,2) * f) / (Math.pow(rate,2) * (rate+1));
y1 = (f * ((pmt * nper * type + nper * pv) * Math.pow(rate,2) + (pmt * nper - pmt) * rate - pmt) + pmt * rate + pmt) / (Math.pow(rate,3) + Math.pow(rate,2));
xN = rate - y/y1;
while ((Math.abs(rate - xN) > FINANCIAL_PRECISION) && (i < FINANCIAL_MAX_ITERATIONS)) {
rate = xN;
f = Math.pow(1 + rate, nper);
y = pv * f + pmt * ((f - 1) / rate) * (1 + rate * type) + fv;
//first derivative:
//y1 = (pmt * nper * type * Math.pow(rate,2) * f - pmt * f - pmt * rate * f + pmt * nper * rate * f + pmt * rate + pmt + nper * pv * Math.pow(rate,2) * f) / (Math.pow(rate,2) * (rate+1));
y1 = (f * ((pmt * nper * type + nper * pv) * Math.pow(rate,2) + (pmt * nper - pmt) * rate - pmt) + pmt * rate + pmt) / (Math.pow(rate,3) + Math.pow(rate,2));
xN = rate - y/y1;
++i;
System.out.println(rate+", "+xN+", "+y+", "+y1);
}
rate = xN;
return rate;
}
public static void main(String[] args) throws Exception {
Workbook workbook = new XSSFWorkbook();
Sheet sheet = workbook.createSheet();
Row row = sheet.createRow(1);
Cell cell = row.createCell(1);
cell.setCellFormula("RATE(85.77534246575343, -1589.0, -18664.0, 5855586.0, 0, 0.06)");
FormulaEvaluator evaluator = workbook.getCreationHelper().createFormulaEvaluator();
CellType celltype = evaluator.evaluateFormulaCellEnum(cell);
double value = 0.0;
if (celltype == CellType.NUMERIC) {
value = cell.getNumericCellValue();
System.out.println(value);
}
workbook.setForceFormulaRecalculation(true);
value = calculateRateNewton(85.77534246575343, -1589.0, -18664.0, 5855586.0, 0, 0.1);
System.out.println(value);
workbook.write(new FileOutputStream("ExcelRATEFunction.xlsx"));
workbook.close();
}
}

Posting recursive ajax call data on HTML(Angularjs)

I am doing recursive ajax call and receiving server data. For each call, I receive some chunk of data. I want to show up that data on the front end. How do I do so that each received part of data is one below another. I hope this is clear.
for example
traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets
1 * * *
2 * * *
3 * * *
4 * * *
5 * * *
6 * * *
7 * * *
8 * * *
9 * * *
10 * * *
11 * * *
12 * * *
13 * * *
14 * * *
15 * * *
16 * * *
17 * * *
18 * * *
19 * * *
20 * * *
21 * * *
22 * * *
23 * * *
24 * * *
25 * * *
26 * * *
27 * * *
28 * * *
29 * * *
30 * * *
Suppose I received first 10 lines on first ajax call, next 5 in next and so on, I want to show up as it is shown above, without wiping out first received data and showing 2nd received data. By the way I am using Angularjs for front end.
Added code snippet on Gaurav request.
callOnReq(requestId);
function callOnReq(requestId) {
console.log('Request ID sent')
$http.post('/py/recvData',{'requestId':requestId}).
success(function(data, status, headers, config) {
console.log('Data after request ID')
$scope.recdData data.output;
if (data.output != ""){
callOnReq(requestId);
}else if (data.output == ""){
console.log('Data receiving over');
}
}).
error(function(data, status, headers, config) {
console.log(status);
});
};
Thanks in advance.
Declare a variable in scope.
$scope.responseList=[];
Then push the response text in that
If response data is list then you have to concate it
$scope.responseList=$scope.responseList.concat(data);
If response data single objecth then you have to push it
$scope.responseList.push(data);
Sample code
$http({
// code
}).then(function(result){
// data is list then you have to concate it
$scope.responseList=$scope.responseList.concat(data);
// data is single objecth then you have to push it
$scope.responseList.push(data);
})
Then display responseList in the view.

Code Golf: Easter Spiral

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What's more appropriate than a Spiral for Easter Code Golf sessions? Well, I guess almost anything.
The Challenge
The shortest code by character count to display a nice ASCII Spiral made of asterisks ('*').
Input is a single number, R, that will be the x-size of the Spiral. The other dimension (y) is always R-2. The program can assume R to be always odd and >= 5.
Some examples:
Input
7
Output
*******
* *
* *** *
* * *
***** *
Input
9
Output
*********
* *
* ***** *
* * * *
* *** * *
* * *
******* *
Input
11
Output
***********
* *
* ******* *
* * * *
* * *** * *
* * * * *
* ***** * *
* * *
********* *
Code count includes input/output (i.e., full program).
Any language is permitted.
My easily beatable 303 chars long Python example:
import sys;
d=int(sys.argv[1]);
a=[d*[' '] for i in range(d-2)];
r=[0,-1,0,1];
x=d-1;y=x-2;z=0;pz=d-2;v=2;
while d>2:
while v>0:
while pz>0:
a[y][x]='*';
pz-=1;
if pz>0:
x+=r[z];
y+=r[(z+1)%4];
z=(z+1)%4; pz=d; v-=1;
v=2;d-=2;pz=d;
for w in a:
print ''.join(w);
Now, enter the Spiral...
Python (2.6): 156 chars
r=input()
def p(r,s):x=(i+1)/2;print "* "*x+("*" if~i%2 else" ")*(r-4*x)+" *"*x+s
for i in range(r/2):p(r,"")
for i in range((r-1)/2-1)[::-1]:p(r-2," *")
Thanks for the comments. I've removed extraneous whitespace and used input(). I still prefer a program that takes its argument on the command-line, so here's a version still using sys.argv at 176 chars:
import sys
r=int(sys.argv[1])
def p(r,s):x=(i+1)/2;print "* "*x+("*" if~i%2 else" ")*(r-4*x)+" *"*x+s
for i in range(r/2):p(r,"")
for i in range((r-1)/2-1)[::-1]:p(r-2," *")
Explanation
Take the spiral and chop it in two almost-equal parts, top and bottom, with the top one row bigger than the bottom:
***********
* *
* ******* *
* * * *
* * *** * *
* * * * *
* ***** * *
* * *
********* *
Observe how the top part is nice and symmetrical. Observe how the bottom part has a vertical line down the right side, but is otherwise much like the top. Note the pattern in every second row at the top: an increasing number of stars on each side. Note that each intervening row is exactly the saw as the one before except it fills in the middle area with stars.
The function p(r,s) prints out the ith line of the top part of the spiral of width r and sticks the suffix s on the end. Note that i is a global variable, even though it might not be obvious! When i is even it fills the middle of the row with spaces, otherwise with stars. (The ~i%2 was a nasty way to get the effect of i%2==0, but is actually not necessary at all because I should have simply swapped the "*" and the " ".) We first draw the top rows of the spiral with increasing i, then we draw the bottom rows with decreasing i. We lower r by 2 and suffix " *" to get the column of stars on the right.
Java
328 characters
class S{
public static void main(String[]a){
int n=Integer.parseInt(a[0]),i=n*(n-2)/2-1,j=0,t=2,k;
char[]c=new char[n*n];
java.util.Arrays.fill(c,' ');
int[]d={1,n,-1,-n};
if(n/2%2==0){j=2;i+=1+n;}
c[i]='*';
while(t<n){
for(k=0;k<t;k++)c[i+=d[j]]='*';
j=(j+1)%4;
if(j%2==0)t+=2;
}
for(i=0;i<n-2;i++)System.out.println(new String(c,i*n,n));
}
}
As little as 1/6 more than Python seems not too bad ;)
Here's the same with proper indentation:
class S {
public static void main(String[] a) {
int n = Integer.parseInt(a[0]), i = n * (n - 2) / 2 - 1, j = 0, t = 2, k;
char[] c = new char[n * n];
java.util.Arrays.fill(c, ' ');
int[] d = { 1, n, -1, -n };
if (n / 2 % 2 == 0) {
j = 2;
i += 1 + n;
}
c[i] = '*';
while (t < n) {
for (k = 0; k < t; k++)
c[i += d[j]] = '*';
j = (j + 1) % 4;
if (j % 2 == 0)
t += 2;
}
for (i = 0; i < n - 2; i++)
System.out.println(new String(c, i * n, n));
}
}
F#, 267 chars
A lot of answers are starting with blanks and adding *s, but I think it may be easier to start with a starfield and add whitespace.
let n=int(System.Console.ReadLine())-2
let mutable x,y,d,A=n,n,[|1;0;-1;0|],
Array.init(n)(fun _->System.Text.StringBuilder(String.replicate(n+2)"*"))
for i=1 to n do for j=1 to(n-i+1)-i%2 do x<-x+d.[i%4];y<-y+d.[(i+1)%4];A.[y].[x]<-' '
Seq.iter(printfn"%O")A
For those looking for insight into how I golf, I happened to save a lot of progress along the way, which I present here with commentary. Not every program is quite right, but they're all honing in on a shorter solution.
First off, I looked for a pattern of how to paint the white:
*********
* *
* ***** *
* * * *
* *** * *
* * *
******* *
*********
*6543216*
*1*****5*
*2*212*4*
*3***1*3*
*41234*2*
*******1*
***********
* *
* ******* *
* * * *
* * *** * *
* * * * *
* ***** * *
* * *
********* *
***********
*876543218*
*1*******7*
*2*43214*6*
*3*1***3*5*
*4*212*2*4*
*5*****1*3*
*6123456*2*
*********1*
Ok, I see it. First program:
let Main() =
let n=int(System.Console.ReadLine())
let A=Array2D.create(n-2)n '*'
let mutable x,y,z,i=n-2,n-2,0,n-2
let d=[|0,-1;-1,0;0,1;1,0|] // TODO
while i>0 do
for j in 1..i-(if i%2=1 then 1 else 0)do
x<-x+fst d.[z]
y<-y+snd d.[z]
A.[y,x]<-'0'+char j
z<-(z+1)%4
i<-i-1
printfn"%A"A
Main()
I know that d, the tuple-array of (x,y)-diffs-modulo-4 can later be reduced by x and y both indexing into different portions of the same int-array, hence the TODO. The rest is straightforward based on the visual insight into 'whitespace painting'. I'm printing a 2D array, which is not right, need an array of strings, so:
let n=int(System.Console.ReadLine())
let s=String.replicate n "*"
let A=Array.init(n-2)(fun _->System.Text.StringBuilder(s))
let mutable x,y,z,i=n-2,n-2,0,n-2
let d=[|0,-1;-1,0;0,1;1,0|]
while i>0 do
for j in 1..i-(if i%2=1 then 1 else 0)do
x<-x+fst d.[z]
y<-y+snd d.[z]
A.[y].[x]<-' '
z<-(z+1)%4
i<-i-1
for i in 0..n-3 do
printfn"%O"A.[i]
Ok, now let's change the array of tuples into an array of int:
let n=int(System.Console.ReadLine())-2
let mutable x,y,z,i,d=n,n,0,n,[|0;-1;0;1;0|]
let A=Array.init(n)(fun _->System.Text.StringBuilder(String.replicate(n+2)"*"))
while i>0 do
for j in 1..i-i%2 do x<-x+d.[z];y<-y+d.[z+1];A.[y].[x]<-' '
z<-(z+1)%4;i<-i-1
A|>Seq.iter(printfn"%O")
The let for A can be part of the previous line. And z and i are mostly redundant, I can compute one in terms of the other.
let n=int(System.Console.ReadLine())-2
let mutable x,y,d,A=n,n,[|0;-1;0;1|],
Array.init(n)(fun _->System.Text.StringBuilder(String.replicate(n+2)"*"))
for i=n downto 1 do for j in 1..i-i%2 do x<-x+d.[(n-i)%4];y<-y+d.[(n-i+1)%4];A.[y].[x]<-' '
Seq.iter(printfn"%O")A
downto is long, re-do the math so I can go (up) to in the loop.
let n=int(System.Console.ReadLine())-2
let mutable x,y,d,A=n,n,[|1;0;-1;0|],
Array.init(n)(fun _->System.Text.StringBuilder(String.replicate(n+2)"*"))
for i=1 to n do for j in 1..(n-i+1)-i%2 do x<-x+d.[i%4];y<-y+d.[(i+1)%4];A.[y].[x]<-' '
Seq.iter(printfn"%O")A
A little more tightening yields the final solution.
Python : 238 - 221 - 209 characters
All comments welcome:
d=input();r=range
a=[[' ']*d for i in r(d-2)]
x=y=d/4*2
s=d%4-2
for e in r(3,d+1,2):
for j in r(y,y+s*e-s,s):a[x][j]='*';y+=s
for j in r(x,x+s*e-(e==d)-s,s):a[j][y]='*';x+=s
s=-s
for l in a:print''.join(l)
Groovy, 373 295 257 243 chars
Tried a recursive approach that builds up squares starting from the most extern one going inside.. I used Groovy.
*********
*********
*********
*********
*********
*********
******* *
*********
* *
* *
* *
* *
* * *
******* *
*********
* *
* ***** *
* ***** *
* *** * *
* * *
******* *
*********
* *
* ***** *
* * * *
* *** * *
* * *
******* *
and so on..
r=args[0] as int;o=r+1;c='*'
t=new StringBuffer('\n'*(r*r-r-2))
e(r,0)
def y(){c=c==' '?'*':' '}
def e(s,p){if (s==3)t[o*p+p..o*p+p+2]=c*s else{l=o*(p+s-3)+p+s-2;(p+0..<p+s-2).each{t[o*it+p..<o*it+p+s]=c*s};y();t[l..l]=c;e(s-2,p+1)}}
println t
readable one:
r=args[0] as int;o=r+1;c='*'
t=new StringBuffer('\n'*(r*r-r-2))
e(r,0)
def y(){c=c==' '?'*':' '}
def e(s,p){
if (s==3)
t[o*p+p..o*p+p+2]=c*s
else{
l=o*(p+s-3)+p+s-2
(p+0..<p+s-2).each{
t[o*it+p..<o*it+p+s]=c*s}
y()
t[l..l]=c
e(s-2,p+1)
}
}
println t
EDIT: improved by just filling squares and then overriding them (check new example): so I avoided to fill just the edge of the rect but the whole one.
Ruby, 237 chars
I'm new to code golf, so I'm way off the mark, but I figured I'd give it a shot.
x=ARGV[0].to_i
y=x-2
s,h,j,g=' ',x-1,y-1,Array.new(y){Array.new(x,'*')}
(1..x/2+2).step(2){|d|(d..y-d).each{|i|g[i][h-d]=s}
(d..h-d).each{|i|g[d][i]=s}
(d..j-d).each{|i|g[i][d]=s}
(d..h-d-2).each{|i|g[j-d][i]=s}}
g.each{|r|print r;puts}
Long version
Java, 265 250 245 240 chars
Rather than preallocating a rectangular buffer and filling it in, I just loop over x/y coordinates and output '*' or ' ' for the current position. For this, we need an algorithm which can evaluate arbitrary points for whether they're on the spiral. The algorithm I used is based on the observation that the spiral is equivalent to a collection of concentric squares, with the exception of a set of positions which all happen along a particular diagonal; these positions require a correction (they must be inverted).
The somewhat readable version:
public class Spr2 {
public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
int cy = (n - 5) / 4 * 2 + 1;
int cx = cy + 2;
for (int y = n - 3; y >= 0; y--) {
for (int x = 0; x < n; x++) {
int dx = cx - x;
int dy = cy - y;
int adx = Math.abs(dx);
int ady = Math.abs(dy);
boolean c = (dx > 0 && dx == dy + 1);
boolean b = ((adx % 2 == 1 && ady <= adx) || (ady % 2 == 1 && adx <= ady)) ^ c;
System.out.print(b ? '*' : ' ');
}
System.out.println();
}
}
}
A brief explanation for the above:
cx,cy = center
dx,dy = delta from center
adx,ady = abs(delta from center)
c = correction factor (whether to invert)
b = the evaluation
Optimized down. 265 chars:
public class S{
public static void main(String[]a){
int n=Integer.parseInt(a[0]),c=(n-5)/4*2+1,d=c+2,e,f,g,h,x,y;
for(y=0;y<n-2;y++){
for(x=0;x<=n;x++){
e=d-x;f=c-y;g=e>0?e:-e;h=f>0?f:-f;
System.out.print(x==n?'\n':(g%2==1&&h<=g||h%2==1&&g<=h)^(e>0&&e==f+1)?'*':' ');
}}}}
Updated. Now down to 250 chars:
class S{
public static void main(String[]a){
int n=Integer.parseInt(a[0]),c=(n-5)/4*2+1,d=c+2,g,h,x,y;
for(y=-c;y<n-2-c;y++){
for(x=-d;x<=n-d;x++){
g=x>0?x:-x;h=y>0?y:-y;
System.out.print(x==n-d?'\n':(g%2==1&&h<=g||h%2==1&&g<=h)^(x<0&&x==y-1)?'*':' ');
}}}}
Shaved just a few more characters. 245 chars:
class S{
public static void main(String[]a){
int n=Integer.parseInt(a[0]),c=(n-5)/4*2+1,d=c+2,g,h,x,y=-c;
for(;y<n-2-c;y++){
for(x=-d;x<=n-d;x++){
g=x>0?x:-x;h=y>0?y:-y;
System.out.print(x==n-d?'\n':(g%2==1&h<=g|h%2==1&g<=h)^(x<0&x==y-1)?'*':' ');
}}}}
Shaved just a few more characters. 240 chars:
class S{
public static void main(String[]a){
int n=Byte.decode(a[0]),c=(n-5)/4*2+1,d=c+2,g,h,x,y=-c;
for(;y<n-2-c;y++){
for(x=-d;x<=n-d;x++){
g=x>0?x:-x;h=y>0?y:-y;
System.out.print(x==n-d?'\n':(g%2==1&h<=g|h%2==1&g<=h)^(x<0&x==y-1)?'*':' ');
}}}}
OCaml, 299 chars
Here is a solution in OCaml, not the shortest but I believe quite readable.
It only uses string manipulations using the fact the you can build a spiral by mirroring the previous one.
Let's say you start at with n = 5:
55555
5 5
555 5
Now with n = 7:
7777777
7 7
5 555 7
5 5 7
55555 7
Did you see where all the 5's went ?
Here is the unobfuscated code using only the limited library provided with OCaml:
(* The standard library lacks a function to reverse a string *)
let rev s =
let n = String.length s - 1 in
let r = String.create (n + 1) in
for i = 0 to n do
r.[i] <- s.[n - i]
done;
r
;;
let rec f n =
if n = 5 then
[
"*****";
"* *";
"*** *"
]
else
[
String.make n '*';
"*" ^ (String.make (n - 2) ' ') ^ "*"
] # (
List.rev_map (fun s -> (rev s) ^ " *") (f (n - 2))
)
;;
let p n =
List.iter print_endline (f n)
;;
let () = p (read_int ());;
Here is the obfuscated version which is 299 characters long:
open String
let rev s=
let n=length s-1 in
let r=create(n+1)in
for i=0 to n do r.[i]<-s.[n-i]done;r
let rec f n=
if n=5 then["*****";"* *";"*** *"]else
[make n '*';"*"^(make (n-2) ' ')^"*"]
#(List.rev_map(fun s->(rev s)^" *")(f(n-2)));;
List.iter print_endline (f(read_int ()))
C#, 292 262 255 chars
Simple approach: draw the spiral line by line from the outside in.
using C=System.Console;class P{static void Main(string[]a){int A=
1,d=1,X=int.Parse(a[0]),Y=X-2,l=X,t=0,i,z;while(l>2){d*=A=-A;l=l<
4?4:l;for(i=1;i<(A<0?l-2:l);i++){C.SetCursorPosition(X,Y);C.Write
("*");z=A<0?Y+=d:X+=d;}if(t++>1||l<5){l-=2;t=1;}}C.Read();}}
Ruby (1.9.2) — 126
f=->s{s<0?[]:(z=?**s;[" "*s]+(s<2?[]:[z]+f[s-4]<<?*.rjust(s))).map{|i|"* #{i} *"}<<z+"** *"}
s=gets.to_i;puts [?**s]+f[s-4]
Perl, where are you? )

Categories