Database Structure for a website commenting system - mysql

I'm working on a website currently that needs a commenting system. As this website is brand new, and the database structure has yet to be set in stone, I would like some suggestions on how to best handle a commenting system such as this:
Comments must be able to be placed on anything. Including items in future tables.
Comments must be quickly (and easily?) queryable.
I know that this alone is not much to go on, so here is the idea: Each university has Colleges, each College has Buildings, and each Building has Rooms. Every user should be able to comment on any of these four items (and future ones we may add later), but I'd like to avoid making a comments table for each item.
The solution I have come up with this far seems to work, but I'm open to other ideas as well. My solution is to use UUIDs as the primary key for each item (university, college, building, room) table, then have the reference id in the comments table be that UUID. While I don't think I can make a system of foreign keys to link everything, I believe that nothing will break as only items available can possibly have comments, therefore an item can either have no comments, or if it is deleted, then the comments simply will never be returned.
University:
UniversityID - CHAR(36) //UUID() & primary key
...
Comments:
CommentID - CHAR(36) //UUID() & primary key
CommentItemID - CHAR(36) //UUID of item & indexed
CommentUserID - INTEGER
CommentBody - TEXT
And then queries will appear like:
SELECT * FROM University, Comments WHERE UniversityID = CommentItemID;
So what do you all think? Will this system scale will with large amounts of data, or is there a better (maybe Best Practice or Pattern) way?
I thank you in advance.
Edit 1: I have altered the Comment definition to include a primary key and indexed column to address the issues raised thus far. This way the system can also have comments of comments (not sure how confusing this would be in practical code, but it has a certain mathematical completeness to it that I like). I wanted to keep the system as similar as possible though until I have accepted an answer.
Both answers so far by Sebastian Good and Bryan M. have suggested a dual primary key of two integers being something like ItemID and TableID. My only hesitation with this method is that I would either have to have a new table listing the TableIDs and their correstponding string table names, or introduce global variables into my code referencing them. Unless there is another method I am missing, this seems like extra code that can be avoided to me.
What do you all think?

I would just take a more traditional approach to the foreign key relationship between the comments and whatever they're bound to.
UNIVERSITY
UniversityID // assuming primary key
COMMENTS
CommentID // assuming primary key
TypeID // Foreign Key
Type // Name of the table where the foreign key is found (ie, University)
This just feels a bit cleaner to me. Some about using a foreign key of another table as the primary key for your comments didn't feel right.

If you use a UUID, it's hard to know what table it came from. If you only ever want to look from the entity down to the comments, as in your query, it'll work alright. If you want to look at a comment and find out what it was on, you'll have to look at all possible tables (universities, buildings, etc.) to find out.
One possibility which enables you to use simple sequential integers for keys of your base entities (which is often desirable for readability, index fragmentation, etc.) is to make the key of your comments table contain two columns. One is the name of the table the comment applies to. The second is the key of that table. This is similar to the approach Bryan M. suggests, though note that you won't be able to actually define foreign keys from the comments table to all possible parents. Your queries will work both ways round if necessary, and you don't need to worry about UUIDs, as the combination of table name + ID will be unique across the database.

Well, since no one appears to want to answer, I guess I'll just stick with my method. However, I'll still be open to taking other suggestions.

Related

How to design table with primary key, index, unique in SQL [duplicate]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
Here we go again, the old argument still arises...
Would we better have a business key as a primary key, or would we rather have a surrogate id (i.e. an SQL Server identity) with a unique constraint on the business key field?
Please, provide examples or proof to support your theory.
Just a few reasons for using surrogate keys:
Stability: Changing a key because of a business or natural need will negatively affect related tables. Surrogate keys rarely, if ever, need to be changed because there is no meaning tied to the value.
Convention: Allows you to have a standardized Primary Key column naming convention rather than having to think about how to join tables with various names for their PKs.
Speed: Depending on the PK value and type, a surrogate key of an integer may be smaller, faster to index and search.
Both. Have your cake and eat it.
Remember there is nothing special about a primary key, except that it is labelled as such. It is nothing more than a NOT NULL UNIQUE constraint, and a table can have more than one.
If you use a surrogate key, you still want a business key to ensure uniqueness according to the business rules.
It appears that no one has yet said anything in support of non-surrogate (I hesitate to say "natural") keys. So here goes...
A disadvantage of surrogate keys is that they are meaningless (cited as an advantage by some, but...). This sometimes forces you to join a lot more tables into your query than should really be necessary. Compare:
select sum(t.hours)
from timesheets t
where t.dept_code = 'HR'
and t.status = 'VALID'
and t.project_code = 'MYPROJECT'
and t.task = 'BUILD';
against:
select sum(t.hours)
from timesheets t
join departents d on d.dept_id = t.dept_id
join timesheet_statuses s on s.status_id = t.status_id
join projects p on p.project_id = t.project_id
join tasks k on k.task_id = t.task_id
where d.dept_code = 'HR'
and s.status = 'VALID'
and p.project_code = 'MYPROJECT'
and k.task_code = 'BUILD';
Unless anyone seriously thinks the following is a good idea?:
select sum(t.hours)
from timesheets t
where t.dept_id = 34394
and t.status_id = 89
and t.project_id = 1253
and t.task_id = 77;
"But" someone will say, "what happens when the code for MYPROJECT or VALID or HR changes?" To which my answer would be: "why would you need to change it?" These aren't "natural" keys in the sense that some outside body is going to legislate that henceforth 'VALID' should be re-coded as 'GOOD'. Only a small percentage of "natural" keys really fall into that category - SSN and Zip code being the usual examples. I would definitely use a meaningless numeric key for tables like Person, Address - but not for everything, which for some reason most people here seem to advocate.
See also: my answer to another question
Surrogate key will NEVER have a reason to change. I cannot say the same about the natural keys. Last names, emails, ISBN nubmers - they all can change one day.
Surrogate keys (typically integers) have the added-value of making your table relations faster, and more economic in storage and update speed (even better, foreign keys do not need to be updated when using surrogate keys, in contrast with business key fields, that do change now and then).
A table's primary key should be used for identifying uniquely the row, mainly for join purposes. Think a Persons table: names can change, and they're not guaranteed unique.
Think Companies: you're a happy Merkin company doing business with other companies in Merkia. You are clever enough not to use the company name as the primary key, so you use Merkia's government's unique company ID in its entirety of 10 alphanumeric characters.
Then Merkia changes the company IDs because they thought it would be a good idea. It's ok, you use your db engine's cascaded updates feature, for a change that shouldn't involve you in the first place. Later on, your business expands, and now you work with a company in Freedonia. Freedonian company id are up to 16 characters. You need to enlarge the company id primary key (also the foreign key fields in Orders, Issues, MoneyTransfers etc), adding a Country field in the primary key (also in the foreign keys). Ouch! Civil war in Freedonia, it's split in three countries. The country name of your associate should be changed to the new one; cascaded updates to the rescue. BTW, what's your primary key? (Country, CompanyID) or (CompanyID, Country)? The latter helps joins, the former avoids another index (or perhaps many, should you want your Orders grouped by country too).
All these are not proof, but an indication that a surrogate key to uniquely identify a row for all uses, including join operations, is preferable to a business key.
I hate surrogate keys in general. They should only be used when there is no quality natural key available. It is rather absurd when you think about it, to think that adding meaningless data to your table could make things better.
Here are my reasons:
When using natural keys, tables are clustered in the way that they are most often searched thus making queries faster.
When using surrogate keys you must add unique indexes on logical key columns. You still need to prevent logical duplicate data. For example, you can’t allow two Organizations with the same name in your Organization table even though the pk is a surrogate id column.
When surrogate keys are used as the primary key it is much less clear what the natural primary keys are. When developing you want to know what set of columns make the table unique.
In one to many relationship chains, the logical key chains. So for example, Organizations have many Accounts and Accounts have many Invoices. So the logical-key of Organization is OrgName. The logical-key of Accounts is OrgName, AccountID. The logical-key of Invoice is OrgName, AccountID, InvoiceNumber.
When surrogate keys are used, the key chains are truncated by only having a foreign key to the immediate parent. For example, the Invoice table does not have an OrgName column. It only has a column for the AccountID. If you want to search for invoices for a given organization, then you will need to join the Organization, Account, and Invoice tables. If you use logical keys, then you could Query the Organization table directly.
Storing surrogate key values of lookup tables causes tables to be filled with meaningless integers. To view the data, complex views must be created that join to all of the lookup tables. A lookup table is meant to hold a set of acceptable values for a column. It should not be codified by storing an integer surrogate key instead. There is nothing in the normalization rules that suggest that you should store a surrogate integer instead of the value itself.
I have three different database books. Not one of them shows using surrogate keys.
I want to share my experience with you on this endless war :D on natural vs surrogate key dilemma. I think that both surrogate keys (artificial auto-generated ones) and natural keys (composed of column(s) with domain meaning) have pros and cons. So depending on your situation, it might be more relevant to choose one method or the other.
As it seems that many people present surrogate keys as the almost perfect solution and natural keys as the plague, I will focus on the other point of view's arguments:
Disadvantages of surrogate keys
Surrogate keys are:
Source of performance problems:
They are usually implemented using auto-incremented columns which mean:
A round-trip to the database each time you want to get a new Id (I know that this can be improved using caching or [seq]hilo alike algorithms but still those methods have their own drawbacks).
If one-day you need to move your data from one schema to another (It happens quite regularly in my company at least) then you might encounter Id collision problems. And Yes I know that you can use UUIDs but those lasts requires 32 hexadecimal digits! (If you care about database size then it can be an issue).
If you are using one sequence for all your surrogate keys then - for sure - you will end up with contention on your database.
Error prone. A sequence has a max_value limit so - as a developer - you have to put attention to the following points:
You must cycle your sequence ( when the max-value is reached it goes back to 1,2,...).
If you are using the sequence as an ordering (over time) of your data then you must handle the case of cycling (column with Id 1 might be newer than row with Id max-value - 1).
Make sure that your code (and even your client interfaces which should not happen as it supposed to be an internal Id) supports 32b/64b integers that you used to store your sequence values.
They don't guarantee non duplicated data. You can always have 2 rows with all the same column values but with a different generated value. For me this is THE problem of surrogate keys from a database design point of view.
More in Wikipedia...
Myths on natural keys
Composite keys are less inefficient than surrogate keys. No! It depends on the used database engine:
Oracle
MySQL
Natural keys don't exist in real-life. Sorry but they do exist! In aviation industry, for example, the following tuple will be always unique regarding a given scheduled flight (airline, departureDate, flightNumber, operationalSuffix). More generally, when a set of business data is guaranteed to be unique by a given standard then this set of data is a [good] natural key candidate.
Natural keys "pollute the schema" of child tables. For me this is more a feeling than a real problem. Having a 4 columns primary-key of 2 bytes each might be more efficient than a single column of 11 bytes. Besides, the 4 columns can be used to query the child table directly (by using the 4 columns in a where clause) without joining to the parent table.
Conclusion
Use natural keys when it is relevant to do so and use surrogate keys when it is better to use them.
Hope that this helped someone!
Alway use a key that has no business meaning. It's just good practice.
EDIT: I was trying to find a link to it online, but I couldn't. However in 'Patterns of Enterprise Archtecture' [Fowler] it has a good explanation of why you shouldn't use anything other than a key with no meaning other than being a key. It boils down to the fact that it should have one job and one job only.
Surrogate keys are quite handy if you plan to use an ORM tool to handle/generate your data classes. While you can use composite keys with some of the more advanced mappers (read: hibernate), it adds some complexity to your code.
(Of course, database purists will argue that even the notion of a surrogate key is an abomination.)
I'm a fan of using uids for surrogate keys when suitable. The major win with them is that you know the key in advance e.g. you can create an instance of a class with the ID already set and guaranteed to be unique whereas with, say, an integer key you'll need to default to 0 or -1 and update to an appropriate value when you save/update.
UIDs have penalties in terms of lookup and join speed though so it depends on the application in question as to whether they're desirable.
Using a surrogate key is better in my opinion as there is zero chance of it changing. Almost anything I can think of which you might use as a natural key could change (disclaimer: not always true, but commonly).
An example might be a DB of cars - on first glance, you might think that the licence plate could be used as the key. But these could be changed so that'd be a bad idea. You wouldnt really want to find that out after releasing the app, when someone comes to you wanting to know why they can't change their number plate to their shiny new personalised one.
Always use a single column, surrogate key if at all possible. This makes joins as well as inserts/updates/deletes much cleaner because you're only responsible for tracking a single piece of information to maintain the record.
Then, as needed, stack your business keys as unique contraints or indexes. This will keep you data integrity intact.
Business logic/natural keys can change, but the phisical key of a table should NEVER change.
Case 1: Your table is a lookup table with less than 50 records (50 types)
In this case, use manually named keys, according to the meaning of each record.
For Example:
Table: JOB with 50 records
CODE (primary key) NAME DESCRIPTION
PRG PROGRAMMER A programmer is writing code
MNG MANAGER A manager is doing whatever
CLN CLEANER A cleaner cleans
...............
joined with
Table: PEOPLE with 100000 inserts
foreign key JOBCODE in table PEOPLE
looks at
primary key CODE in table JOB
Case 2: Your table is a table with thousands of records
Use surrogate/autoincrement keys.
For Example:
Table: ASSIGNMENT with 1000000 records
joined with
Table: PEOPLE with 100000 records
foreign key PEOPLEID in table ASSIGNMENT
looks at
primary key ID in table PEOPLE (autoincrement)
In the first case:
You can select all programmers in table PEOPLE without use of join with table JOB, but just with: SELECT * FROM PEOPLE WHERE JOBCODE = 'PRG'
In the second case:
Your database queries are faster because your primary key is an integer
You don't need to bother yourself with finding the next unique key because the database itself gives you the next autoincrement.
Surrogate keys can be useful when business information can change or be identical. Business names don't have to be unique across the country, after all. Suppose you deal with two businesses named Smith Electronics, one in Kansas and one in Michigan. You can distinguish them by address, but that'll change. Even the state can change; what if Smith Electronics of Kansas City, Kansas moves across the river to Kansas City, Missouri? There's no obvious way of keeping these businesses distinct with natural key information, so a surrogate key is very useful.
Think of the surrogate key like an ISBN number. Usually, you identify a book by title and author. However, I've got two books titled "Pearl Harbor" by H. P. Willmott, and they're definitely different books, not just different editions. In a case like that, I could refer to the looks of the books, or the earlier versus the later, but it's just as well I have the ISBN to fall back on.
On a datawarehouse scenario I believe is better to follow the surrogate key path. Two reasons:
You are independent of the source system, and changes there --such as a data type change-- won't affect you.
Your DW will need less physical space since you will use only integer data types for your surrogate keys. Also your indexes will work better.
As a reminder it is not good practice to place clustered indices on random surrogate keys i.e. GUIDs that read XY8D7-DFD8S, as they SQL Server has no ability to physically sort these data. You should instead place unique indices on these data, though it may be also beneficial to simply run SQL profiler for the main table operations and then place those data into the Database Engine Tuning Advisor.
See thread # http://social.msdn.microsoft.com/Forums/en-us/sqlgetstarted/thread/27bd9c77-ec31-44f1-ab7f-bd2cb13129be
This is one of those cases where a surrogate key pretty much always makes sense. There are cases where you either choose what's best for the database or what's best for your object model, but in both cases, using a meaningless key or GUID is a better idea. It makes indexing easier and faster, and it is an identity for your object that doesn't change.
In the case of point in time database it is best to have combination of surrogate and natural keys. e.g. you need to track a member information for a club. Some attributes of a member never change. e.g Date of Birth but name can change.
So create a Member table with a member_id surrogate key and have a column for DOB.
Create another table called person name and have columns for member_id, member_fname, member_lname, date_updated. In this table the natural key would be member_id + date_updated.
Horse for courses. To state my bias; I'm a developer first, so I'm mainly concerned with giving the users a working application.
I've worked on systems with natural keys, and had to spend a lot of time making sure that value changes would ripple through.
I've worked on systems with only surrogate keys, and the only drawback has been a lack of denormalised data for partitioning.
Most traditional PL/SQL developers I have worked with didn't like surrogate keys because of the number of tables per join, but our test and production databases never raised a sweat; the extra joins didn't affect the application performance. With database dialects that don't support clauses like "X inner join Y on X.a = Y.b", or developers who don't use that syntax, the extra joins for surrogate keys do make the queries harder to read, and longer to type and check: see #Tony Andrews post. But if you use an ORM or any other SQL-generation framework you won't notice it. Touch-typing also mitigates.
Maybe not completely relevant to this topic, but a headache I have dealing with surrogate keys. Oracle pre-delivered analytics creates auto-generated SKs on all of its dimension tables in the warehouse, and it also stores those on the facts. So, anytime they (dimensions) need to be reloaded as new columns are added or need to be populated for all items in the dimension, the SKs assigned during the update makes the SKs out of sync with the original values stored to the fact, forcing a complete reload of all fact tables that join to it. I would prefer that even if the SK was a meaningless number, there would be some way that it could not change for original/old records. As many know, out-of-the box rarely serves an organization's needs, and we have to customize constantly. We now have 3yrs worth of data in our warehouse, and complete reloads from the Oracle Financial systems are very large. So in my case, they are not generated from data entry, but added in a warehouse to help reporting performance. I get it, but ours do change, and it's a nightmare.

Primary key: a string or number (id)?

I am aware of benefits of using integers (amount of space, performance, indexes) as primary keys as opposite to strings.
Considering situation below...
I have a lookup table called ap_habitat (habitat values are also unique)
id habitat
1 Forest 1
2 Forest 2
Referenced table (fauna)
Especie habitat
X 1
Y 1
Referenced table is not very human readable (I know end users should not care about that, but for me would be useful to directly see in fauna table the NAME of the habitat).
To get a list of fauna and its habitat name I have to do a join...
select fauna.habitat, fauna.especie, AP_h.habitat from fauna INNER JOIN ap_habitat AS AP_h on AP_h.id=1
I could create a view, but if I have to create a view for each table referencing a foreign key...
Just wanna check what more experienced people recommend me.
Databases and, in general, computers are not designed to make your life more simple. They are designed to handle more data than a human mind can ever hope to remember in less time than it takes a human to blink. ;-)
Readability (especially in ideas conceived the before-Apple age) is not an issue at all.
On top of that: If you enjoy strange problems, data mapping impedance and spending endless nights writing workarounds for problems that using real-world names as primary keys get you for free, then be our guest. But please, don't ask for our help. We already know all the problems that you'll run into and it will be very hard for us to restrain our spite.
So: Never, ever use anything but an ID (UUID or long sequence) for a primary key. There are no (good) reasons to do it and if you found one, then you simply don't see the whole picture.
Yes, it makes a couple of things harder (like understanding what your data actually means). But as I said above, computers are meant to solve "lots of data" and "too slow" and nothing else.
Create a view or write a small helper application that can run your most important queries at the click of a button.
That said, I had some success with an application which runs a query and then displays a list of check boxes where I can pull in the foreign key relations to the data that the query returns (i.e. one checkbox per FK).
You ask about number or string as primary key. But based on your example if you use a string it wouldn't be a primary key at all, because you would no longer have a lookup table for it to be the primary key of. Perhaps you would still have the table for reasons not shown, like populating a drop down or storing extended descriptions beyond just the name.
Doing needless joins is not a good thing for performance. And having needless tables might be bad for storage size as well, depending on the length of the strings and the ratio of the sizes of the two tables.
You could also consider enumerated types, in which the data is stored as numbers (more or less) but the database translates them to and from strings automatically.

Mysql - Should I use ID columns?

I have a doubt about best practices and how the database engine works.
Suppose I create a table called Employee, with the following columns:
SS ID (Primary Key)
Name
Sex
Age
The thing is.. I see a lot of databases that all its tables has and aditional column called ID, wich is a sequencial number. Should I put and ID field in my table here? I mean, it already has a Primary Key to be indexed. Will the database works faster with a sequencial ID field? I dont see how it helps if I wont use it to link or research any table.
Does it helps? If so, why, what happens in the database?
thanks!
EDIT -----
This is just a silly example. Forget about the SS_ID, I know there are better ways for choosing a primary key. The main topi is because some people I know just ask me to add the collumn named ID, even if I know we wont use it for any SQL query. They just think it helps the database's performance in some way, specially because some database tools like Microsoft Access always asks us if we want it to add this new column.
This is wrong, right?
If SS means "Social Security", I'd strongly advise against using that as a PK. An auto-incremented identity is the way to go.
Using keys with business logic built in is a bad idea. Lots of people are sensitive about giving SS information. Your app could be eliminating part of their audience if they use SS as primary key. Laws like HIPPA can make it impossible for you to use.
The actual performance gain in having a sequential id is going to depend a lot on how you use the table.
If you're using some ORM framework, these generally work better having a sequential ID of an integral type [1], which is typically achieved with an sequential id column.
If you don't use an ORM framework, having an idkey that you never use and a surrogate ss_id key which is effectively what you always use makes little sense.
If you're referencing employees from other database table (foreign-key), then it'll probably be more efficient to have an id column, as storing that integer is going to consume less space in the child tables than storing the ss_id (which I assume is a CHAR or VARCHAR) everywhere.
On the ss_id, assuming it's a social security number (looks like it would be), there might be legal & privacy concerns attached to it that you should care about - my answer assumes you do have valid reasons to have social security numbers in your database, and that you would be legally allowed to use & store them.
[1] This is usually explained by the fact the ORM frameworks rely on having highly specialized cache mechanisms, that are tailored for typical ORM use - which usually implies having a sequential id primary key, and letting application deal with actual business identity. This is in fact related to consideration very similar to these of the "foreign key" considerations.
US Social Security numbers are not sufficiently identifying. And banks certainly do not use them in that way. Not everybody has one. Errors result in duplicates. Foreigners don't have them. They are far too fragile to use as a database PK.
Most importantly: the are resused after death
Do some research: SSN as Primary Key
What's more important (obviously) is that you have a primary key, as long as the data you put use for that primary key will be uniquely identifiable. In your example, SSN's are uniquely identifiable which is why banks use them and will work. The problem with this example is that your Employee ID is likely to be used as a Foreign Key in other tables, which means you're taking personal information (that is legally protected) and spraying it across your data model. You might do better using an Auto Incremented field in this case.

Mysql auto increment primary key id's

I have some mysql tables that have auto incrementing id's that are primary keys, but I notice that I never actually use them... I used to think that every table must have a primary key so I guess that is why I created them before. Should I remove them all if I don't use them at all?
Unless you are running into space problems I wouldn't remove them.
They are a life saver in case you by mistake (or oversight) populate the database with repeated/wrong data.
They also help to have related tables, where you reference the content on one table through the autogenerated id.
This is assuming you have indexes for the other columns you use to actually query the data (if you don't, then more reason to keep the autoincrement ids and use them!).
No.
You should keep them; a database always needs something that differentiates a row from another row (a "Key" of some sort).
If you have something that is guaranteed to be unique for each row, then you can use that as a key; otherwise keep the Primary Key and the Auto generated ID.
I'd personally keep them. They will be especially useful at a later date if you expand the database design and need to reference this table.
Interesting!...
I seem to hold a minority opinion here, getting both upvoted and downvoted to currently an even 0, yet no one in the majority opinion (see responses above) seems to make much of a case for keeping the id field, and the downvoters didn't even bother leaving comments hinting at why doing away with the id is such a bad idea.
In their defense, my own original response did not include any strong argument as to why it is ok to do away with the id attribute in some cases (which seem to apply to the OP). Maybe such a gratuitous response makes it, in of itself, a downvotable response.
Please do educate me, and the OP, by leaving comments pro or against the _systematic_ (and I stress "systematic") need to include auto-incremented non-semantic primary keys in all tables. A promised I returned and added to my response to provide a list of reasons why it may be detrimental to [again, systematically] impose a auto-incremented PK.
My original response:
You bet! you can remove these!
Before you do anything to the database make sure you have a backup, in particular is the DB size is significant.
Use the ALTER TABLE statement to remove the id in the tables where you want to remove it. Specifically
ALTER TABLE myTable DROP COLUMN id
(you also need to remove the PK constraint before removing the id, if the table has such a constraint)
EDIT (Added later)
There are many cases where it just doesn't make sense to carry along an autoincremented ID key, regardless of the relative little extra storage requirement these keys add.
In all these cases, the underlying implication is that
either the data itself supplies a primary key,
or, the application manages the key generation
The key supplied "natively" in the data doesn't necessarily neeeds to be a single column key, it can be a composite key, although in these cases one may wish to study the situation more closely, particularly is the overal key is a bit long.
Here are some of the drawbacks of using an auto-incremeted primary key in lieu of a native or application-supplied key:
The effective data integrity may go unchecked
i.e. the server may allow record insertions of updates which create a duplicated [native] key (eventhough the artificial, autoincremented primary key hides this reality)
When relying on the auto-incremented PK for the support of joins between tables, when part of the [native] key values have to be updated...
...we either create the need of deleting the record in full and and re-insert it with the news values,
...or the risk of keeping outdated/incorrect links.
A common "follow-up" with auto-incremented keys is to create a clustered index on the table for this key.
This does make sense for tables without an native or application-supplied primary key, so so much for data sets that have such keys.
Effectively this prevents choosing a key for the clustered index which may be more beneficial for the most common query patterns.
Migrating tables with an auto-incremented key can made more difficult depending on the DBMS (need to declare the underlying column as plain integer, prior to copy, then need start again the autoincrement...)
For narrow tables, i.e. tables with a few columns only, the relative cost of the auto-incremented PK can be significant, and impact performance in a non negligible fashion.
When inserting new records along with associated records in related tables, the auto-incremented key needs to be obtained after the insertion of the main record, before the related records can be inserted; the logic is simpler when the column values supporting the link are known ahead of time.
To summarize, the idea that so long as the storage can carry the [relatively minimal] extra "weight" of the artificial primary key, we should include and use such a key, is not without drawbacks of its own.
A final consideration is that just like it is rather easy to remove such keys when we don't need them, they too can be easily added, post-facto, when/if it becomes apparent that they are useful in a particular situation. Neither form of refactoring (adding vs. removing the auto-incremented columns) is risk free, but neither is a major production either.
Yes, if you can figure out another primary key.
There is obviously a flaw of your table design. For example, you had a table like
relation_id(PK), parent_id, child_id .
It is known that the combination of parent_id and child_id is unique, then you can assign the primary key to be parent_id + child_id, and then drop the column relation_id.
There should may endlessly other possible cases, but just bear in mind that primary key is helping you to locate data quickly, as well as helping you have your design making sense.

Should I add a autoinc primary key for the sake of having a primary key?

I have a table which needs 2 fields. One will be a foreign key, the other is not necessarily unique. There really isn't a reason that I can find to have a primary key other than having read that "every single tabel ever needs needs needs a primary key".
Edit:
Some good thoughts in here.
For clarity's sake, I will give you an example that is similar to my database needs.
Let's say have a table with product type, quantity, cost, and manufacturer.
Product type will not always be unique (say, MP3 Player), but manufacturer/product type will be unique (say, Apple MP3 Player). Forget about the various models the manufacturers make for this example. For ease, this table has a autoincrementing primary key.
I am giving a point value and logging how often these products are searched for, added to a cart, and bought for display on a list of hot items.
The way I have it layed out currently is in a second table with a FK pointing to the main table, and a second column for the total number of "popularity points" this item has gained.
The answers have seen here have made me think that perhaps I should just add a "points" column to my primary products table so that I could just track there... but that seems like I'm not normalizing my database enough.
My problem is I'm currently mostly just a hobbyist doing this for learning, and don't have the luxury of a DBA to tell me how to set up my tables, so I have to learn both the coding side and the database side.
You have to distinguish between primary key and surrogate key. Auto-incremented column would be a particular case of the latter. Your question, therefore, is twofold:
Does every table need to have a primary key?
Does every table need to have a surrogate primary key?
The answer to first question is YES except in some special cases (association table for many-to-many relationship arguably being an example of such a special case). The reason for this is that you usually need to be able (if not right now then in the future) to consistently address individual rows of that table - for updates / deletion, for example.
The answer to the second question is NO. If your table represents a core business entity then OR it can be referenced from many-to-one association, having a surrogate key is probably a good idea; but it's not absolutely necessary.
It's somewhat unclear what your table's function is; from your description it sounds like it has "collection of values" semantics (FK to "main" table + value). Certain ORMs don't support surrogate keys in such circumstances; if that's what has prompted your question it's OK to leave the surrogate (or even primary in case of bag) key off.
For the sake of having something unique and as identifier, please please please please have a primary key in every table :)
It also helps forward compaitability in case there are future schema changes and 2 values are no long unique. Plus, memory are much cheaper now, feel free to use them as investments. ;)
i am not sure how the other field looks like .. but i am guessing that it would be to ok to have a composite primary key , which is based on the FK and the other field .. but then again i dont know your exact scenario.
I would say that it's absolutely necessary to have some sort of primary key in every table.
Interestingly enough, one of the DBA's for a Viacom property once told me that there was really no discernible difference in using an INT UNSIGNED or a VARCHAR(n) as a primary key in MySQL. This was in reference to a user table with more than 64 million rows. I believe n can be decently large (<=100), but I forget the what they limited to. Unfortunately, I don't have any empirical data to back that up.
You don't HAVE to have a primary key on every table, but it is considered best practice to have them as they are almost always necessary on a normalized relational database design. If you're finding a bunch of tables you don't think need PKs, then you should revisit the design/layout of your tables. To read more on normalization see here.
A couple scenarios that I can think of where you may not need or want a PK on a table would be a table strictly for logging. (to limit performance degradation of writing the log and maintaining a unique index) and in the scenario where your just storing data used to pump through an application for test purposes.
I'll be contrary and say you shouldn't add the key if you don't have a reason for it. It is very easy to add this column later if needed.
Strictly speaking, a surrogate key is not necessary, but a primary key is.
Many people use the term "primary key" to mean a single column that is an auto-incrementing integer. But this is not an accurate definition of a primary key.
A primary key is a constraint on one or more columns that serve to identify each row uniquely. Yes, you need some way of addressing individual rows. This is a crucial characteristic of a relation (aka a table).
You say you have a foreign key and another column that is not unique. But are these two columns taken together unique? If so, you can declare a primary key constraint over these two columns.
Defining another surrogate key (also called a pseudokey -- the auto-incrementing type) is a convenience because some people don't like to have to reference two columns when selecting a single row. Or they want the freedom to change values in the other columns easily, without changing the value of the primary key by which one addresses the individual row.
This is a technique related to normalization and a pretty good practice. A key made up of an auto incrementing number has many benefits:
You have a PK that does not pertain to the data.
You never have to change the PK value
Every row will automatically have a unique identifier