Which database has the best support for replication - mysql

I have a fairly good feel for what MySQL replication can do. I'm wondering what other databases support replication, and how they compare to MySQL and others?
Some questions I would have are:
Is replication built in, or an add-on/plugin?
How does the replication work (high-level)? MySQL provides statement-based replication (and row-based replication in 5.1). I'm interested in how other databases compare. What gets shipped over the wire? How do changes get applied to the replicas?
Is it easy to check consistency between master and slaves?
How easy is it to get a failed replica back in sync with the master?
Performance? One thing I hate about MySQL replication is that it's single-threaded, and replicas often have trouble keeping up, since the master can be running many updates in parallel, but the replicas have to run them serially. Are there any gotchas like this in other databases?
Any other interesting features...

MySQL's replication is weak inasmuch as one needs to sacrifice other functionality to get full master/master support (due to the restriction on supported backends).
PostgreSQL's replication is weak inasmuch as only master/standby is supported built-in (using log shipping); more powerful solutions (such as Slony or Londiste) require add-on functionality. Archive log segments are shipped over the wire, which are the same records used to make sure that a standalone database is in working, consistent state on unclean startup. This is what I'm using presently, and we have resynchronization (and setup, and other functionality) fully automated. None of these approaches are fully synchronous. More complete support will be built in as of PostgreSQL 8.5. Log shipping does not allow databases to come out of synchronization, so there is no need for processes to test the synchronized status; bringing the two databases back into sync involves setting the backup flag on the master, rsyncing to the slave (with the database still runnning; this is safe), and unsetting the backup flag (and restarting the slave process) with the archive logs generated during the backup process available; my shop has this process (like all other administration tasks) automated. Performance is a nonissue, since the master has to replay the log segments internally anyhow in addition to doing other work; thus, the slaves will always be under less load than the master.
Oracle's RAC (which isn't properly replication, as there's only one storage backend -- but you have multiple frontends sharing the load, and can build redundancy into that shared storage backend itself, so it's worthy of mention here) is a multi-master approach far more comprehensive than other solutions, but is extremely expensive. Database contents aren't "shipped over the wire"; instead, they're stored to the shared backend, which all the systems involved can access. Because there is only one backend, the systems cannot come out of sync.
Continuent offers a third-party solution which does fully synchronous statement-level replication with support for all three of the above databases; however, the commercially supported version of their product isn't particularly cheap (though vastly less expensive. Last time I administered it, Continuent's solution required manual intervention for bringing a cluster back into sync.

I have some experience with MS-SQL 2005 (publisher) and SQLEXPRESS (subscribers) with overseas merge replication. Here are my comments:
1 - Is replication built in, or an add-on/plugin?
Built in
2 - How does the replication work
(high-level)?
Different ways to replicate, from snapshot (giving static data at the subscriber level) to transactional replication (each INSERT/DELETE/UPDATE instruction is executed on all servers). Merge replication replicate only final changes (successives UPDATES on the same record will be made at once during replication).
3 - Is it easy to check consistency between master and slaves?
Something I have never done ...
4 - How easy is it to get a failed replica back in sync with the master?
The basic resynch process is just a double-click one .... But if you have 4Go of data to reinitialize over a 64 Kb connection, it will be a long process unless you customize it.
5 - Performance?
Well ... You will of course have a bottleneck somewhere, being your connection performance, volume of data, or finally your server performance. In my configuration, users only write to subscribers, which all replicate with the main database = publisher. This server is then never sollicited by final users, and its CPU is strictly dedicated to data replication (to multiple servers) and backup. Subscribers are dedicated to clients and one replication (to publisher), which gives a very interesting result in terms of data availability for final users. Replications between publisher and subscribers can be launched together.
6 - Any other interesting features...
It is possible, with some anticipation, to keep on developping the database without even stopping the replication process....tables (in an indirect way), fields and rules can be added and replicated to your subscribers.
Configurations with a main publisher and multiple suscribers can be VERY cheap (when compared to some others...), as you can use the free SQLEXPRESS on the suscriber's side, even when running merge or transactional replications

Try Sybase SQL Anywhere

Just adding to the options with SQL Server (especially SQL 2008, which has Change Tracking features now). Something to consider is the Sync Framework from Microsoft. There's a few options there, from the basic hub-and-spoke architecture which is great if you have a single central server and sometimes-connected clients, right through to peer-to-peer sync which gives you the ability to do much more advanced syncing with multiple 'master' databases.
The reason you might want to consider this instead of traditional replication is that you have a lot more control from code, for example you can get events during the sync progress for Update/Update, Update/Delete, Delete/Update, Insert/Insert conflicts and decide how to resolve them based on business logic, and if needed store the loser of the conflict's data somewhere for manual or automatic processing. Have a look at this guide to help you decide what's possible with the different methods of replication and/or sync.
For the keen programmers the Sync Framework is open enough that you can have the clients connect via WCF to your WCF Service which can abstract any back-end data store (I hear some people are experimenting using Oracle as the back-end).
My team has just gone release with a large project that involves multiple SQL Express databases syncing sub-sets of data from a central SQL Server database via WAN and Internet (slow dial-up connection in some cases) with great success.

MS SQL 2005 Standard Edition and above have excellent replication capabilities and tools. Take a look at:
http://msdn.microsoft.com/en-us/library/ms151198(SQL.90).aspx
It's pretty capable. You can even use SQL Server Express as a readonly subscriber.

There are a lot of different things which databases CALL replication. Not all of them actually involve replication, and those which do work in vastly different ways. Some databases support several different types.
MySQL supports asynchronous replication, which is very good for some things. However, there are weaknesses. Statement-based replication is not the same as what most (any?) other databases do, and doesn't always result in the expected behaviour. Row-based replication is only supported by a non production-ready version (but is more consistent with how other databases do it).
Each database has its own take on replication, some involve other tools plugging in.

A bit off-topic but you might want to check Maatkit for tools to help with MySQL replication.

All the main commercial databases have decent replication - but some are more decent than others. IBM Informix Dynamic Server (version 11 and later) is particularly good. It actually has two systems - one for high availability (HDR - high-availability data replication) and the other for distributing data (ER - enterprise replication). And the the Mach 11 features (RSS - remote standalone secondary, and SDS - shared disk secondary) are excellent too, doubly so in 11.50 where you can write to either the primary or secondary of an HDR pair.
(Full disclosure: I work on Informix softare.)

I haven't tried it myself, but you might also want to look into OpenBaseSQL, which seems to have some simple to use replication built-in.

Another way to go is to run in a virtualized environment. I thought the data in this blog article was interesting
http://chucksblog.typepad.com/chucks_blog/2008/09/enterprise-apps.html
It's from an EMC executive, so obviously, it's not independent, but the experiment should be reproducible
Here's the data specific for Oracle
http://oraclestorageguy.typepad.com/oraclestorageguy/2008/09/to-rac-or-not-to-rac-reprise.html
Edit: If you run virtualized, then there are ways to make anything replicate
http://chucksblog.typepad.com/chucks_blog/2008/05/vmwares-srm-cha.html

Related

Reliability of MySQL master-slave replication

I have a an application that requires a master catalogue of about 30 tables which require to be copied out to many (100+) slave copies of the application. Slaves may be in their own DB instance or there may be multiple slaves in single DB instances. Any changes to the Master catalogue require to be copied out to the slaves within a reasonable time - around 5 minutes. Our infrastructure is all AWS EC2 and we use MySQL. Master and slaves will all reside within a single AWS region.
I had planned to use Master-Slave replication but I see reports of MySQL replication being sometimes unreliable and I am not sure if this is due to failings inherent in the particular implementations or failings in MySQL itself. We need a highly automated and reliable system and it may be that we have to develop monitoring scripts that allow a slave to continuously monitor its catalogue relative to the master.
Any observations?
When I was taking dance lessons before my wedding, the instructor said, "You don't have to do every step perfectly, you just have to learn to recover gracefully when missteps happen. If you can do that quickly, with a smile on your face, no one will notice."
If you have 100+ replicas, expect that you will be reinitializing replicas frequently, probably at least one or two every day. This is normal.
All software has bugs. Expecting anything different is, frankly, naive. Don't expect software to be flawless and continue operating 24/7 indefinitely without errors, because you will be disappointed. You should not seek a perfect solution, you should think like a dancer and recover gracefully.
MySQL replication is reasonably stable, and no less so than other solutions. But there are a variety of failures that can happen, without it being MySQL's fault.
Binlogs can develop corrupted packets in transit due to network glitches. MySQL 5.6 introduced binlog checksums to detect this.
The master instance can crash and fail to write an event to the binlog. sync_binlog can help to ensure all transactions are written to the binlog on commit (though with overhead for transactions).
Replica data can fall out of sync due to non-deterministic SQL statements, or packet corruption, or log corruption on disk, or some user can change data directly on a replica. Percona's pt-table-checksum can detect this, and pt-table-sync can correct errors. Using binlog_format=ROW reduces the chance of non-deterministic changes. Setting the replicas read-only can help, and don't let users have SUPER privilege.
Resources can run out. For example, you could fill up the disk on the master or the replica.
Replicas can fall behind, if they can't keep up with the changes on the master. Make sure your replica instances are not under-powered. Use binlog_format=ROW. Write fewer changes to an individual MySQL master. MySQL 5.6 introduces multi-threaded replicas, but so far I've seen some cases where this is still a bit buggy, so test carefully.
Replicas can be offline for an extended time, and when they come back online, some of the master's binlogs have been expired so the replica can't replay a continuous stream of events from where it left off. In that case, you should trash the replica and reinitialize it.
Bugs happen in any software project, and MySQL's replication has had their share. You should keep reading release notes of MySQL, and be prepared to upgrade to take advantage of bug fixes.
Managing a big collection of database servers in continuous operation takes a significant amount of full-time work, no matter what brand of database you use. But data has become the lifeblood of most businesses, so it's necessary to manage this resource. MySQL is no better and no worse than any other brand of database, and if anyone tells you something different, they're selling something.
P.S.: I'd like to hear why you think you need 100+ replicas in a single AWS region, because that is probably overkill by an order of magnitude for any goal of high availability or scaling.

MySQL dual master replication -- is this scenario safe?

I currently have a MySQL dual master replication (A<->B) set up and everything seems to be running swimmingly. I drew on the basic ideas from here and here.
Server A is my web server (a VPS). User interaction with the application leads to updates to several fields in table X (which are replicated to server B). Server B is the heavy-lifter, where all the big calculations are done. A cron job on server B regularly adds rows to table X (which are replicated to server A).
So server A can update (but never add) rows, and server B can add rows. Server B can also update fields in X, but only after the user no longer has the ability to update that row.
What kinds of potential disasters can I expect with this scenario if I go to production with it? Or does this seem OK? I'm asking mostly because I'm ignorant about whether any simultaneous operation on the table (from either the A copy or the B copy) can cause problems or if it's just operations on the same row that get hairy.
Dual master replication is messy if you attempt to write to the same database on both masters.
One of the biggest points of contention (and high blood pressure) is the use of autoincrement keys.
As long as you remember to set auto_increment_increment and auto_increment_offset, you can lookup any data you want and retrieve auto_incremented ids.
You just have to remember this rule: If you read an id from serverX, you must lookup needed data from serverX using the same id.
Here is one saving grace for using dual master replication.
Suppose you have
two databases (db1 and db2)
two DB servers (serverA and serverB)
If you impose the following restrictions
all writes of db1 to serverA
all writes of db2 to serverB
then you are not required to set auto_increment_increment and auto_increment_offset.
I hope my answer clarifies the good, the bad, and the ugly of using dual master replication.
Here is a pictorial example of 4 masters using auto increment settings
Nice article from Percona on this subject
Master-master replication can be very tricky, are you sure that this is the best solution for you ? Usually it is used for load-balancing purposes (e.g. round-robin connect to your db servers) and sometimes when you want to avoid the replication lag effect. A big known issue is the auto_increment problem which is supposedly solved using different offsets and increment value.
I think you should modify your configuration to simple master-slave by making A the master and B the slave, unless I am mistaken about the requirements of your system.
I think you can depend on
Percona XtraDB Cluster Feature 2: Multi-Master replication than regular MySQL replication
They promise the foll:
By Multi-Master I mean the ability to write to any node in your cluster and do not worry that eventually you get out-of-sync situation, as it regularly happens with regular MySQL replication if you imprudently write to the wrong server.
With Cluster you can write to any node, and the Cluster guarantees consistency of writes. That is the write is either committed on all nodes or not committed at all.
The two important consequences of Muti-master architecture.
First: we can have several appliers working in parallel. This gives us true parallel replication. Slave can have many parallel threads, and you can tune it by variable wsrep_slave_threads
Second: There might be a small period of time when the slave is out-of-sync from master. This happens because the master may apply event faster than a slave. And if you do read from the slave, you may read data, that has not changes yet. You can see that from diagram. However you can change this behavior by using variable wsrep_causal_reads=ON. In this case the read on the slave will wait until event is applied (this however will increase the response time of the read. This gap between slave and master is the reason why this replication named “virtually synchronous replication”, not real “synchronous replication”
The described behavior of COMMIT also has the second serious implication.
If you run write transactions to two different nodes, the cluster will use an optimistic locking model.
That means a transaction will not check on possible locking conflicts during individual queries, but rather on the COMMIT stage. And you may get ERROR response on COMMIT. I am highlighting this, as this is one of incompatibilities with regular InnoDB, that you may experience. In InnoDB usually DEADLOCK and LOCK TIMEOUT errors happen in response on particular query, but not on COMMIT. Well, if you follow a good practice, you still check errors code after “COMMIT” query, but I saw many applications that do not do that.
So, if you plan to use Multi-Master capabilities of XtraDB Cluster, and run write transactions on several nodes, you may need to make sure you handle response on “COMMIT” query.
You can find it here along with pictorial expln
From my rather extensive experience on this topic I can say you will regret writing to more than one master someday. It may be soon, it may not be for a long time, but it will happen. You will have two servers that each have some correct data and some wrong data, and you will either pick one as the authoritative source and throw the other away (probably without really knowing what you're throwing away) or you'll reconcile the two. No matter how you design it, you cannot eliminate the possibility of this happening, so it's a mathematical certainty that it will happen someday.
Percona (my employer) has handled probably several hundred cases of recovery after doing what you're attempting. Some of them take hours, some take weeks, one I helped with took a few months -- and that's with excellent tools to help.
Use a different replication technology or find a different way to do what you want to do. MMM will not help -- it will bring catastrophe sooner. You cannot do this with standard MySQL replication, with or without external tools. You need a replacement replication technology such as Continuent Tungsten or Percona XtraDB Cluster.
It's often easier to just solve the real need in some other fashion and give up multi-master writes, if you want to use vanilla MySQL replication.
and thanks for sharing my Master-Master Mysql cluster article. As Rolando clarified this configuration is not suitable for most production environment due to the limitation of autoincrement support.
The most adequate way to get a MySQL cluster is using NDB, which require at least 4 servers (2 management and 2 data nodes).
I have written a detailed article to get this running on two servers only, which is very similar to my previous article but using NDB instead.
http://www.hbyconsultancy.com/blog/mysql-cluster-ndb-up-and-running-7-4-and-6-3-on-ubuntu-server-trusty-14-04.html
Notice that I always recommend to analyse your needs and find out the most adequate solution, don't just look for available solutions and try to figure out if they fit with your needs or not.
-Hatem
I would highly recommend looking into a tool that will manage this for you. Multi-master replication can be very troublesome if things go wrong.
I would suggest something like Percona XtraDB Cluster. I've been following this project, and it looks very cool. I definitely think it will be a game changer in the MySQL world. It's still in beta though.

Mysql database sync between two databases

We are running a Java PoS (Point of Sale) application at various shops, with a MySql backend. I want to keep the databases in the shops synchronised with a database on a host server.
When some changes happen in a shop, they should get updated on the host server. How do I achieve this?
Replication is not very hard to create.
Here's some good tutorials:
http://www.ghacks.net/2009/04/09/set-up-mysql-database-replication/
http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html
http://www.lassosoft.com/Beginners-Guide-to-MySQL-Replication
Here some simple rules you will have to keep in mind (there's more of course but that is the main concept):
Setup 1 server (master) for writing data.
Setup 1 or more servers (slaves) for reading data.
This way, you will avoid errors.
For example:
If your script insert into the same tables on both master and slave, you will have duplicate primary key conflict.
You can view the "slave" as a "backup" server which hold the same information as the master but cannot add data directly, only follow what the master server instructions.
NOTE: Of course you can read from the master and you can write to the slave but make sure you don't write to the same tables (master to slave and slave to master).
I would recommend to monitor your servers to make sure everything is fine.
Let me know if you need additional help
three different approaches:
Classic client/server approach: don't put any database in the shops; simply have the applications access your server. Of course it's better if you set a VPN, but simply wrapping the connection in SSL or ssh is reasonable. Pro: it's the way databases were originally thought. Con: if you have high latency, complex operations could get slow, you might have to use stored procedures to reduce the number of round trips.
replicated master/master: as #Book Of Zeus suggested. Cons: somewhat more complex to setup (especially if you have several shops), breaking in any shop machine could potentially compromise the whole system. Pros: better responsivity as read operations are totally local and write operations are propagated asynchronously.
offline operations + sync step: do all work locally and from time to time (might be once an hour, daily, weekly, whatever) write a summary with all new/modified records from the last sync operation and send to the server. Pros: can work without network, fast, easy to check (if the summary is readable). Cons: you don't have real-time information.
SymmetricDS is the answer. It supports multiple subscribers with one direction or bi-directional asynchronous data replication. It uses web and database technologies to replicate tables between relational databases, in near real time if desired.
Comprehensive and robust Java API to suit your needs.
Have a look at Schema and Data Comparison tools in dbForge Studio for MySQL. These tool will help you to compare, to see the differences, generate a synchronization script and synchronize two databases.

Failover support for a DB

We are currently evaluating failover support in different databases.
We were earlier using HSQLDB but it seems that it does not have clustering/replication support.
Our requirement is simply to have two database servers, one being only for synchronous backup but if the primary server is down, then the secondary should automatically start acting as the primary server.
Has anyone evaluated MySQL, PostgreSQL or any other DB server for such a use case?
Edit: We had thought of using MySQL cluster but it now seems that it is under GPL license which we won't be able to work with. Could anyone please suggest a synchronous replication/clustering solution which can be used? We are currently using HSQL, so a solution with HSQL used in clustered mode will be ideal for us but we are open for change.
Stackoverflow resources
MySQL supports replication out of the box: see this question for MySQL: Scaling solutions for MySQL (Replication, Clustering)
PostgreSQL also support replication, see this question for that: PostgreSQL replication strategies
If your requirements are simple MySQL will work
I've used MySQL is a simple master-master failover scenario using the setup I read in High Performance MySQL. I highly recommend the book if you're keen on using MySQL.
It has worked well for me, because I just wanted a simple fail-over.
If your use case is just as simple. It will work well.
Just for completeness, the H2 database has some clustering support, but compared to the MySQL and PostgreSQL features it is very limited, it's really only failover. I would first look at HA-JDBC.
for a simple failover where servers are on the same location. you can use DRBD and Heartbeat.
In a nutshell: DRBD stores the data on 2 servers on the same time. fully transparent to the system. with heartbeat the standby checks against the main server, if its not reachable, it takes over the resource, mounts it and starts the database daemon. (works with mysql, postgres and most probably with most other daemons out there)
There is a third-party product that works with HSQLDB:
http://ha-jdbc.sourceforge.net/
Not sure this is within the desired price range of most FOSS-type people :-) but we use DB2 9.7 for exactly this purpose (actually, we mostly use DB2/z on the mainframe for it, but some customers like the DB2/LUW (Linux/UNIX/Windows) option for smaller systems).
DB2 comes with high availability (HA) features built in and you can use db2haicu, the DB2 High Availability Instance Configuration Utility (gotta love those acronym generators employed by Big Blue) to configure things relatively painlessly.
It's active/passive as you desired, although DB2 is certainly capable of active/active setups for load balancing.
The particular setups we're most familiar with at the low end (everything other than a mainframe) are actually shared disk ones, with the HA applying to only DBMS resources and not data, but you can separate the data with DB2 replication features as well.
We've had one client (at least) using Q replication, which is a very low latency replication method, close to synchronous but not quite. DB2 does actually provide real synchronous replication as well.
DeveloperWorks has an interesting article on how this all hangs together, along with the various options.

Mysql remote synch

We currently have an application located on a remote server, and our call center uses this application to perform customer transactions.
We plan to setup asterisk on a local server to help us with all the call routing and recording, for asterisk to work smoothly we have to move our application from the remote server to the local.
Its will be easy to mover all data to the local server and do transactions locally, but there is an option for users to do transactions online too which will hit the remote server database.
The reason we still have the remote application because of the reliable infrastructure and backup solution provided by rackspace.
If we move application to local server i am looking at a reliable solution for syncing remote and local databases so that we can handle local as well as online transactions.
Why not use mysql master-master replication and hold definitive data at both ends? (Note you'll have to do some reading on on auto_increment_increment and auto_increment_offset)
symcbean's answer is basically correct. I'd add this article as a good starting place to understand master-master replication. I'd further recommend High Performance MySQL as a good reference for a deeper understanding of the techniques and issues.
There are some issues that you will have to face doing writes to two non-colocated MySQL servers. You'll have replication lag to deal with, so the databases won't necessarily be completely in sync, but will only be "eventually consistent". Also, if you have both sides doing updates on content, you can end up with data integrity issues. If your system leans towards INSERTs more then UPDATES for the write operations, it is less likely that you'll run into issues. Also, if the subset of data that is likely to be modified tends to be localized around one or the other of the servers, you'll run into fewer issues.
Otherwise, you'll probably want to roll your own solution that is designed towards the specific use cases of your application.