Repository, Entity objects and Domain Objects - linq-to-sql

In my Repositories, I am making assignments to my domain objects from the Linq Entity queries. I then have a service layer to act on these object returned from repositories.
Should my Domain objects be in the repository like this? Or should my repositories be restricted to the Entities and Data Access, and instead have my service layer make assignments to the domain objects?
Doing all assignments in Repository seems easier, but now the distinction between my database and domain objects is not apparent. What is proper practice here? tia

IMO if the app is relativly simple and you cant imagine ripping out the Data access go ahead and make the asignments in the Repository. But if you think the app will get more complicated in the future or that you may want to change the data access keep this functionality out of the repositories.
I have done apps with assignement in the repositories and other in the service layer and yet another one i had a seperate conversion layer (it was not a one on one conversion and the objects were complex).
One thing to remember about best practices, There there to help, if it makes thing more dificult then dont use it.

I used to not like it. But now usually never look back. Basically the thing is that if you need to change to an external datasource that is structured different, you can set up a new mapping along with the implementation of the repository code and be done with it.
It is about data mapping. Check this link: http://www.martinfowler.com/eaaCatalog/repository.html
Also check this related question: IRepository confusion on objects returned. I have used a similar mapper, but have made it operated at the IQueryable level, which have made able to do some pretty interesting stuff while working with the Domain Object after the mapping.

Related

How to manage JSON-Schemas for multiple projects?

Suppose you have a Schema that is used in a UI-App (e.g. Vue), a Node.js or Springboot Server and has to validate against Databases (e.g. SQL, mongoDB,...), and maybe some Micro-services running on whatever.
How and where do I manage a this JSON-Schema, so that if I have to change the schema for whatever Reason, that every architectural component can handle the new JSON-Schema(s).
Otherwise I need to update the Schema in up to 10 projects so none is incompatible.
Is it really as simple as having a git project full with just JSON-Schemas or do I need specific loaders for each language/environment?
Are there best practices that I am unaware of?
PS: I don't really think I need the automatically synchronized on runtime, so don't really think I need another Microservice to achieve that.
That being said, if a Microservice is the best way to go, then getting a Microservice it is.
If you keep them in a git project, how do you load them? Clone the project each time the app starts? It may work, but I would go with a more flexible approach that should take too much effort to be done:
Build a JSON schema repository accessible via a REST API
When the app starts, it makes a request to grab the schema (latest, or a specific version)
That way you get an uniform (and scalable) way of playing with the schemas. Even if you think about a hot-reload sometime in the future, you can leverage this approach to do that.
Here is an old project in this direction, you may give it a shot to see if it works (or for some inspiration, at least)

Question about Domain Objects, A Service Layer, and Using Linq2SQL and ASP.net MVC with the Repository Pattern

First off, apologies for the long description of my brainspace below. I'm still wrapping my head around lots of these new ideas, so I'm sure I'm describing something incorrectly. Please feel free to correct me where I'm wrong.
We are in the R&D phase of a new ASP.net MVC2 site and want to ensure that we can 1) decouple our data store from our application, 2) allow for our application to be tested via unit tests and 3) allow us to change out our datastore or use something other than Linq2SQL down the line.
This seemingly simple goal has opened up a whole new world to me that includes the Repository pattern, IoC, DI, and all sorts of other things that are making my head swim. Here's what is so far coming into focus, or at least what I believe is a somewhat correct plan to reach our goals:
We will have a number of ISpecificRepository interfaces that define the contract between users of the interface and the underlying data store.
The SpecificRepository implementations will query specific datastores and return POCO representing our domain objects (or collections of them).
Our Service Layer will perform the application specific business logic using an instance of ISpecificRepository passed to the various service methods and pass these POCO domain objects back to our presentation layer.
As mentioned, we are planning on using Linq2SQL to implement our specific repositories for the application and have decided to decouple our service layer from this implementation by creating the POCO for our domain objects and create a mapping to and from these objects to the LINQ generated entities. In the service layer, we can then create business logic to query the repository, add data, and do whatever else we need to do for each use case. This seems fine but my concern is that since we're using Linq2SQL, our specific Linq repository implementation will now have to house all of the many Get queries that the service layer requires to implement the business logic efficiently.
I'm curious as to whether this somehow breaks the Repository pattern since we're now housing application specific logic not in the service layer but in the repository instead.
The reason I feel that we need to do it this way is so that I can write more efficient Linq queries on my specific Linq repository using various DataLoadOptions, etc. without returning IQueryable from my repository up to my service layer, where it would seem that sort of logic actually belongs. Also, all of the example IRepository interfaces I've seen seem very lightweight and only provide a few methods to GetByID, GetAll, Find, Insert, Delete, and SubmitChanges to the underlying data store. In my case, it sounds like my specific repositories will be doing a great deal more than that.
Thanks for reading this far. Any and all help that can clarify my misconceptions would be greatly appreciated.
-Mustafa
our specific Linq repository
implementation will now have to house
all of the many Get queries that the
service layer requires to implement
the business logic efficiently.
I'm curious as to whether this somehow
breaks the Repository pattern
Not at all. A Repository is a collection of domain entities. If I have a Repository of Accounts, it is perfectly reasonable to want Accounts.ThatAreOverdue().
I personally prefer fluent naming. Accounts.ThatAreOverdue() feels better than AccountRepository.GetOverdue() .. but I suppose that is a point of preference.
Also, all of the example IRepository
interfaces I've seen seem very
lightweight and only provide a few
methods to GetByID, GetAll, Find,
Insert, Delete, and SubmitChanges to
the underlying data store.
A Repository interface can be thin. Find is meant to be used with the Specification pattern. Encapsulate the criteria in another object. The implementation of the criteria can be passed Linq2Sql objects from which to query - but it will be more difficult to re-use the criteria classes against in-memory domain objects (versus in database, where Linq2Sql is involved).
Our Service Layer will perform the
application specific business logic
using an instance of
ISpecificRepository passed to the
various service methods and pass these
POCO domain objects back to our
presentation layer.
Are you saying that your logic will all be in Services and the "domain objects" will be bags of properties and bound to in the view?
I don't think I'd recommend that.
If the same object that is used in the application logic is also used in the view, then you have tightly coupled the two application layers and experience says that causes problems. It will be very difficult to maintain coherence in the Services and Domain through changes if the View uses the same objects. The View will need pieces of data and they will inevitably get stuck onto places they don't really belong in the domain.

Data Repository - business objects?

I'm reading the book "ASP.NET 3.5 Social Networking - Andrew Siemer" and I got confused when he uses Repositories to access the data.
Here is the idea of his code:
public interface IAccountRepository
{
Account GetAcountByID(int acId);
void SaveAccount(Account account);
List<Account> GetAllAccounts();
}
public class AccountRepositoryLINQ : IAccountRepository
{
Account GetAcountByID(int acId){
..... LINQ query .....
...... return.....
}
void SaveAccount(Account account){
..... LINQ .....
}
List<Account> GetAllAccounts(){
..... LINQ query .....
...... return.....
}
}
The class "Account" is the one generated automatically on the "LINQ to SQL Classes".
Some of the problems I see:
1º
I code my business layer, GUI, etc... and later in time the table Accounts in the database is changed (example: change the name of one column), then I need to rebuild the "LINQ to SQL Classes" and all my code layers will need to be recoded because my "Account" object changed.
2º
If I need to have other repositories (MySQL, Oracle, XML, other), what "Account" class will I use?
What to do?
Shouldn't I use a custom Account class? This will be used in all application layers.
How do the mapping from LINQ to my custom Account class?
Using simple "myClass.Name = linqClass.Name;" ???
Isn't this consuming machine resources if I need to "map" all the classes?
There isn't a easiest/lightest way to do it?
Is this the correct approach? Is there other ways?
Good instinct..
My suggestion is to abstract away the LinqToSQL objects, and create a set of Business Domain Objects. Then the Repository can query for the needed data and map them to the Domain objects that your application uses, and return those. Now your Data Access layer is decoupled from your application, and you can now do all of the things you listed.
The mapping can be a pain, so look at tools like Automapper to accomplish this.
I have a love hate relationship with LINQ to SQL classes myself, but I thought I'd play devils advocate :-), firstly addressing the points you made:-
1º I code my business layer, GUI,
etc... and later in time the table
Accounts in the database is changed
(example: change the name of one
column), then I need to rebuild the
"LINQ to SQL Classes" and all my code
layers will need to be recoded because
my "Account" object changed.
The general approach is that you'd add behaviour to the partial classes generated by LINQ to SQL, these files won't be replaced when you refresh a table from the data context. If you change the name of the column and don't want to change the rest of your code just update the class in the designer to use the old column name?
Even if you used POCOs for persistence with NHibernate for instance you'd still need to change the mapping so I don't really see this as an issue.
2º If I need to have other repositories (MySQL, Oracle, XML, other),
what "Account" class will I use?
Personally I'd call YAGNI on this one, if you really anticipate needing support for multiple databases LINQ to SQL might not be the best solution to start with in any case (simply to keep your infrastructure consistent across the application), tools like NHibernate would have far better support for such situations.
Moving on to adding a custom account class, mapping code can be taken care of by tools like AutoMapper, though this might mean you give up things like lazy loading (which may or may not be a big deal to you).
In the end it can be quite empowering to have full control over your entities (e.g. not having to use a parameterless constructor, control over instatiation etc, simple user types that map to one or two columns) and if you feel that your application might benefit from this it's probably the way to go, but you will pay the price in the repository implementation which will be complicated by mapping code and handling whether things need to be updated / deleted / inserted.
A good middle ground might be to simply code to an interface (e.g. IAccount) this should define the properties and method you expect from an account. Your repository would then become
IAccount GetById(int accountId);
You'll then give yourself freedom over what the implementation is (i.e. whether it's implemented by a LINQ to SQL class or a projection / mapping) and if you do opt for a custom class in future it'd be a simple case of moving the implementation to that class and altering the repository implementation.
In the end it's down to the application, if you think it's going to end up a huge application with extremely complex business logic by all means I would opt for a segregated domain layer that at least tries to be persistence ignorant. If, however, it isn't and opting for the repository pattern is simply a means to achieve good testability and a simple abstraction above your data access. I don't see why explicitly referencing LINQ to SQL classes and using them as a simple domain layer is such a big deal.
I personally use a combination of NHibernate and FluentNHibernate and seperate my domain(business objects) from all other things. I use messages from my other layers, like a GUI, to my domain which has a handler which injects repositories inside that hydrate the object(s) in question and perform the business logic, the interfaces in the repositories above are a nice way to decouple if you want to use other implementations of repositories or data access.

How to save and load different types of objects?

During coding I frequently encounter this situation:
I have several objects (ConcreteType1, ConcreteType2, ...) with the same base type AbstractType, which has abstract methods save and load . Each object can (and has to) save some specific kind of data, by overriding the save method.
I have a list of AbstractType objects which contains various ConcreteTypeX objects.
I walk the list and the save method for each object.
At this point I think it's a good OO design. (Or am I wrong?) The problems start when I want to reload the data:
Each object can load its own data, but I have to know the concrete type in advance, so I can instantiate the right ConcreteTypeX and call the load method. So the loading method has to know a great deal about the concrete types. I usually "solved" this problem by writing some kind of marker before calling save, which is used by the loader to determine the right ConcreteTypeX.
I always had/have a bad feeling about this. It feels like some kind of anti-pattern...
Are there better ways?
EDIT:
I'm sorry for the confusion, I re-wrote some of the text.
I'm aware of serialization and perhaps there is some next-to-perfect solution in Java/.NET/yourFavoriteLanguage, but I'm searching for a general solution, which might be better and more "OOP-ish" compared to my concept.
Is this either .NET or Java? If so, why aren't you using serialisation?
If you can't simply use serialization, then I would still definitely pull the object loading logic out of the base class. Your instinct is correct, leading you to correctly identify a code smell. The base class shouldn't need to change when you change or add derived classes.
The problem is, something has to load the data and instantiate those objects. This sounds like a job for the Abstract Factory pattern.
There are better ways, but let's take a step back and look at it conceptually. What are all objects doing? Loading and Saving. When you get the object from memory, you really don't to have to care whether it gets its information from a file, a database, or the windows registry. You just want the object loaded. That's important to remember because later on, your maintanence programmer will look at the LoadFromFile() method and wonder, "Why is it called that since it really doesn't load anything from a file?"
Secondly, you're running into the issue that we all run into, and it's based in dividing work. You want a level that handles getting data from a physical source; you want a level that manipulates this data, and you want a level that displays this data. This is the crux of N-Tier Development. I've linked to an article that discusses your problem in great detail, and details how to create a Data Access Layer to resolve your issue. There are also numerous code projects here and here.
If it's Java you seek, simply substitute 'java' for .NET and search for 'Java N-Tier development'. However, besides syntactical differences, the design structure is the same.

Creating lightweight Linq2Sql proxy objects

I'm trying to find the most efficient way to send my Linq2Sql objects to my jQuery plugins via JSON, preferably without additional code for each class.
The EntitySets are the main issue as they cause not only recursion, but when recursion is ignored (using JSON.NET's ReferenceLoopHandling feature) a silly amount of data can be retrieved, when I only really need 1 or 2 levels. This gets really bad when you're talking about Users, Roles and Permissions as you get the User's Role, the User's Permissions, the Role's Permissions, and the Role's Users all up in your JSON before it hits recursion and stops. Compare this to what I actually want, which is just the RoleId.
My initial approach was to send a "simplified" version of the object, where I reflect the entity and set any EntitySets to null, but of course in the above example Roles gets set to null and so RoleId is null. Setting only the 2nd level properties to null kind of works but there's still too much data as the EntitySets that weren't killed (the first level ones) repopulate their associated tables when the JsonSerializer does its reflection and I still get all those Permission objects that I just don't need.
I definately don't want to get into the situation of creating a lightweight version of every class and implementing "From" and "To" style methods on them, as this is a lot of work and seems wasteful.
Another option is to put a JsonIgnoreAttribute on the relevant properties, but this is going to cause a nightmare scenario whenever classes need to be re-generated.
My current favourite solution which I like and hate at the same time is to put the classes into opt-in serialization mode, but because I can't add attributes to the real properties I'd have to create JSON-only properties in a partial class. Again, this seems wasteful but I think it's the best so far.
Any suggestions gratefully received!
Have you tried to set the Serialization Mode in the dbml file?
It's a standard property under code generation and when you set it to Unidirectional it won't generate all the additional levels of your table structure. I've used this with silverlight and WCF to send data because the data contracts don't allow for additional levels to be sent (silverlight is very limited on what you can and can't do).
Hope this helps!