Seeking a method to:
Take whitespace separated tokens in a String; return a suggested Word
ie:
Google Search can take "fonetic wrd nterpreterr",
and atop of the result page it shows "Did you mean: phonetic word interpreter"
A solution in any of the C* languages or Java would be preferred.
Are there any existing Open Libraries which perform such functionality?
Or is there a way to Utilise a Google API to request a suggested word?
In his article How to Write a Spelling Corrector, Peter Norvig discusses how a Google-like spellchecker could be implemented. The article contains a 20-line implementation in Python, as well as links to several reimplementations in C, C++, C# and Java. Here is an excerpt:
The full details of an
industrial-strength spell corrector
like Google's would be more confusing
than enlightening, but I figured that
on the plane flight home, in less than
a page of code, I could write a toy
spelling corrector that achieves 80 or
90% accuracy at a processing speed of
at least 10 words per second.
Using Norvig's code and this text as training set, i get the following results:
>>> import spellch
>>> [spellch.correct(w) for w in 'fonetic wrd nterpreterr'.split()]
['phonetic', 'word', 'interpreters']
You can use the yahoo web service here:
http://developer.yahoo.com/search/web/V1/spellingSuggestion.html
However it's only a web service... (i.e. there are no APIs for other language etc..) but it outputs JSON or XML, so... pretty easy to adapt to any language...
You can also use the Google API's to spell check. There is an ASP implementation here (I'm not to credit for this, though).
First off:
Java
C++
C#
Use the one of your choice. I suspect it runs the query against a spell-checking engine with a word limit of exactly one, it then does nothing if the entire query is valid, otherwise it replaces each word with that word's best match. In other words, the following algorithm (an empty return string means that the query had no problems):
startup()
{
set the spelling engines word suggestion limit to 1
}
option 1()
{
int currentPosition = engine.NextWord(start the search at word 0, querystring);
if(currentPosition == -1)
return empty string; // Query is a-ok.
while(currentPosition != -1)
{
queryString = engine.ReplaceWord(engine.CurrentWord, queryString, the suggestion with index 0);
currentPosition = engine.NextWord(currentPosition, querystring);
}
return queryString;
}
Since no one has yet mentioned it, I'll give one more phrase to search for: "edit distance" (for example, link text).
That can be used to find closest matches, assuming it's typos where letters are transposed, missing or added.
But usually this is also coupled with some sort of relevancy information; either by simple popularity (to assume most commonly used close-enough match is most likely correct word), or by contextual likelihood (words that follow preceding correct word, or come before one). This gets into information retrieval; one way to start is to look at bigram and trigrams (sequences of words seen together). Google has very extensive freely available data sets for these.
For simple initial solution though a dictionary couple with Levenshtein-based matchers works surprisingly well.
You could plug Lucene, which has a dictionary facility implementing the Levenshtein distance method.
Here's an example from the Wiki, where 2 is the distance.
String[] l=spellChecker.suggestSimilar("sevanty", 2);
//l[0] = "seventy"
http://wiki.apache.org/lucene-java/SpellChecker
An older link http://today.java.net/pub/a/today/2005/08/09/didyoumean.html
The Google SOAP Search APIs do that.
If you have a dictionary stored as a trie, there is a fairly straightforward way to find best-matching entries, where characters can be inserted, deleted, or replaced.
void match(trie t, char* w, string s, int budget){
if (budget < 0) return;
if (*w=='\0') print s;
foreach (char c, subtrie t1 in t){
/* try matching or replacing c */
match(t1, w+1, s+c, (*w==c ? budget : budget-1));
/* try deleting c */
match(t1, w, s, budget-1);
}
/* try inserting *w */
match(t, w+1, s + *w, budget-1);
}
The idea is that first you call it with a budget of zero, and see if it prints anything out. Then try a budget of 1, and so on, until it prints out some matches. The bigger the budget the longer it takes. You might want to only go up to a budget of 2.
Added: It's not too hard to extend this to handle common prefixes and suffixes. For example, English prefixes like "un", "anti" and "dis" can be in the dictionary, and can then link back to the top of the dictionary. For suffixes like "ism", "'s", and "ed" there can be a separate trie containing just the suffixes, and most words can link to that suffix trie. Then it can handle strange words like "antinationalizationalization".
Related
I'm currently writing a TSQL (Sybase/Microsoft SQL) to MySQL translator using the ANTLR4 visitor approach.
I'm able to push comments and whitespaces to different channels so that I can use that information later.
What's not super clear is:
how do I get the data back?
and more importantly how do I plug the comments and whitespaces back into my translated MySQL code?
Re: #1, this seems to work to get the list of all tokens including the comments/whitespaces:
public static List<Token> getHiddenTokensFromString(String sqlIn, int hiddenChannel) {
CharStream charStream = CharStreams.fromString(sqlIn);
CaseChangingCharStream upper = new CaseChangingCharStream(charStream, true);
TSqlLexer lexer = new TSqlLexer(upper);
CommonTokenStream commonTokenStream = new CommonTokenStream(lexer, hiddenChannel);
commonTokenStream.fill();
List<Token> hiddenTokens = commonTokenStream.getTokens();
return hiddenTokens;
}
Re #2, what makes it particularly challenging is that as part of the translation, lines of SQL have to be moved around, some lines removed and some lines added.
Any help will be greatly appreciated.
Thanks.
The ANTLR4 lexer creates a number of tokens, each with an index (a running number). Provided you didn't just skip a token, all tokens are available for later inspection, once the parsing step is done, regardless of their channels (the channel is actually just a number property on a token).
So, given you have a token you want to translate, get its index and then ask the token stream for the tokens with the next smaller index or next higher index. These are usually the hidden whitespaces.
Once you have the whitespace token use its start and stop index to get the original text from the char stream. And since you know where you are in the translation process when you do that, it should be easy to know where to insert the original text.
Im trying to figure out how to extract the lat/long of the start/end in a google maps directions link that looks like this:
https://www.google.com/maps/preview#!data=!1m4!1m3!1d189334!2d-96.03687!3d36.1250439!4m21!3m20!1m4!3m2!3d36.0748342!4d-95.8040972!6e2!1m5!1s1331-1399+E+14th+St%2C+Tulsa%2C+OK+74120!2s0x87b6ec9a1679f9e5%3A0x6e70df70feebbb5e!3m2!3d36.1424613!4d-95.9736986!3m8!1m3!1d189334!2d-96.03687!3d36.1250439!3m2!1i1366!2i705!4f13.1&fid=0
Im guessing the "!" is a separator between variables followed by XY where x is a number and y is a lower case letter, but can not quite figure out how to reliably extract the coordinates as the number/order of variables changes as well as their XY prefixes.
ideas?
thanks
Well, this is old, but hey. I've been working on this a bit myself, so here's what I've figured out:
The data is an encoded javascript array, so the trick when trying to generate your own data string is to ensure that your formatting keeps the structure of the array intact. To do this, let's look at what each step represents.
As you're correctly figured out, each exclamation point defines the start of a value definition. The first character, an int value, is an inner count, and (I believe) acts as an identifier, although I'm not 100% certain on this. It seems to be pretty flexible in terms of what you can have here, as long as it's an int. The second character, however, is much more important. It defines the data type of the value. I don't know if I've found all the data types yet, but the ones I have figured out are:
m: matrix
f: float
d: double
i: integer
b: boolean
e: enum (as integer)
s: string
u: unsigned int
x: hexdecimal value?
the remaining characters actually hold the value itself, so a string will just hold the string, a boolean will be '1' or '0', and so on. However, there's an important gotcha: the matrix data type.
The value of the matrix will be an integer. This is the length of the matrix, measured in the number of values. That is, for a matrix !1mx, the next x value definitions will belong to the matrix. This includes nested matrix definitions, so a matrix of form [[1,2]] would look like !1m3!1m2!1i1!2i2 (outer matrix has three children, inner matrix has 2). this also means that, in order to remove a value from the list, you must also check it for matrix ancestors and, if they exist, update their values to reflect the now missing member.
The x data type is another anomaly. I'm going to guess it's hexdecimal encoded for most purposes, but in my particular situation (making a call for attribution info), they appear to also use the x data type to store lat/long information, and this is NOT encoded in hex, but is an unsigned long with the value set as
value = coordinate<0 ? (430+coordinate)*1e7 : coordinate*1e7
An example (pulled directly from google maps) of the x data type being used in this way:
https://www.google.com/maps/vt?pb=!1m8!4m7!2u7!5m2!1x405712614!2x3250870890!6m2!1x485303036!2x3461808386!2m1!1e0!2m20!1e2!2spsm!4m2!1sgid!2sznfCVopRY49wPV6IT72Cvw!4m2!1ssp!2s1!8m11!13m9!2sa!15b1!18m5!2b1!3b0!4b1!5b0!6b0!19b1!19u12!3m1!5e1105!4e5!18m1!1b1
For the context of the question asked, it's important to note that there are no reliable identifiers in the structure. Google reads the values in a specific order, so always keep in mind when building your own encoded data that order matters; you'll need to do some research/testing to determine that order. As for reading, your best hope is to rebuild the matrix structure, then scan it for something that looks like lat/long values (i.e. a matrix containing exactly two children of type double (or x?))
Looks like the developer tools from current browsers (I am using Chrome for that) can give you a lot of info.
Try the following:
Go to Google Maps with Chrome (or adapt the instructions for other browser);
Open Developer Tools (Ctrl + Shift + I);
Go to Network tab. Clear the current displayed values;
Drag the map until some url with encoded data appears;
Click on that url, and then go to the Preview sub-tab;
Try this.
function URLtoLatLng(url) {
this.lat = url.replace(/^.+!3d(.+)!4d.+$/, '$1');
this.lng = url.replace(/^.+!4d(.+)!6e.+$/, '$1');
return this;
}
var url = new URLtoLatLng('https://www.google.com/maps/preview#!data=!1m4!1m3!1d189334!2d-96.03687!3d36.1250439!4m21!3m20!1m4!3m2!3d36.0748342!4d-95.8040972!6e2!1m5!1s1331-1399+E+14th+St%2C+Tulsa%2C+OK+74120!2s0x87b6ec9a1679f9e5%3A0x6e70df70feebbb5e!3m2!3d36.1424613!4d-95.9736986!3m8!1m3!1d189334!2d-96.03687!3d36.1250439!3m2!1i1366!2i705!4f13.1&fid=0');
console.log(url.lat + ' ' + url.lng);
How should I approach this problem? I basically need to implement a dictionary of synonyms. It takes as input some "word/synonim" pairs and I have to be able to "query" it for the list of all synonims of a word.
For example:
Dictionary myDic;
myDic.Add("car", "automobile");
myDic.Add("car", "autovehicle");
myDic.Add("car", "vehicle");
myDic.Add("bike", "vehicle");
myDic.ListOSyns("car") // should return {"automobile","autovehicle","vehicle" ± "car"}
// but "bike" should NOT be among the words returned
I'll code this in C++, but I'm interested in an overall idea of the implementation, so the question is not exactly language-specific.
PS: The main idea is to have some groups of words (synonyms). In the example above there would be two such groups:
{"automobile","autovehicle","vehicle", "car"}
{"bike", "vehicle"}
"vehicle" belongs to both, "bike" just to the second one, the others just to the first
I would implement it as a Graph + hash table / search tree
each keyword would be a Vertex, and each connection between 2 keywords would be an edge.
a hash table or a search tree will connect from each word to its node (and vice versa).
when a query is submitted - you find the node with your hash/tree and do BFS/DFS of the required depth. (meaning you cannot continue after a certain depth)
complexity: O(E(d)+V(d)) for searching graph (d = depth) (E(d) = number of edges in the relevant depth, same for V(d))
O(1) for creating an edge (not including searching for the node, detailed below its search)
O(logn) / O(1) for finding node (for tree/hash table)
O(logn) /O(1) for adding a keyword to the tree/hash table and O(1) to add a Vertex
p.s. as mentioned: the designer should keep in mind if he needs a directed or indirected Graph, as mentioned in the comments to the question.
hope that helps...
With the clarification in the comments to the question, it's relatively simple since you're not storing groups of mutual synonyms, but rather separately defining the acceptable synonyms for each word. The obvious container is either:
std::map<std::string, std::set<std::string> >
or:
std::multi_map<std::string, std::string>
if you're not worried about duplicates being inserted, like this:
myDic.Add("car", "automobile");
myDic.Add("car", "auto");
myDic.Add("car", "automobile");
In the case of multi_map, use the equal_range member function to extract the synonyms for each word, maybe like this:
struct Dictionary {
vector<string> ListOSyns(const string &key) const {
typedef multi_map<string, string>::const_iterator constit;
pair<constit, constit> x = innermap.equal_range(key);
vector<string> retval(x.first, x.second);
retval.push_back(key);
return retval;
}
};
Finally, if you prefer a hashtable-like structure to a tree-like structure, then unordered_multimap might be available in your C++ implementation, and basically the same code works.
I do not understand why Java's [String.substring() method](http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#substring(int,%20int%29) is specified the way it is. I can't tell it to start at a numbered-position and return a specified number of characters; I have to compute the end position myself. And if I specify an end position beyond the end of the String, instead of just returning the rest of the String for me, Java throws an Exception.
I'm used to languages where substring() (or substr()) takes two parameters: a start position, and a length. Is this objectively better than the way Java does it, and if so, can you prove it? What's the best language specification for substring() that you have seen, and when if ever would it be a good idea for a language to do things differently? Is that IndexOutOfBoundsException that Java throws a good design idea, or not? Does all this just come down to personal preference?
There are times when the second parameter being a length is more convenient, and there are times when the second parameter being the "offset to stop before" is more convenient. Likewise there are times when "if I give you something that's too big, just go to the end of the string" is convenient, and there are times when it indicates a bug and should really throw an exception.
The second parameter being a length is useful if you've got a fixed length of field. For instance:
// C#
String guid = fullString.Substring(offset, 36);
The second parameter being an offset is useful if you're going up to another delimited:
// Java
int nextColon = fullString.indexOf(':', start);
if (start == -1)
{
// Handle error
}
else
{
String value = fullString.substring(start, nextColon);
}
Typically, the one you want to use is the opposite to the one that's provided on your current platform, in my experience :)
I'm used to languages where
substring() (or substr()) takes two
parameters: a start position, and a
length. Is this objectively better
than the way Java does it, and if so,
can you prove it?
No, it's not objectively better. It all depends on the context in which you want to use it. If you want to extract a substring of a specific length, it's bad, but if you want to extract a substring that ends at, say, the first occurrence of "." in the string, it's better than if you first had to compute a length. The question is: which requirement is more common? I'd say the latter. Of course, the best solution would be to have both versions in the API, but if you need the length-based one all the time, using a static utility method isn't that horrible.
As for the exception, yeah, that's definitely good design. You asked for something specific, and when you can't get that specific thing, the API should not try to guess what you might have wanted instead - that way, bugs become apparent more quickly.
Also, Java DOES have an alternative substring() method that returns the substring from a start index until the end of the string.
second parameter should be optional, first parameter should accept negative values..
If you leave off the 2nd parameter it will go to the end of the string for you without you having to compute it.
Having gotten some feedback, I see when the second-parameter-as-index scenario is useful, but so far all of those scenarios seem to be working around other language/API limitations. For example, the API doesn't provide a convenient routine to give me the Strings before and after the first colon in the input String, so instead I get that String's index and call substring(). (And this explains why the second position parameter in substr() overshoots the desired index by 1, IMO.)
It seems to me that with a more comprehensive set of string-processing functions in the language's toolkit, the second-parameter-as-index scenario loses out to second-parameter-as-length. But somebody please post me a counterexample. :)
If you store this away, the problem should stop plaguing your dreams and you'll finally achieve a good night's rest:
public String skipsSubstring(String s, int index, int length) {
return s.subString(index, index+length);
}
Similar to Is hard-coding literals ever acceptable?, but I'm specifically thinking of "magic strings" here.
On a large project, we have a table of configuration options like these:
Name Value
---- -----
FOO_ENABLED Y
BAR_ENABLED N
...
(Hundreds of them).
The common practice is to call a generic function to test an option like this:
if (config_options.value('FOO_ENABLED') == 'Y') ...
(Of course, this same option may need to be checked in many places in the system code.)
When adding a new option, I was considering adding a function to hide the "magic string" like this:
if (config_options.foo_enabled()) ...
However, colleagues thought I'd gone overboard and objected to doing this, preferring the hard-coding because:
That's what we normally do
It makes it easier to see what's going on when debugging the code
The trouble is, I can see their point! Realistically, we are never going to rename the options for any reason, so about the only advantage I can think of for my function is that the compiler would catch any typo like fo_enabled(), but not 'FO_ENABLED'.
What do you think? Have I missed any other advantages/disadvantages?
If I use a string once in the code, I don't generally worry about making it a constant somewhere.
If I use a string twice in the code, I'll consider making it a constant.
If I use a string three times in the code, I'll almost certainly make it a constant.
if (config_options.isTrue('FOO_ENABLED')) {...
}
Restrict your hard coded Y check to one place, even if it means writing a wrapper class for your Map.
if (config_options.isFooEnabled()) {...
}
Might seem okay until you have 100 configuration options and 100 methods (so here you can make a judgement about future application growth and needs before deciding on your implementation). Otherwise it is better to have a class of static strings for parameter names.
if (config_options.isTrue(ConfigKeys.FOO_ENABLED)) {...
}
I realise the question is old, but it came up on my margin.
AFAIC, the issue here has not been identified accurately, either in the question, or the answers. Forget about 'harcoding strings" or not, for a moment.
The database has a Reference table, containing config_options. The PK is a string.
There are two types of PKs:
Meaningful Identifiers, that the users (and developers) see and use. These PKs are supposed to be stable, they can be relied upon.
Meaningless Id columns which the users should never see, that the developers have to be aware of, and code around. These cannot be relied upon.
It is ordinary, normal, to write code using the absolute value of a meaningful PK IF CustomerCode = "IBM" ... or IF CountryCode = "AUS" etc.
referencing the absolute value of a meaningless PK is not acceptable (due to auto-increment; gaps being changed; values being replaced wholesale).
.
Your reference table uses meaningful PKs. Referencing those literal strings in code is unavoidable. Hiding the value will make maintenance more difficult; the code is no longer literal; your colleagues are right. Plus there is the additional redundant function that chews cycles. If there is a typo in the literal, you will soon find that out during Dev testing, long before UAT.
hundreds of functions for hundreds of literals is absurd. If you do implement a function, then Normalise your code, and provide a single function that can be used for any of the hundreds of literals. In which case, we are back to a naked literal, and the function can be dispensed with.
the point is, the attempt to hide the literal has no value.
.
It cannot be construed as "hardcoding", that is something quite different. I think that is where your issue is, identifying these constructs as "hardcoded". It is just referencing a Meaningfull PK literally.
Now from the perspective of any code segment only, if you use the same value a few times, you can improve the code by capturing the literal string in a variable, and then using the variable in the rest of the code block. Certainly not a function. But that is an efficiency and good practice issue. Even that does not change the effect IF CountryCode = #cc_aus
I really should use constants and no hard coded literals.
You can say they won't be changed, but you may never know. And it is best to make it a habit. To use symbolic constants.
In my experience, this kind of issue is masking a deeper problem: failure to do actual OOP and to follow the DRY principle.
In a nutshell, capture the decision at startup time by an appropriate definition for each action inside the if statements, and then throw away both the config_options and the run-time tests.
Details below.
The sample usage was:
if (config_options.value('FOO_ENABLED') == 'Y') ...
which raises the obvious question, "What's going on in the ellipsis?", especially given the following statement:
(Of course, this same option may need to be checked in many places in the system code.)
Let's assume that each of these config_option values really does correspond to a single problem domain (or implementation strategy) concept.
Instead of doing this (repeatedly, in various places throughout the code):
Take a string (tag),
Find its corresponding other string (value),
Test that value as a boolean-equivalent,
Based on that test, decide whether to perform some action.
I suggest encapsulating the concept of a "configurable action".
Let's take as an example (obviously just as hypthetical as FOO_ENABLED ... ;-) that your code has to work in either English units or metric units. If METRIC_ENABLED is "true", convert user-entered data from metric to English for internal computation, and convert back prior to displaying results.
Define an interface:
public interface MetricConverter {
double toInches(double length);
double toCentimeters(double length);
double toPounds(double weight);
double toKilograms(double weight);
}
which identifies in one place all the behavior associated with the concept of METRIC_ENABLED.
Then write concrete implementations of all the ways those behaviors are to be carried out:
public class NullConv implements MetricConverter {
double toInches(double length) {return length;}
double toCentimeters(double length) {return length;}
double toPounds(double weight) {return weight;}
double toKilograms(double weight) {return weight;}
}
and
// lame implementation, just for illustration!!!!
public class MetricConv implements MetricConverter {
public static final double LBS_PER_KG = 2.2D;
public static final double CM_PER_IN = 2.54D
double toInches(double length) {return length * CM_PER_IN;}
double toCentimeters(double length) {return length / CM_PER_IN;}
double toPounds(double weight) {return weight * LBS_PER_KG;}
double toKilograms(double weight) {return weight / LBS_PER_KG;}
}
At startup time, instead of loading a bunch of config_options values, initialize a set of configurable actions, as in:
MetricConverter converter = (metricOption()) ? new MetricConv() : new NullConv();
(where the expression metricOption() above is a stand-in for whatever one-time-only check you need to make, including looking at the value of METRIC_ENABLED ;-)
Then, wherever the code would have said:
double length = getLengthFromGui();
if (config_options.value('METRIC_ENABLED') == 'Y') {
length = length / 2.54D;
}
// do some computation to produce result
// ...
if (config_options.value('METRIC_ENABLED') == 'Y') {
result = result * 2.54D;
}
displayResultingLengthOnGui(result);
rewrite it as:
double length = converter.toInches(getLengthFromGui());
// do some computation to produce result
// ...
displayResultingLengthOnGui(converter.toCentimeters(result));
Because all of the implementation details related to that one concept are now packaged cleanly, all future maintenance related to METRIC_ENABLED can be done in one place. In addition, the run-time trade-off is a win; the "overhead" of invoking a method is trivial compared with the overhead of fetching a String value from a Map and performing String#equals.
I believe that the two reasons you have mentioned, Possible misspelling in string, that cannot be detected until run time and the possibility (although slim) of a name change would justify your idea.
On top of that you can get typed functions, now it seems you only store booleans, what if you need to store an int, a string etc. I would rather use get_foo() with a type, than get_string("FOO") or get_int("FOO").
I think there are two different issues here:
In the current project, the convention of using hard-coded strings is already well established, so all the developers working on the project are familiar with it. It might be a sub-optimal convention for all the reasons that have been listed, but everybody familiar with the code can look at it and instinctively knows what the code is supposed to do. Changing the code so that in certain parts, it uses the "new" functionality will make the code slightly harder to read (because people will have to think and remember what the new convention does) and thus a little harder to maintain. But I would guess that changing over the whole project to the new convention would potentially be prohibitively expensive unless you can quickly script the conversion.
On a new project, symbolic constants are the way IMO, for all the reasons listed. Especially because anything that makes the compiler catch errors at compile time that would otherwise be caught by a human at run time is a very useful convention to establish.
Another thing to consider is intent. If you are on a project that requires localization hard coded strings can be ambiguous. Consider the following:
const string HELLO_WORLD = "Hello world!";
print(HELLO_WORLD);
The programmer's intent is clear. Using a constant implies that this string does not need to be localized. Now look at this example:
print("Hello world!");
Here we aren't so sure. Did the programmer really not want this string to be localized or did the programmer forget about localization while he was writing this code?
I too prefer a strongly-typed configuration class if it is used through-out the code. With properly named methods you don't lose any readability. If you need to do conversions from strings to another data type (decimal/float/int), you don't need to repeat the code that does the conversion in multiple places and can cache the result so the conversion only takes place once. You've already got the basis of this in place already so I don't think it would take much to get used to the new way of doing things.