Can we achieve 100% decoupling? - language-agnostic

Can we achieve 100% decoupling between components of a system or different systems that communicate with each other? I don't think its possible. If two systems communicate with each other then there should be some degree of coupling between them. Am I right?

Right. Even if you write to an interface or a protocol, you are committing to something. You can peacefully forget about 100% decoupling and rest assured that whatever you do, you cannot just snap out one component and slap another in its place without at least minor modifications anyway, unless you are committing to very basic protocols such as HTTP (and even then.)
We human beings, after all, just LOOVE standards. That's why we have... well, nevermind.

If components are 100% decoupled, it means that they don't communicate with each other.
Actually there are different types of coupling. But the general idea is that objects are not coupled if they don't depend on each other.

You can achieve that. Think of two components that communicate with each other through network. One component can run on Windows while other on Unix. Isn't that 100% decoupling?

At minimum, firewall protection, from a certain interface at least, needs to allow the traffic from each machine to go to the other. That alone can be considered a form of 'coupling' and therefore, coupling is inherent to machines that communicate, at least to a certain level.

This is achievable by introducing a communication interface or protocol which both components understand and not passing data directly between the components.

Well two webservices that don't reference each other might be a good example of 100% decoupled.
The coupling would then arrive in the form of an app util that "couples" them together by using them both.
Coupling isn't inherently bad but you do have to make solid judgement calls about when to do it (is it only at Implementation, or in your framework itself?) and if the coupling is reasonable.

If the components are designed to be 100% orthogonal, it should be possible. A clear separation of concerns can achieve this. All a component needs to know is the interface of its input.
The coupling should be one-directional: components know the semantics of their parameters, but should be agnostic of each other.
As soon as you have 1% coupling between components, the 1% starts growing (in a system which lasts a little longer)
However, often knowledge is injected in peer components to achieve higher performance.

Even if two components do not comunicate directly, the third component, which uses the other two is part of the system and it is coupled to them.
#Vadmyst: If your components communicate over network they must use some kind of protocol which is the same as the interface of two local components.

That's a painfully abstract question to answer. If said system is the components of a single application, then there are various techniques such as those involving MVC (Model View Controller) and interfaces for IoC / Dependency Injection that facilitate decoupling of components.
From the perspective of physically isolated software architectures, CORBA and COM support local or networked interop and use a "common tongue" of things like ATL. These have been deprecated by XML services such as SOAP, which uses WSDL for performing coupling. There's nothing that stops a SOAP client from using a WSDL for run-time late coupling, although I rarely see it. Then there are things like JSON, which is like XML but optimized, and Google Protocol Buffers which optimizes the interop but is typically precompiled and not late-coupled.
When it comes to IPC (interprocess communications), two systems need only to speak a common "protocol". This could be XML, it could be a shared class library, or it could be something proprietary. Even at the proprietary level, you're still "coupled" by memory streams, TCP/IP networking, shared file (memory or hard disk), or some other mechanism, and you're still using bytes, and ultimately 1's and 0's.
So ultimately the question really cannot be answered fairly; strictly speaking, 100% is only attained by systems that have zilch to do with each other. Refine your question to a context.

It's important to distinguish between direct, and indirect components. Strive to remove direct connections (one class referencing another) and to use indirect connections instead. Bind two 'ignorant' classes with a third which manages their interactions.
This would be something like a set of user controls sitting on a form, or a pool of database connections and a connection pooling class. The more fundamental components (controls and connections) are managed by the higher piece (form and connection pool), but no fundamental component knows about another. The fundamental components expose events and methods, and the other piece 'pulls the strings'.

No, we can't. Read Joel's excellent article The Laws of Leaky Abstraction, it is an eye-opener for many people. However, this isn't necessarily a bad thing, it just is. Leaky abstractions offer great opportunity because they make the underlying platform exploitable.

Think of the API very hard for a very long time, then make sure it's as small as it can possibly be, until it's at the place where it has almost disappeared...
The Lego Software Process proposes this ... :) - and actually quite well achieves this...
How "closely coupled" are two cells of an organism...?
The cells in an organism can still communicate, but instead of doing it by any means that requires any knowledge about the receiving (or sending) part, they do it by releasing chemicals into the body ... ;)

Related

Why should I prefer HTTP REST over HTTP RPC JSON-Messaging style in conjunction with CQRS?

Every time I read about how web service should communicate the first thing that comes up is:
Use REST, because it decouples client and server!
I would like to build a web service where each Query and Command is an Http-Endpoint. With REST I would have fewer endpoints, because of its nature of thinking of resources instead of operations (You typically have more operations than resources).
Why do I have a stronger coupling by using RPC over REST?
What is the benefit of using REST over RPC Json-Messaging style?
Additional information: With messaging I mean synchronous messaging (request/response)
Update: I think it would be also possible/better to only have one single Http endpoint that can handle a Query or Command depending on the given Http verb.
Before I get to the CQRS part, I'd like to spend a little time talking about the advantages and disadvantages of REST. I don't think it's possible to answer the question before we've established a common understanding of when and why to use REST.
REST
As with most other technology options, REST, too, isn't a silver bullet. It comes with advantages and disadvantages.
I like to use Richardson's Maturity Model, with Martin Fowler's additional level 0, as a thinking tool.
Level 0
Martin Fowler also calls level 0 the swamp of POX, but I think that what really distinguishes this level is simply the use of RPC over HTTP. It doesn't have to be XML; it could be JSON instead.
The primary advantage at this level is interoperability. Most system can communicate via HTTP, and most programming platforms can handle XML or JSON.
The disadvantage is that systems are difficult to evolve independently of clients (see level 3).
One of the distinguishing traits of this style is that all communication goes through a single endpoint.
Level 1
At level 1, you start to treat various parts of your API as separate resources. Each resource is identified by a URL.
One advantage is that you can now start to use off-the-shelf software, such as firewalls and proxy servers, to control access to various distinct parts of the system. You can also use HTTP redirects to point clients to different endpoints, although there are some pitfalls in that regard.
I can't think of any disadvantages, apart from those of level 0.
Level 2
At this level, not only do you have resources, but you also use HTTP verbs, such as GET, POST, DELETE, etc.
One advantage is that you can now begin to take more advantage of HTTP infrastructure. For instance, you can instruct clients to cache responses to GET requests, whereas other requests typically aren't cacheable. Again, you can use standard HTTP firewalls and proxies to implement caching. You can get 'web-scale' caching for free.
The reason that level 2 builds on level 1 is that you need each resource to be separate, because you want to be able to cache resources independently from each other. You can't do this if you can't distinguish various resources from each other, or if you can't distinguish reads from writes.
The disadvantage is that it may involve more programming work to implement this. Also, all the previous disadvantages still apply. Clients are tightly coupled to your published API. If you change your URL structure, clients break. If you change data formats, clients break.
Still, many so-called REST APIs are designed and published at this level, so in practice it seems that many organisations find this a good trade-off between advantages and disadvantages.
Level 3
This is the level of REST design that I consider true REST. It's nothing like the previous levels; it's a completely different way to design APIs. In my mind, there's a hard divide between levels 0-2, and level 3.
One distinguishing feature of level 3 is that you must think content negotiation into the API design. Once you have that, though, the reasons to choose this API design style become clearer.
To me, the dominant advantage of level 3 APIs is that you can evolve them independently of clients. If you're careful, you can change the structure, even the navigation graph, of your API without breaking existing clients. If you need to introduce breaking changes, you can use content negotiation to ensure that clients can opt-in to the breaking change, whereas legacy clients will keep working.
Basically, when I'm asked to write an API where I have no control over clients, my default choice is level 3.
Designing a level 3 REST API requires you to design in a way that's unusual and alien to many, so that's a disadvantage. Another disadvantage is that client developers often find this style of API design unfamiliar, so they often try to second-guess, or retro-engineer, your URL structure. If they do, you'll have to expend some effort to prevent them from doing that as well, since this will prevent you from being able to evolve the API.
In other words, level 3 APIs require considerable development effort, particularly on the server-side, but clients also become more complex.
I will, though, reiterate the advantage: you can evolve an level 3 REST API independently of clients. If you don't control clients, backwards compatibility is critical. Level 3 enables you to evolve APIs while still retaining compatibility. I'm not aware of a way you can achieve this with any of the other styles.
CQRS
Now that we've identified some advantages and disadvantages of REST, we can start to discuss whether it's applicable to CQRS.
The most fundamental agreement between Greg Young and Udi Dahan concerning CQRS is that it's not a top-level architecture.
In a nutshell, the reason for this is that the messages (commands and events) and queries that make up a CQRS system are sensitive to interpretation. In order to do something, a client must know which command to issue, and the server must know how to interpret it. The command, thus, is part of the system.
The system may be distributed across clients and servers, but the messages and data structures are coupled to each other. If you change how your server interprets a given message, that change will impact your clients. You can't evolve clients and servers independently in a CQRS architecture, which is the reason why it's not a top-level architecture.
So, given that it's not a top-level architecture, the transport architecture becomes fairly irrelevant. In a sense, the only thing you need in order to send messages is a single 'service bus' endpoint, which could easily be a level 0 endpoint, if all you need is interoperability. After all, the only thing you do is to put a message on a queue.
The final answer, then, is, as always: it depends.
Is speed of delivery the most important criterion? And can you control all clients and servers at the same time? Then, perhaps level 0 is all you need. Perhaps level 2 is fine.
On the other hand, if you have clients out of your control (mobile apps, hardware (IoT), business partners using your public API, etc.), you must consider how to deal with backwards and forwards compatibility, in which case level 3 is (IMO) required. In that case, though, I'd suggest keeping CQRS an implementation detail.
The best answer would probably be "it depends", but one of the big things about real REST is that it is stateless. And it being stateless means all sorts of things.
Basically, if you look at the HATEOAS constraint you have the reason for the decoupling 1
I think that RPC-JSON is not statefull per se, but it definately is not defined as stateless. So there you have the strongest argument of why the decoupling is very high with REST.
1: https://en.wikipedia.org/wiki/HATEOAS , http://restfulapi.net/hateoas/

Is "coupling" related only to code, or can the term be applied to software components and architecture?

For example, when discussing a build or deploy process, and making sure it is independent of the IDE. Is this "coupling", or is that considered Separation of Concerns, or something completely different? The general concept is to introduce the least number of variables into a process or architecture, so that when a failure occurs, the difficulty in identifying the possible points of failure are reduced significantly. Is there another definition for that?
Something completely different.
Coupling is code.
Independent tools are just independent tools.
Microsoft has lead me to believe that independent tools are a bad idea. They tell me that one vendor's integrated tool suite is a good thing.
I would characterise coupling as being something which relates to runtime system stability or system change.
When considering stability, coupling comes into the picture if the failure of one component causes the failure of other components. For example if two software components are communicating directly over a TCP connection, then the failure of one component means the other cannot do its work. The whole system is down. If I decouple by allowing the two components to communicate via a message queue (for example) then each component might continue to work independently in the absence of the other (assuming this makes sense in the application).
When considering system change, coupling comes into the picture when a code change in one module means I have to go and change code in a large number of other modules.
The example you give with build/deploy tools is a form of coupling, but not really what people have in mind when they consider architectural issues such as runtime and code coupling.

At what point should architecture become layered?

Obviously, "Hello World" doesn't require a separated, modular front-end and back-end. But any sort of Enterprise-grade project does.
Assuming some sort of spectrum between these points, at which stage should an application be (conceptually, or at a design level) multi-layered? When a database, or some external resource is introduced? When you find that the you're anticipating spaghetti code in your methods/functions?
when a database, or some external resource is introduced.
but also:
always (except for the most trivial of apps) separate AT LEAST presentation tier and application tier
see:
http://en.wikipedia.org/wiki/Multitier_architecture
Layers are a mean to keep a design loosely coupled and highly cohesive.
When you start to have a few classes (either implemented or just sketched with UML), they can be grouped logically, into layers - or more generally packages, or modules. This is called the art of separating the concerns.
The sooner the better: if you do not start layering early enough, then you risk to have never do it as the effort can be too important.
Here are some criteria of when to...
Any time you anticipate the need to
replace one part of it with a
different part.
Any time you find
yourself need to divide work amongst
parallel team.
There is no real answer to this question. It depends largely on your application's needs, and numerous other factors. I'd suggest reading some books on design patterns and enterprise application architecture. These two are invaluable:
Design Patterns: Elements of Reusable Object-Oriented Software
Patterns of Enterprise Application Architecture
Some other books that I highly recommend are:
The Pragmatic Programmer: From Journeyman to Master
Refactoring: Improving the Design of Existing Code
No matter your skill level, reading these will really open your eyes to a world of possibilities.
I'd say in most cases dealing with multiple distinct levels of abstraction in the concepts your code deals with would be a strong signal to mirror this with levels of abstraction in your implementation.
This does not override the scenarios that others have highlighted already though.
I think once you ask yourself "hmm should I layer this" the answer is yes.
I've worked on too many projects that probably started off as proof of concept/prototype that ended up being full projects used in production, which are horribly written and just wreak of "get it done quick, we'll fix it later." Trust me, you wont fix it later.
The Pragmatic Programmer lists this as the Broken Window Theory.
Try and always do it right from the start. Separate your concerns. Build it with modularity in mind.
And of course try and think of the poor maintenance programmer who might take over when you're done!
Thinking of it in terms of layers is a little limiting. It's what you see in whitepapers about a product, but it's not how products really work. They have "boxes" that depend on each other in various ways, and you can make it look like they fit into layers but you can do this in several different configurations, depending on what information you're leaving out of the diagram.
And in a really well-designed application, the boxes get very small. They are down to the level of individual interfaces and classes.
This is important because whenever you change a line of code, you need to have some understanding of the impact your change will have, which means you have to understand exactly what the code currently does, what its responsibilities are, which means it has to be a small chunk that has a single responsibility, implementing an interface that doesn't cause clients to be dependent on things they don't need (the S and the I of SOLID).
You may find that your application can look like it has two or three simple layers, if you narrow your eyes, but it may not. That isn't really a problem. Of course, a disastrously badly designed application can look like it has layers tiers if you squint as hard as you can. So those "high level" diagrams of an "architecture" can hide a multitude of sins.
My generic rule of thumb is to at least to separate the problem into a model and view layer, and throw in a controller if there is a possibility of more than one ways of handling the model or piping data to the view.
(Or as the first answer, at least the presentation tier and the application tier).
Loose coupling is all about minimising dependencies, so I would say 'layer' when a dependency is introduced. i.e. a database, third party application, etc.
Although 'layer' is probably the wrong term these days. Most of the time I use Dependency Injection (DI) through an Inversion of Control container such as Castle Windsor. This means that I can code on one part of my system without worrying about the rest. It has the side effect of ensuring loose coupling.
I would recommend DI as a general programming principle all of the time so that you have the choice on how to 'layer' your application later.
Give it a look.
R

Everything is a flow?

Some of my recent web projects that I worked on, use a flow engine as the central abstraction in the presentation and/or (more or less the) business layer. Reflecting on my experiences, I can honestly say that I am not a fan of the flow-centric approach. On the contrary even. I see the same symptoms pop up in projects that use flows as central abstraction.
Everything is a flow. You don't just start an application, no, you "enter the main flow" even if it is just to show a menu with a huge dispatcher behind it. I am not against flows as such. Some use cases keep popping up everywhere and need to be included at various points in other use cases (LookupCustomer, ...), but for flow-centric people everything is a flow, even things that are... not flows.
Fragmentation. Flow-based applications tend to have many pieces of logic (actions, commands, fragments of code to prepare the view...) dispersed throughout the code. Mapping in and out of these actions adds overhead, is tedious and bloats the code. Although it is easy to follow the abstract flow, actually figuring out what is happening inside these little (or big) chunks of code is another thing. While every style of application allows people to write bad and inconsistent code, flow-centric applications make it particularly easy to do so.
Config files. Most applications use some XML format to declare flows and actions that accompany state changes. The language in which the application is written (say Java, C#, Ruby, ...) is probably far more richer and expressive than the XML format ever will be. Why bother?
Flows break encapsulation. If you give me a component that has a certain embedded flow logic, then the flow should be part of the component, and should not be an external abstraction. In other words: the flow is part of the component and the component is self-contained. It is a detail. Sure, it can be parameterized and stuff, but a component should "just work". People writing a Swing, GWT, or whatever fat or rich interface application, don't bother with explicit flow abstractions. Why should my web application have one? Give me the flow diagram of GMail.
(Edit) Flows are procedural. If you look at "rich" patterns like MVC with events and everything, flows really pale in comparison. You are using an modern and expressive language to implement your application, right? So you can do better than the rigid "do this, then that, and that, and ..." way from the time when punchcards and assembler were in fashion.
Examples of frameworks that promote flow-centric development are Struts, BTT, Spring Webflow, and JSF. I've also come across homegrown flow engines built on top of ordinary servlets.
This is also an interesting article: http://chillenious.wordpress.com/2006/07/16/on-page-navigation/
Do you (still) think a flow-centric approach for (the front-end of) a web-application is a good idea?
In general, flows seem to be an unnecessarily enterprisey approach to what should be a relatively simple problem: we would like to ensure that users take one of several particular paths through our application. What's more instructive and insightful is to examine why we need this path to occur. Is it because...
... we don't want them to interact with our application except in rigidly predefined ways? Then we've limited the utility of our application, and we make our application much harder to change and use.
... we're worried about the ability of our application to handle unexpected input or deal with states we haven't anticipated if people stray off the beaten path? Then that says a lot about our technical choices for a validation framework.
... we can't envision a scenario other than the predefined ones under which someone would use the site? Then we are implicitly assuming that only we know how best to use it; we limit the ability of the user to control their interaction.
Notice how each of these underscores an issue intrinsic to the application's development and team members, and one that's not the fault of a user. So I support your general premise that flow-based approaches tend to have a number of issues.
The primary problem is that flows unnecessarily increase brittleness that is already better abstracted by other mechanisms. For example, to achieve a rule like "you need to fill out your order form before you confirm checkout", don't make a workflow; have a better CustomerOrder model that knows when it doesn't have all the information necessary to allow an OrderConfirmation. If you try to skip ahead, your model and controller should take care of failing validation on the next POST.
Essentially, flows extract out disparate fragments of each participating controller and collect them into a new "flow controller" that's specific to each flow. That's not necessarily a bad idea, but it suggests that the original controllers may have been taking on too much responsibility to begin with if that sort of path was so easy to define separately. For example, if you previously had OrderConfirmation, CustomerOrder, and OrderCheckout controllers, and you're thinking about an Order flow to link all three together, what you should probably be thinking about is an Order controller instead.
I think defining flows is useful in a web application. In answer to your main points:
Everything is a Flow.
There is nothing intrinsically wrong with that, it's just a name to give something. A flow can be short or long - I agree it's a bit weird that there is a "main" flow that starts everything but it doesn't really cause any problems in practice.
Fragmentation
You have some valid points here, although I get the feeling that the greatest contributor to this is the design of the DSL. For example, Spring WebFlow v2 is a vast improvement over SWF v1 in terms of readability and understandability.
Config files
I strongly disagree with this point. I feel that xml is the best way to express this code. If you think about it - managing controllers, views, state changes and actions is really just "configuration" rather than "code". And xml (in my opinion) is the best way to express configuration. Just think about the word "Controller". All a controller does is direct and configure things - call services, return views and models etc. There is no need for any richness or expressiveness of Java to define what is basically just configuration of your web application.
Flows break encapsulation
GMail could expressed in a series of flows. Think about the number of steps it takes to compose and send an email. Flows really just define the wiring of how the application works - sure you could have a number of components that interact with each other, but the way that you configure them to work together is essentially the flow you have defined in your application. Making this flow explicit in a separate DSL seems like a good idea to me, as fundamentally it is separate.
The first question that should be answered is whether a flow framework is really the best tool for your specific web application. I'm a fan of Spring Web Flow, myself, but I'll only use it if my web app can easily be broken down into flows, and if navigation should be tightly controlled. If the navigation is very loose, where you can get to almost any page from any other page, then SWF isn't the right tool for the job.
As you mention, there are other drawbacks to flow frameworks. They usually aren't RESTful, and thus not bookmarkable. If that conflicts with what you want for your application, then SWF probably isn't for you.
That said, SWF, and some of the other flow frameworks, offer some features that few other web frameworks deliver. This includes complete solutions for double-submit issues and browser back button and history handling. SWF's implementation of these features lends some additional security. Since the flow execution IDs for each page change as the application is used, you get immunity to forced browsing and some protection against cross-site request forgery.
The concept of flows is quite nice, in my opinion, since flows tend to mirror use cases. Scoping data to a flow or a conversation removes the responsibility for its cleanup from the developer, which I think is a very good thing. It's like the difference between manual memory management and garbage collection. Not only does it make less work for me, but it eliminates the possibility of introducing bugs should I forget to cleanup attributes. One thing I hated about Struts was that I needed to duplicate my cleanup code in several actions to ensure correctness. It's much easier just to scope the data to the use case.
Flows also present a context for related actions and views. If I look at a struts-config or faces-config file, I can see all kinds of navigation rules or action mappings, but there is no immediate context for me to mentally group related items together. I have to manually trace through the configuration, and even then sometimes I get stuck. With Struts, I need to look at the specific web pages in order to figure out which actions can be invoked from a view.
With SWF, I can clearly see all the actions, views, and models related to a flow. With Eclipse plugins, I can see this as a state diagram. Even if you're not using eclipse, it's very easy to translate a flow definition to a state diagram. These diagrams are useful for myself, my project manager, and pretty much anyone who wants to understand the high-level of how a use case is performed. In short, chunking related things together allows for easier understanding, and a shallower learning curve. That's one reason why OOP is so popular. With web apps, the idea of chunking these elements together to form a use case just feels natural.
Everything is a flow
Everything really is a flow. Computer programs had always been a flow and will always be a flow containing of theese processes:
input -> process -> output
The MVC design pattern in fact corresponds with this..
controller -> model -> view
Fragmentation
You're right. But I think this "issue" might be reduced by a good suppport in IDEs.
Config files
There's no doubt xml is the best way to express configuration.
Flows break encapsulation
I would disagree with this. You can make black boxes using flows and then use these black boxes in another flows.
IMHO, web apps are best developed as independent modules rather than modules that are "bound by flow".
Since most web apps today are ajaxy apps, having independent modules on the page helps a lot.
Configurations can be handled by XML or JSON files.
Web 2.0 presents a serious challenge to the notion that "everything is a flow". And when the presentation tier is fully transposed to the client layer, we'll be back on the solid, and familiar (from GUIs of yore) ground of event based processing.
Flows arise because of the inherit mismatch between traditional application interaction and the way web applications actually work. Flows are merely a convenient way to describe what would be more traditionally modeled as a series of GUI dialogs (think wizard) in a way that is compatible with the way in which web pages are delivered and interacted with. Imagine if you will that you were writing a traditional program, but every time the user ran the program you could only display a single dialog box, and when the user clicked "Ok" (or "Cancel", or "Next", or "Previous") your program would terminate. In that situation, how would you go about modeling the expected behavior of the program (to further complicate matters, assume many users are running the program at different times)? I think you would find you would rather quickly arrive at something similar to flows.
I think perhaps what you're really asking is, "Why are most flow frameworks so easy to abuse?", which naturally leads to the followup question "What can be done to fix that?".

A brilliant example of effective encapsulation through information hiding?

"Abstraction and encapsulation are complementary concepts: abstraction focuses on the observable behavior of an object... encapsulation focuses upon the implementation that gives rise to this behavior... encapsulation is most often achieved through information hiding, which is the process of hiding all of the secrets of object that do not contribute to its essential characteristics." - Grady Booch in Object Oriented Analysis and Design
Can you show me some powerfully convincing examples of the benefits of encapsulation through information hiding?
The example given in my first OO class:
Imagine a media player. It abstracts the concepts of playing, pausing, fast-forwarding, etc. As a user, you can use this to operate the device.
Your VCR implemented this interface and hid or encapsulated the details of the mechanical drives and tapes.
When a new implementation of a media player arrives (say a DVD player, which uses discs rather than tapes) it can replace the implementation encapsulated in the media player and users can continue to use it just as they did with their VCR (same operations such as play, pause, etc...).
This is the concept of information hiding through abstraction. It allows for implementation details to change without the users having to know and promotes low coupling of code.
The *nix abstraction of character streams (disk files, pipes, sockets, ttys, etc.) into a single entity (the "everything is a file") model allows a wide range of tools to be applied to a wide range of data sources / sinks in a way that simply would not be possible without the encapsulation.
Likewise, the concept of streams in various languages, abstracting over lists, arrays, files, etc.
Also, concepts like numbers (abstracting over integers, half a dozen kinds of floats, rationals, etc.) imagine what a nightmare this would be if higher level code was given the mantissa format and so forth and left to fend for itself.
I know there's already an accepted answer, but I wanted to throw one more out there: OpenGL/DirectX
Neither of these API's are full implementations (although DirectX is certainly a bit more top-heavy in that regard), but instead generic methods of communicating render commands to a graphics card.
The card vendors are the ones that provide the implementation (driver) for a specific card, which in many cases is very hardware specific, but you as the user need never care that one user is running a GeForce ABC and the other a Radeon XYZ because the exact implementation is hidden away behind the high-level API. Were it not, you would need to have a code path in your games for every card on the market that you wanted to support, which would be completely unmanageable from day 1. Another big plus to this approach is that Nvidia/ATI can release a newer, more efficient version of their drivers and you automatically benefit with no effort on your part.
The same principle is in effect for sound, network, mouse, keyboard... basically any component of your computer. Whether the encapsulation happens at the hardware level or in a software driver, at some point all of the device specifics are hidden away to allow you to treat any keyboard, for instance, as just a keyboard and not a Microsoft Ergonomic Media Explorer Deluxe Revision 2.
When you look at it that way, it quickly becomes apparent that without some form of encapsulation/abstraction computers as we know them today simply wouldn't work at all. Is that brilliant enough for you?
Nearly every Java, C#, and C++ code base in the world has information hiding: It's as simple as the private: sections of the classes.
The outside world can't see the private members, so a developer can change them without needing to worry about the rest of the code not compiling.
What? You're not convinced yet?
It's easier to show the opposite. We used to write code that had no control over who could access details of its implementation. That made it almost impossible at times to determine what code modified a variable.
Also, you can't really abstract something if every piece of code in the world might possibly have depended on the implementation of specific concrete classes.