I'm a beginner. I have annotated dataset in YOLO format. I would like to know how to apply the same augmentation pipeline with the same parameters to a folder of images with their corresponding bounding box labels. I have 7 classes in a folder.
I want to increase data of all classes artificially using augmentation to a specific number because all classes are unbalanced right now. I tried training YOLOv5s over my dataset after splitting it into 80% train, 10% validation, 10% test, but training accuracy was only <20% and not increasing. I had it trained over 250 epochs. one way I found was to increase dataset by augmentation.
can anyone help with this issue?
Related
Currently trying yolov5 with custom synthetic data. The dataset we've created consists of 8 different objects. Each object has a minimum of 1500 pictures/labels, where the pictures are split 500/500/500 of normal/fog/distractors around object. Sample images from the dataset is in the first imgur link. The model is not trained from scratch, but from yolov5 standard .pt.
So far we've tried:
Adding more data (from 300 images per object, to 4500)
Creating more complex data (distractors on/around objects)
Running multiple runs of training
Trained with network size small, medium, large, xlarge
Different batch size between 4-32 (depending on model size)
Everything so far has resulted in good/great detection on synthetic data, but completely off when used on real-life data.
Examples: Thinks that the whole pictures of unrelated objects is a paperbox, walls are pallets, etc. Quick sample images in the last imgur link.
Anyone got clues for how to improve the training or data to be better suited for real life detection? Or how to better interpret the results? I don't understand how the model draws the conclusion that a whole picture, with unrelated objects, is a box/pallet.
Results from training uploaded to imgur:
https://imgur.com/a/P0TQeBl
Example on real life data:
https://imgur.com/a/SGY7w8w
There are couple of things to improve results.
After training your model with synthetic data, fine tune your model with real training data, with a smaller learning rate (1/10th maybe). This will reduce the gap between synthetic and real life images. In some cases rather than fine tuning, training the model with mixed (synthetic+real) produces better results.
Generate images structurally similar to real life examples. For example, put humans inside forklifts, or pallets or barrels on forks, etc. Models learn from it.
Randomize the texture on items that you want to detect. Models tend to focus on textures for detection. By randomizing textures, with lots of variability including mon natural occurrences, you force model to learn to identify objects not based on its textures. Although, texture of an object sometimes is a good identifier, synthetic data suffers from not replicating that feature good enough, hence the domain gap, so you reduce its impact on model decision.
I am not sure whether the screenshot accurately represent your data generation distribution, if so, you have to randomize the angles of objects, sizes and occlusion amounts more.
Use objects that you don’t want to detect but will be in the images you will do inference as distractors, rather than simple shapes like spheres.
Randomize lighting more. Intensity, color, angles etc.
Increase background and ground randomization. Use hdris, there are lots of free hdris
Balance your dataset
https://imgur.com/a/LdCa8aO
Checking your results the answer is that your synthetic data is way to dissimilar to the real life data you want it to work for. Try to generate synthetic scenes that are closer to your real life counterparts and training again would clearly improve your results. That includes more realistic backgrounds and scene compositions. I don't know if your training set resembles the validation images you shared here but in case it does, try to have more objects per image, closer to the camera and add variation to their relative positions. Having just one random 3D object in the middle of an image is not going to provide good results. By the way, you are already overfitting your models, so more training images wouldn't help at this point.
How to decide number of layers and final model in CNN to increase the accuracy of the prediction.
I am classifying images and currently getting 65% accuracy with simple model how should I enhance it to achieve maximum accuracy.
(Pytorch)
I would say three things.
1) check torchvision.models link there you can find pretrained great models which will give you great performance if you set layers to don't require gradients and just modify final layer to have correct number of classes
2) play with transformations when you are loading images link this can help you
3) play with number of last layers, different optimizer and try scheduler link (this will adjust learning rate during training for better fit)
Hope it helps :)
I have a pretrained CNN (Resnet-18) trained on Imagenet, now i want to extend it on my own dataset of video frames , now the point is all tutorials i found on Finetuning required dataset to be organised in classes like
class1/train/
class1/test/
class2/train/
class2/test/
but i have only frames on many videos , how will i train my CNN on it.
So can anyone point me in right direction , any tutorial or paper etc ?
PS: My final task is to get deep features of all frames that i provide at the time of testing
for training network, you should have some 'label'(sometimes called y) of your input data. from there, network calculate loss between logit(answer of network) and the given label.
And the network will self-revise using that loss value by backpropagating. that process is what we call 'training'.
Because you only have input data, not label, so you can get the logit only. that means a loss cannot be calculated.
Fine tuning is almost same word with 'additional training', so that you cannot fine tuning your pre-trained network without labeled data.
About train set & test set, that is not the problem right now.
If you have enough labeled input data, you can divide it with some ratio.
(e.g. 80% of data for training, 20% of data for testing)
the reason why divide data into these two sets, we want to check the performance of our trained network more general, unseen situation.
However, if you just input your data into pre-trained network(encoder part), it will give a deep feature. It doesn't exactly fit to your task, still it is deep feature.
Added)
Unsupervised pre-training for convolutional neural network in theano
here is the method you need, deep feature encoder in unsupervised situation. I hope it will help.
all experts
I am new in CNN and Caffe. I have a task in classification between 2 classes. The data set that I have collected is very small about 50 for class A and 50 for class B (I know that it is very very small). It is a human images.
I took the BVLC model and made a change such as Batch size for testing and training and also the maximum iteration. I try with many various setup, but the model doesn't work.
Any idea about how to come up with appropriate model or setting or other solutions ?
remark** I once randomly made a change to the BVLC model setup and it worked, but i lost the set up file.
For the train.prototxt and Solve.prototxt, I get it from this guy Adil Moujahid
I did try training batch size as 32,64,128,256 and testing for 5,20,30 but failed
For the data set, it is images of normal women and beautiful women and i will classify it, but Stackoverflow does not allowed me to add more than 2 links
I wonder that is there any formula , equation or steps that I can come up with and choose the right model setting.
Thank you in advance.
What is your meaning in "doesn't work"? Loss stays too high? Training is converged, but accuracy is low? Andrew Ng has an excellent session on "debugging" CNNs - Nuts and Bolts of Building Applications using Deep Learning (NIPS slides, summary, additional summary).
My humble guess is that your network has an overfitting problem - it learns the specific examples and can't generalize - so increasing the train dataset / regularization / data augmentation can help.
I trained GoogLeNet model from scratch. But it didn't give me the promising results.
As an alternative, I would like to do fine tuning of GoogLeNet model on my dataset. Does anyone know what are the steps should I follow?
Assuming you are trying to do image classification. These should be the steps for finetuning a model:
1. Classification layer
The original classification layer "loss3/classifier" outputs predictions for 1000 classes (it's mum_output is set to 1000). You'll need to replace it with a new layer with appropriate num_output. Replacing the classification layer:
Change layer's name (so that when you read the original weights from caffemodel file there will be no conflict with the weights of this layer).
Change num_output to the right number of output classes you are trying to predict.
Note that you need to change ALL classification layers. Usually there is only one, but GoogLeNet happens to have three: "loss1/classifier", "loss2/classifier" and "loss3/classifier".
2. Data
You need to make a new training dataset with the new labels you want to fine tune to. See, for example, this post on how to make an lmdb dataset.
3. How extensive a finetuning you want?
When finetuning a model, you can train ALL model's weights or choose to fix some weights (usually filters of the lower/deeper layers) and train only the weights of the top-most layers. This choice is up to you and it ususally depends on the amount of training data available (the more examples you have the more weights you can afford to finetune).
Each layer (that holds trainable parameters) has param { lr_mult: XX }. This coefficient determines how susceptible these weights to SGD updates. Setting param { lr_mult: 0 } means you FIX the weights of this layer and they will not be changed during the training process.
Edit your train_val.prototxt accordingly.
4. Run caffe
Run caffe train but supply it with caffemodel weights as an initial weights:
~$ $CAFFE_ROOT/build/tools/caffe train -solver /path/to/solver.ptototxt -weights /path/to/orig_googlenet_weights.caffemodel
Fine-tuning is a very useful trick to achieve a promising accuracy compared to past manual feature. #Shai already posted a good tutorial for fine-tuning the Googlenet using Caffe, so I just want to give some recommends and tricks for fine-tuning for general cases.
In most of time, we face a task classification problem that new dataset (e.g. Oxford 102 flower dataset or Cat&Dog) has following four common situations CS231n:
New dataset is small and similar to original dataset.
New dataset is small but is different to original dataset (Most common cases)
New dataset is large and similar to original dataset.
New dataset is large but is different to original dataset.
In practice, most of time we do not have enough data to train the network from scratch, but may be enough for pre-trained model. Whatever which cases I mentions above only thing we must care about is that do we have enough data to train the CNN?
If yes, we can train the CNN from scratch. However, in practice it is still beneficial to initialize the weight from pre-trained model.
If no, we need to check whether data is very different from original datasets? If it is very similar, we can just fine-tune the fully connected neural network or fine-tune with SVM. However, If it is very different from original dataset, we may need to fine-tune the convolutional neural network to improve the generalization.