I trained GoogLeNet model from scratch. But it didn't give me the promising results.
As an alternative, I would like to do fine tuning of GoogLeNet model on my dataset. Does anyone know what are the steps should I follow?
Assuming you are trying to do image classification. These should be the steps for finetuning a model:
1. Classification layer
The original classification layer "loss3/classifier" outputs predictions for 1000 classes (it's mum_output is set to 1000). You'll need to replace it with a new layer with appropriate num_output. Replacing the classification layer:
Change layer's name (so that when you read the original weights from caffemodel file there will be no conflict with the weights of this layer).
Change num_output to the right number of output classes you are trying to predict.
Note that you need to change ALL classification layers. Usually there is only one, but GoogLeNet happens to have three: "loss1/classifier", "loss2/classifier" and "loss3/classifier".
2. Data
You need to make a new training dataset with the new labels you want to fine tune to. See, for example, this post on how to make an lmdb dataset.
3. How extensive a finetuning you want?
When finetuning a model, you can train ALL model's weights or choose to fix some weights (usually filters of the lower/deeper layers) and train only the weights of the top-most layers. This choice is up to you and it ususally depends on the amount of training data available (the more examples you have the more weights you can afford to finetune).
Each layer (that holds trainable parameters) has param { lr_mult: XX }. This coefficient determines how susceptible these weights to SGD updates. Setting param { lr_mult: 0 } means you FIX the weights of this layer and they will not be changed during the training process.
Edit your train_val.prototxt accordingly.
4. Run caffe
Run caffe train but supply it with caffemodel weights as an initial weights:
~$ $CAFFE_ROOT/build/tools/caffe train -solver /path/to/solver.ptototxt -weights /path/to/orig_googlenet_weights.caffemodel
Fine-tuning is a very useful trick to achieve a promising accuracy compared to past manual feature. #Shai already posted a good tutorial for fine-tuning the Googlenet using Caffe, so I just want to give some recommends and tricks for fine-tuning for general cases.
In most of time, we face a task classification problem that new dataset (e.g. Oxford 102 flower dataset or Cat&Dog) has following four common situations CS231n:
New dataset is small and similar to original dataset.
New dataset is small but is different to original dataset (Most common cases)
New dataset is large and similar to original dataset.
New dataset is large but is different to original dataset.
In practice, most of time we do not have enough data to train the network from scratch, but may be enough for pre-trained model. Whatever which cases I mentions above only thing we must care about is that do we have enough data to train the CNN?
If yes, we can train the CNN from scratch. However, in practice it is still beneficial to initialize the weight from pre-trained model.
If no, we need to check whether data is very different from original datasets? If it is very similar, we can just fine-tune the fully connected neural network or fine-tune with SVM. However, If it is very different from original dataset, we may need to fine-tune the convolutional neural network to improve the generalization.
Related
I have trained a model of YOLOv4 by using my original dataset and the custom yolov4 configuration file, which I will refer to as my 'base' YOLOv4 model.
Now I want to use this base model that I have created to train the model again using images that I have manually augmented. I am trying to retrain my models to try and increase the mAP and AP. So I want to use the weights from my base model to train a new yolov4 model with the manually augmented images.
I have seen on the YOLOv4 wiki page that using stopbackward = 1 freezes the layers so weights in these layers would not be updated, however this reduces accuracy. Also there was another piece of information that I read where ./darknet partial cfg/yolov4.cfg yolov4.weights yolov4.conv.137 137 takes out the first 137 layers. Does this mean that the first 137 layers are frozen in the network or does this mean you are only training on the 137 layers?
My questions are:
Which code actually does freeze layers so I can do transfer learning
on the base YOLOv4 model I have created?
Which layers would you recommend freezing,the first 137
before the first YOLO layer in the network?
Thank you in advance!
To answer your questions:
If you want to use transfer learning, you don't have to freeze any layers. You should simply start training with the weights you have stored from your first run. So instead of darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 you can run darknet.exe detector train data/obj.data yolo-obj.cfg backup/your_weights_file. The weights are stored in the backup folder build\darknet\x64\backup\. So for example, the command could look like this: darknet.exe detector train data/obj.data yolo-obj.cfg backup/yolov4_2000.weights
Freezing layers can save time during training. What is a good solution is to first train the model with the first layers frozen, and later unfreeze the layers to finetune your learning. I am not sure what is a good amount of layers to freeze in the first run, maybe can you test it with trial and error.
The command "./darknet partial cfg/yolov4.cfg yolov4.weights yolov4.conv.137 137" dumps the weights from the first 137 layers in "yolov4.weights" into the file "yolov4.conv.137", and has nothing to do with training.
I am a beginner, and I am very confused about how we can choose a pre-trained model that will improve my model.
I am trying to create a cat breed classifier using pre-trained weights of a model, lets say VGG16 trained on digits dataset, will that improve the performance of the model? or if I train my model just on the database without using any other weights will be better, or will both be the same as those pre-trained weights will be just a starting point.
Also if I use weights of the VGG16 trained for cat vs dog data as a starting point of my cat breed classification model will that help me in improving the model?
Since you've mentioned that you are a beginner I'll try to be a bit more verbose than normal so please bear with me.
How neural models recognise images
The layers in a pre-trained model store multiple aspects of the images they were trained on like patterns(lines, curves), colours within the image which it uses to decide if an image is of a specific class or not
With each layer the complexity of what it can store increases initially it captures lines or dots or simple curves but with each layer, the representation power increases and it starts capturing features like cat ears, dog face, curves in a number etc.
The image below from Keras blog shows how initial layers learn to represent simple things like dots and lines and as we go deeper they start to learn to represent more complex patterns.
Read more about Conv net Filters at keras's blog here
How does using a pretrained model give better results ?
When we train a model we waste a lot of compute and time initially creating these representations and in order to get to those representations we need quite a lot of data too else we might not be able to capture all relevant features and our model might not be as accurate.
So when we say we want to use a pre-trained model we want to use these representations so if we use a model trained on imagenet which has lots of cat pics we can be sure that the model already has representations to identify important features required to identify a cat and will converge to a better point than if we used random weights.
How to use pre-trained weights
So when we say to use pre-trained weights we mean use the layers which hold the representations to identify cats but discard the last layer (dense and output) and instead add fresh dense and output layers with random weights. So our predictions can make use of the representations already learned.
In real life we freeze our pretrained weights during the initial training as we do not want our random weights at the bottom to ruin the learned representations. we only unfreeze the representations in the end after we have a good classification accuracy to fine-tune them, and that too with a very small learning rate.
Which kind of pre-trained model to use
Always choose those pretrained weights that you know has the most amount of representations which can help you in identifying the class you are interested in.
So will using a mnist digits trained weights give relatively bad results when compared with one trained on image net?
Yes, but given that the initial layers have already learned simple patterns like lines and curves for digits using these weights will still put you at an advantage when compared to starting from scratch in most of the cases.
Sane weight initialization
The pre-trained weights to choose depends upon the type of classes you wish to classify. Since, you wish to classify Cat Breeds, use pre-trained weights from a classifier that is trained on similar task. As mentioned by the above answers the initial layers learn things like edges, horizontal or vertical lines, blobs, etc. As you go deeper, the model starts learning problem specific features. So for generic tasks you can use say imagenet & then fine-tune it for the problem at hand.
However, having a pre-trained model which closely resembles your training data helps immensely. A while ago, I had participated in Scene Classification Challenge where we initialized our model with the ResNet50 weights trained on Places365 dataset. Since, the classes in the above challenge were all present in the Places365 dataset, we used the weights available here and fine-tuned our model. This gave us a great boost in our accuracy & we ended up at top positions on the leaderboard.
You can find some more details about it in this blog
Also, understand that the one of the advantages of transfer learning is saving computations. Using a model with randomly initialized weights is like training a neural net from scratch. If you use VGG16 weights trained on digits dataset, then it might have already learned something, so it will definitely save some training time. If you train a model from scratch then it will eventually learn all the patterns which using a pre-trained digits classifier weights would have learnt.
On the other hand using weights from a Dog-vs-Cat classifier should give you better performance as it already has learned features to detect say paws, ears, nose or whiskers.
Could you provide more information, what do you want to classify exactly? I see you wish to classify images, which type of images (containing what?) and in which classes?
As a general remark : If you use a trained model, it must fit your need, of course. Keep in mind that a model which was trained on a given dataset, learned only the information contained in that dataset and can classify / indentify information analogous to the one in the training dataset.
If you want to classify an image containing an animal with a Y/N (binary) classifier, (cat or not cat) you should use a model trained on different animals, cats among them.
If you want to classify an image of a cat into classes corresponding to cat races, let's say, you should use a model trained only on cats images.
I should say you should use a pipeline, containing steps 1. followed by 2.
it really depends on the size of the dataset you have at hand and how related the task and data that the model was pretrained on to your task and data. Read more about Transfer Learning http://cs231n.github.io/transfer-learning/ or Domain Adaptation if your task is the same.
I am trying to create a cat breed classifier using pre-trained weights of a model, lets say VGG16 trained on digits dataset, will that improve the performance of the model?
There are general characteristics that are still learned from digits like edge detection that could be useful for your target task, so the answer here is maybe. You can here try just training the top layers which is common in computer vision applications.
Also if I use weights of the VGG16 trained for cat vs dog data as a starting point of my cat breed classification model will that help me in improving the model?
Your chances should be better if the task and data are more related and similar
I am using a pre-trained model which I want to add Elementwise layer that products the output of two layers: one layer is output of convolution layer 1x1x256x256 and the other is also the output of convolution layer 1x32x256x256. My question is: If we add elementwise layer for multiplying two layers and sending to the next layer, should we train from the scratch because the architecture is modified or still it is possible to use the pretrained model?
Thanks
Indeed making architectural changes puts the learned features at odds.
However, there's no reason not to use the learned weight for layers below the change -- these layers are not affected by the change, so they can benefit from the initialization.
As for the rest of the layers, I suppose init from trained weights should not be worse than random, So why not?
Don't forget to init any new layers with random weights (the default in caffe is zero - and this might cause trouble for learning).
I have a pretrained CNN (Resnet-18) trained on Imagenet, now i want to extend it on my own dataset of video frames , now the point is all tutorials i found on Finetuning required dataset to be organised in classes like
class1/train/
class1/test/
class2/train/
class2/test/
but i have only frames on many videos , how will i train my CNN on it.
So can anyone point me in right direction , any tutorial or paper etc ?
PS: My final task is to get deep features of all frames that i provide at the time of testing
for training network, you should have some 'label'(sometimes called y) of your input data. from there, network calculate loss between logit(answer of network) and the given label.
And the network will self-revise using that loss value by backpropagating. that process is what we call 'training'.
Because you only have input data, not label, so you can get the logit only. that means a loss cannot be calculated.
Fine tuning is almost same word with 'additional training', so that you cannot fine tuning your pre-trained network without labeled data.
About train set & test set, that is not the problem right now.
If you have enough labeled input data, you can divide it with some ratio.
(e.g. 80% of data for training, 20% of data for testing)
the reason why divide data into these two sets, we want to check the performance of our trained network more general, unseen situation.
However, if you just input your data into pre-trained network(encoder part), it will give a deep feature. It doesn't exactly fit to your task, still it is deep feature.
Added)
Unsupervised pre-training for convolutional neural network in theano
here is the method you need, deep feature encoder in unsupervised situation. I hope it will help.
I wanna compare the performance of CNN and autoencoder in caffe. I'm completely familiar with cnn in caffe but I wanna is the autoencoder also has deploy.prototxt file ? is there any differences in using this two models rather than the architecture?
Yes it also has a deploy.prototxt.
both train_val.prototxt and 'deploy.prototxt' are cnn architecture description files. The sole difference between them is, train_val.prototxt takes training data and loss as input/output, but 'deploy.prototxt' takes testing image as input, and predicted value as out put.
Here is an example of a cnn and autoencoder for MINST: Caffe Examples. (I have not tried the examples.) Using the models is generally the same. Learning rates etc. depend on the model.
You need to implement an auto-encoder example using python or matlab. The example in Caffe is not true auto-encoder because it doesn't set layer-wise training stage and during training stage, it doesn't fix W{L->L+1} = W{L+1->L+2}^T. It is easily to find a 1D auto-encoder in github, but 2D auto-encoder may be hard to find.
The main difference between the Auto encoders and conventional network is
In Auto encoder your input is your label image for training.
Auto encoder tries to approximate the output similar as input.
Auto encoders does not have softmax layer while training.
It can be used as a pre-trained model for your network which converge faster comparing to other pre-trained models. It is because your network has already extracted the features for your data.
The Conventional training and testing you can perform on pre trained auto encoder network for faster convergence and accuracy.