How efficiently use MySQL for Stock/TimeSeries related data? - mysql

I use Python and MySQL to ingest data via API and generate signals and order execution. Currently, things are functional yet coupled, that is, the single script is fetching data, storing it in MySQL, generating signals, and then executing orders. By tightly coupled does not mean all logic is in the same file, there are separate functions for different tasks. If somehow the script breaks everything will be halted. The way DB tables are generated is based on the instrument available on the fly after running a filter mechanism. The python code creates a different table of the same schema but with different table names based on the instrument name.
Now I am willing to separate the parts:
Data Ingestion (A Must)
Signal Generation
Order Execution
Reporting
First three I am mainly focusing. My concern is that if separate processes are running, acting on the same tables, will it generate any lock or something? How do I take care of it smoothly? or, is MySQL good enough for this or I move on to some other DB Like Postgres or others?
We are already using Digital Ocean Instance, MySQL is currently installed on the same instance.

If you intend to ingest/query time-series at scale, a conventional RDBMS will fall short at one point or another. They are designed for a use case in which reads are more frequent than writes, and optimise for that.
There is a whole family of databases designed specifically for working with Time-Series data. These time-series databases can ingest data at high throughput while running queries on top, and they usually give you lifecycle capabilities so you can decide what to do when data keeps growing.
There are many options available, both open source and proprietary. Out of those databases I would recommend you to try QuestDB because of a few reasons:
It is open source and Apache 2.0 licensed, so you can use it anywhere for anything
It is a single binary (or docker container) to operate
You query data using SQL, (with extensions for time series)
You can insert data using SQL, but you will experience locks if using concurrent clients. However you can also ingest data using the ILP protocol which is designed for ingestion speed. There are official clients in 7 languages so you don't have to deal with the low-level details
It is blazingly fast. I have seen over 2 million inserts per second on a single instance and some users report sustained workloads of over 100,000 events per second
It is well supported on Digital Ocean
There are a lot of public references (and many users who are not a reference) in the finance/trading/crypto industries

Related

Handling 2000+ more requests on mysql?

Is there any tools or proper way to handle more than 2000 requests (Mostly write request) per second to mysql database? Without reaching queuelimit.
There are a few different ways to handle massive amounts of requests to a MySQL (or any other relational/RDB) database. Starting out with growing traffic you can employ replication which allows for additional machines to send read-only (no INSERTs, UPDATEs, DELETEs, etc.) from one machine and to only write to a single "master" machine (the read replicas copy the written data from the master or write-allowed instance but may be slightly behind the latest data written for a short period of time). Oracle (owner of the MySQL project) has a good article about it (and scaling PHP) here: http://www.oracle.com/technetwork/articles/dsl/white-php-part1-355135.html
Once your app begins taking on requests on a truly massive scale (like Facebook, Google, etc. level) you will want to consider other strategies such as clustering, utilizing NoSQL (for certain functions such as search, analytics, logging, monitoring, etc.), splitting tables and databases based on geographic regions (if it makes sense). There is a starter white paper here: https://www.mysql.com/why-mysql/white-papers/guide-to-scaling-web-databases-with-mysql-cluster/
You can also conduct generic searches for "scaling MySQL" which deliver even more results.
MariaDB 10+ comes with Galera Cluster that allows you to have multiple MASTER servers and you can load balance either by IP or through a device.
Also, the number or requests/second are dependent on how fast a write is completed. If you have a simple atomic raw write, you can turn off INDEXES on the receiving table, so it's as fast as your server can handle. That raw table can by MyISAM and not InnoDB. That's usually up to 10x faster in writes. Have another process read the raw data in bulk into another table with proper indexes. We've had success with up to 10K transactions/second this way

SQLite faster than MySQL?

I want to set up a teamspeak 3 server. I can choose between SQLite and MySQL as database. Well I usually tend to "do not use SQLite in production". But on the other hand, it's a teamspeak server. Well okay, just let me google this... I found this:
Speed
SQLite3 is much faster than MySQL database. It's because file database is always faster than unix socket. When I requested edit of channel it took about 0.5-1 sec on MySQL database (127.0.0.1) and almost instantly (0.1 sec) on SQLite 3. [...]
http://forum.teamspeak.com/showthread.php/77126-SQLite-vs-MySQL-Answer-is-here
I don't want to start a SQLite vs MySQL debate. I just want to ask: Is his argument even valid? I can't imagine it's true what he says. But unfortunately I'm not expert enough to answer this question myself.
Maybe TeamSpeak dev's have some major differences in their db architecture between SQLite and MySQL which explains a huge difference in speed (I can't imagine this).
At First Access Time will Appear Faster in SQLite
The access time for SQLite will appear faster at first instance, but this is with a small number of users online. SQLite uses a very simplistic access algorithm, its fast but does not handle concurrency.
As the database starts to grow, and the amount of simultaneous access it will start to suffer. The way servers handle multiple requests is completely different and way more complex and optimized for high concurrency. For example, SQLite will lock the whole table if an update is going on, and queue the orders.
RDBMS's Makes a lot of extra work that make them more Scalable
MySQL for example, even with a single user will create an access QUEUE, lock tables partially instead of allowing only single user-per time executions, and other pretty complex tasks in order to make sure the database is still accessible for any other simultaneous access.
This will make a single user connection slower, but pays off in the future, when 100's of users are online, and in this case, the simple
"LOCK THE WHOLE TABLE AND EXECUTE A SINGLE QUERY EACH TIME"
procedure of SQLite will hog the server.
SQLite is made for simplicity and Self Contained Database Applications.
If you are expecting to have 10 simultaneous access writing at the database at a time SQLite may perform well, but you won't want an 100 user application that constant writes and reads data to the database using SQLite. It wasn't designed for such scenario, and it will trash resources.
Considering your TeamSpeak scenario you are likely to be ok with SQLite, even for some business it is OK, some websites need databases that will be read only unless when adding new content.
For this kind of uses SQLite is a cheap, easy to implement, self contained, perfect solution that will get the job done.
The relevant difference is that SQLite uses a much simpler locking algorithm (a simple global database lock).
Using fine-grained locking (as MySQL and most other DB servers do) is much more complex, and slower if there is only a single database user, but required if you want to allow more concurrency.
I have not personally tested SQLite vs MySQL, but it is easy to find examples on the web that say the opposite (for instance). You do ask a question that is not quite so religious: is that argument valid?
First, the essence of the argument is somewhat specious. A Unix socket would be used to communicate to a database server. A "file database" seems to refer to the fact that communication is through a compiled-in interface. In the terminology of SQLite, it is server-less. Most databases store data in files, so the terminology "file database" is a little misleading.
Performance of a database involves multiple factors, such as:
Communication of query to the database.
Speed of compilation (ability to store pre-compiled queries is a plus here).
Speed of processing.
Ability to handle complex processing.
Compiler optimizations and execution engine algorithms.
Communication of results back to the application.
Having the interface be compiled-in affects the first and last of these. There is nothing that prevents a server-less database from excelling at the rest. However, database servers are typically millions of lines of code -- much larger than SQLite. A lot of this supports extra functionality. Some of it supports improved optimizations and better algorithms.
As with most performance questions, the answer is to test the systems yourself on your data in your environment. Being server-less is not an automatic performance gain. Having a server doesn't make a database "better". They are different applications designed for different optimization points.
In short:
For Local application databses, single user applications, and little simple projects keeping small data SQLite is winner.
For Network database applications, multiuser and concurrency, load balancing and growing data managements, security and roll based authentications, big projects and widely used services you should choose MySql.
In your question I do not know much about teamspeak servers and what kind of data it actually needs to keep in its database but if it just needs a local DBMS and not needs to proccess lots of concurrency and managements SQLite will be my choice.

Can relational database scale horizontally

After some googling I have found:
Note from mysql docs:
MySQL Cluster automatically shards (partitions) tables across nodes,
enabling databases to scale horizontally on low cost, commodity
hardware to serve read and write-intensive workloads, accessed both
from SQL and directly via NoSQL APIs.
Can relational database be horizontal scaling? Will it be somehow based on NoSQL database?
Do someone have any real world example?
How can I manage sql requests, transactions, and so on in such database?
It is possible but takes lots of maintenance efforts, Explanation -
Vertical Scaling of data (synonymous to Normalisation in SQL databases) is referred as splitting data column wise into multiple tables in order to reduce space redundancy. Example of user table -
Horizontal Scaling of data (synonymous to sharding) is referred as splitting row wise into multiple tables in order to reduce time taken to fetch data. Example of user table -
Key point to note here is as we can see tables in SQL databases are Normalised into multiple tables of related data. In order to shard data of such table on multiple machines, you would need to shard related normalised data accordingly which in turn would increase maintenance efforts. Like in the example presented above of SQL database,
Customer table which is related as one to many relation with Order
table
If you move some rows of customer data onto other machine (referred as sharding) you would also need to move its related order data onto the same machine which would be troublesome task in case of multiple related tables.
Its convenient for NOSQL databases to shard out as they follow flat table structure (data is stored in aggregated form rather than normalised form).
I think the answer is, unequivocally, yes. You have to keep in mind that SQL is simply a data access language. There is absolutely no reason why it can't be extended across multiple computers and network partitions. Is it a challenging problem? Most certainly, and that's why software that does it is in its infancy.
Now, I think what you are trying to ask is "Can all features that I am familiar with and that arrive in a standard SQL-type relational database management system be developed to work with multiple servers in this manner?" While I admit I haven't studied the problem in depth, there are theorems out there that say "No, it cannot." Consistency-Availability-Partition Theorem posits that we cannot have all three qualities at the same level.
Now, for all practical purposes, "sharding" or "partitioning" or whatever you want to call it is not going away; to the contrary. This means that, given the degree to which CAP theorem holds, we are going to have to shift the way we think about databases, and how we interact with them (at least, to an extent). Many developers have already made the shift necessary to be successful on a No-SQL platform, but many more have not. Ultimately, sufficient maturity of the model and effective enough workarounds will be developed that traditional SQL databases, in the sense you refer, will be more or less practical across multiple machines. This is already starting to pan out, and I would say give it a few more years and we'll be to that point. Or we'll have collectively shifted thinking to the point where it is no longer necessary, and the world will be a better place. :)
Thanks for the question and answer. I was trying to explain this to someone like this:
In terms of the CAP theorem, you can't have all three. So when a partition (network or server failure) occurs:
A relational database on a single server is giving you C (consistency). So when a
P (partition - server/network failure) occurs, you can't have A
(availability - db goes down)
A nosql datastore if you want A when a P occurs, you can't
have C (one or more of your replicated partitions will be out of
sync, until the n/w comes back and they all sync up). So it will only
be eventually consistent
EDITED #2: to provide more perspective based on the comment below by Manish. My intention is to explain by example, why you cant have all 3. As noted below in the comments, there are other dbs where you can have C when P occurs at the expense of A.
Google Spanner is an example of a relational database that can scale horizontally. Sharding and replication are done automatically so no need to worry about that. For more information please check out this paper.
Yes it can. It is called NewSQL.
NewSQL is a new approach to relational databases that wants to combine transactional ACID (atomicity, consistency, isolation, durability) guarantees of good ol’ RDBMSs and the horizontal scalability of NoSQL. Source
Examples for Databases:
User-Shared MySQL Cluster
Citus (PostgreSQL extension)
CockroachDB
Azure Cosmos DB
Google Spanner
NuoDB
Vitess
Splice Machine (part of Hadoop ecosystem)
MemQSL (in memory store)
VoltDB (in memory store)
Examples for Data Warehouses:
IBM Netezza
Oracle
Teradata
Hive Engine (part of Hadoop ecosystem)
Spark SQL (part of Hadoop ecosystem)
Yes, but it need to migrate when storage increased.
Some open source tools can support the feature, for example: Vitess or Apache ShardingSphere.

Virtual Segregation of Data in Multi-tenant MySQL Database

This is more of a conceptual question so variations on the stack are welcome should they be capable of accomplishing the same concept. We're currently on MySQL and expanding some services out into MongoDB.
The idea is that we would like to be able to manage a single physical database schema/structure so that adjustments, expansions etc. don't become overly cumbersome as the number of clients utilizing the structure grows into the thousands, tens of, hundreds of, etc. however we would like to segregate their data at this level rather than simply at the application layer to provide a more rigid separation. Is it possible to create virtual bins for each client using the same structure, but have their data structurally separated from one another?
The normal way would obviously be adding Client Keys to every row of data either directly or via foreign relationships, but given that we can't foresee with 20/20 how hacks on our system might occur allowing "cross client" data retrieval, I wanted to go a little further to embed the separation at a virtually structural level.
I've also read another post here: MySQL: how to do row-level security (like Oracle's Virtual Private Database)? which uses "views" as a method but this seems to become more work the larger the list of clients.
Thanks!
---- EDIT ----
Based on some of the literature suggested below, here's a little more info on our intent:
The closest situation of the three outlined in the MSDN article provided by #Stennie would be a single database, multiple-schema, however the difference being, we're not interested in customizing client schemas after their creation, we would actually prefer they remain locked to the parent/master schema.
Ideally the solution would keep each schema linked to the parent table-set structure rather than simply duplicating it with the hope that any change to the parent or master schema would be cascaded across all client/tenant schemas.
Taking it a step further, in a cluster we could have a single master with the master schema, and each slave replicating from it but with a sharded set of tenants. Changes to the master could then be filtered down through the cluster without interruption and would maintain consistency across all instances also allowing us to update the application layer faster knowing that all DB's are compatible with the updated schemas.
Hope that makes sense, I'm still a little fresh at this level.
There are a few common infrastructure approaches ranging from "share nothing" (aka multi-instance) to "share everything" (aka multi-tenant).
For example, a straightforward approach to your "virtual bins" would be to allocate a database per client using shared database servers. This is somewhere in between the two sharing extremes, as your customers would be sharing database server infrastructure but keeping their data and schema separate.
A database-per-client approach would allow you to:
manage authentication and access per client using the database's authentication & access controls
support different database software (you mention using both MySQL which supports views, and MongoDB which does not)
more easily backup and restore data per client
avoid potential cross-client leakage at a database level
avoid excessive table growth and related management issues for a single massive database
Some potential downsides would include:
having more databases to manage
in the case of a database where you want to enforce certain schema (i.e. MySQL) you will need to apply the schema changes across all your databases or support some form of versioning
in the case of a database which preallocates storage (i.e. MongoDB) you may use more storage per client (particularly if your actual data size is small)
you may run into limits on namespaces or open files
you still have to worry about application and data security :)
If you do some research on multi-tenancy you will find some other solutions ranging from this example (isolated DB per client on shared database server architecture) through to more complex partitioned data schemes.
This Microsoft article includes a useful overview of approaches and considerations: Multi-tenant SaaS database tenancy patterns.

Pattern for updating slave SQL Server 2008 databases from a master whilst minimising disruption

We have an ASP.NET web application hosted by a web farm of many instances using SQL Server 2008 in which we do aggregation and pre-processing of data from multiple sources into a format optimised for fast end user query performance (producing 5-10 million rows in some tables). The aggregation and optimisation is done by a service on a back end server which we then want to distribute to multiple read only front end copies used by the web application instances to facilitate maximum scalability.
My question is about the best way to get this data from a back end database out to the read only front end copies in such a way that does not kill their performance during the process. The front end web application instances will be under constant high load and need to have good responsiveness at all times.
The backend database is constantly being updated so I suspect that transactional replication will not be the best approach, as the constant stream of updates to the copies will hurt their performance.
Staleness of data is not a huge issue so snapshot replication might be the way to go, but this will result in poor performance during the periods of replication.
Doing a drop and bulk insert will result in periods with no data for user queries.
I don't really want to get into writing a complex cluster approach where we drop copies out of the cluster during updating - is there something along these lines that we can do without too much effort, or is there a better alternative?
There is actually a technology built into SQL Server 2005 (and 2008) that is designed to address this kind of issues. Service Broker (I'll refer further as SSB). The problem is that it has a very steep learning curve.
I know MySpace went public how uses SSB to manage their park of SQL Servers: MySpace Uses SQL Server Service Broker to Protect Integrity of 1 Petabyte of Data. I know of several more (major) sites that use similar patterns but unfortunately they have not gone public so I cannot refer names. I was personally involved with some projects around this technology (I am a former member of the SQL Server team).
Now bear in mind that SSB is not a dedicate data transfer technology like Replication. As such you will not find anyhting similar to the publishing wizards and simple deployment options of Replication (check a table and it gets transferred). SSB is a reliable messaging technology and as such its primitives stop at the level of message exchange, you would have to write the code that leverages the data change capture, packs it as messages and also the unpacking of message into relational tables at destination.
Why still some companies preffer SSB over Replication at a task like you describe is because SSB has a far better story when it comes to reliability and scalability. I know of projects that exchange data between 1500+ sites, far beyond the capabilities of Replication. SSB is also abstracted from the physical topology: you can move databases, rename machines, rebuild servers all without changing the application. Because data flow occurs over logical routes the application can addapt on-the-fly to new topologies. SSB is also resilient to long periods of disocnnect and downtime, being capable of resuming the data flow after hours, days and even months of disconnect. High troughput achieved by engine integration (SSB is part of the SQL engine itself, is not a collection of sattelite applications and processes like Replication) means that the backlog of changes can be processes on reasonable times (I know of sites that are going through half a million transactions per minute). SSB applications typically rely on internal Activation to process the incomming data. SSB also has some unique features like built-in load balancing (via routes) with sticky session semantics, support for deadlock free application specific correlated processing, priority data delivery, specific support for database mirroring, certificate based authentication for cross domain operations, built-in persisted timers and many more.
This is not a specific answer 'how to move data from table T on server A to server B'. Is more a generic technology on how to 'exhange data between server A and server B'.
I've never had to deal with this scenario before but did come up with a possible solution for this. Basically, it would require a change in your main database structure. Instead of storing the data, you would keep records of modifications of this data. Thus, if a record is added, you store "Table X, inserted new record with these values: ..." With modifications, just store the table, field and changed value. With deletions, just store which record is deleted. Every modification will be stored with a timestamp.
Your client systems would keep their local copies of the database and will regularly ask for all database modifications after a certain date/time. You then execute those modifications on the local database and it will be up-to-date again.
And the back-end? Well, it would just keep a list of modifications and perhaps a table with the base data. Keeping just the modifications also means you're keeping track of history, allowing you to ask the system what it looked like a year ago.
How well this would perform depends on the number of modifications on the back-end database. But if you request the changes every 15 minutes, it shouldn't be that much data every time.
But again, I never had the chance to work this out in a real application so it's still a theoretic principle for me. It seems fast but a lot of work will be required.
Option 1: Write an app to transfer the data using row level transactions. It might take longer but would result in no interruption of the site using the data because the rows are there before and after the read occurs, just with new data. This processing would happen on a separate server to minimize load.
In sql server 2008 you can set READ_COMMITTED_SNAPSHOT to ON to ensure that the row being updated is not causing blocking.
But basically all this app does is read the new data as it is available out from one database and into the other.
Option 2: Move the data (tables or entire database) from the aggregation server to the front-end server. Automate this if possible. Then switch your web application to point to the new database or tables for future requests. This works but requires control over the web app, which you may not have.
Option 3: If you were talking about a single table (or this could work with many) what you can do is a view swap. So you write your code against a sql view which points to table A. You do you work on Table B and when it's ready, you update the view to point to Table B. You can even write a function that determines the active table and automate the whole swap thing.
Option 4: You might be able to use something like byte-level replication of the server. That sounds scary though. Which is basically copying the server from point A to point B exactly down to the very bytes. It's mostly used in DR situations which this sounds like it could be a kinda/sorta DR situation, but not really.
Option 5: Give up and learn how to sell insurance. :)