Handling 2000+ more requests on mysql? - mysql

Is there any tools or proper way to handle more than 2000 requests (Mostly write request) per second to mysql database? Without reaching queuelimit.

There are a few different ways to handle massive amounts of requests to a MySQL (or any other relational/RDB) database. Starting out with growing traffic you can employ replication which allows for additional machines to send read-only (no INSERTs, UPDATEs, DELETEs, etc.) from one machine and to only write to a single "master" machine (the read replicas copy the written data from the master or write-allowed instance but may be slightly behind the latest data written for a short period of time). Oracle (owner of the MySQL project) has a good article about it (and scaling PHP) here: http://www.oracle.com/technetwork/articles/dsl/white-php-part1-355135.html
Once your app begins taking on requests on a truly massive scale (like Facebook, Google, etc. level) you will want to consider other strategies such as clustering, utilizing NoSQL (for certain functions such as search, analytics, logging, monitoring, etc.), splitting tables and databases based on geographic regions (if it makes sense). There is a starter white paper here: https://www.mysql.com/why-mysql/white-papers/guide-to-scaling-web-databases-with-mysql-cluster/
You can also conduct generic searches for "scaling MySQL" which deliver even more results.

MariaDB 10+ comes with Galera Cluster that allows you to have multiple MASTER servers and you can load balance either by IP or through a device.
Also, the number or requests/second are dependent on how fast a write is completed. If you have a simple atomic raw write, you can turn off INDEXES on the receiving table, so it's as fast as your server can handle. That raw table can by MyISAM and not InnoDB. That's usually up to 10x faster in writes. Have another process read the raw data in bulk into another table with proper indexes. We've had success with up to 10K transactions/second this way

Related

How efficiently use MySQL for Stock/TimeSeries related data?

I use Python and MySQL to ingest data via API and generate signals and order execution. Currently, things are functional yet coupled, that is, the single script is fetching data, storing it in MySQL, generating signals, and then executing orders. By tightly coupled does not mean all logic is in the same file, there are separate functions for different tasks. If somehow the script breaks everything will be halted. The way DB tables are generated is based on the instrument available on the fly after running a filter mechanism. The python code creates a different table of the same schema but with different table names based on the instrument name.
Now I am willing to separate the parts:
Data Ingestion (A Must)
Signal Generation
Order Execution
Reporting
First three I am mainly focusing. My concern is that if separate processes are running, acting on the same tables, will it generate any lock or something? How do I take care of it smoothly? or, is MySQL good enough for this or I move on to some other DB Like Postgres or others?
We are already using Digital Ocean Instance, MySQL is currently installed on the same instance.
If you intend to ingest/query time-series at scale, a conventional RDBMS will fall short at one point or another. They are designed for a use case in which reads are more frequent than writes, and optimise for that.
There is a whole family of databases designed specifically for working with Time-Series data. These time-series databases can ingest data at high throughput while running queries on top, and they usually give you lifecycle capabilities so you can decide what to do when data keeps growing.
There are many options available, both open source and proprietary. Out of those databases I would recommend you to try QuestDB because of a few reasons:
It is open source and Apache 2.0 licensed, so you can use it anywhere for anything
It is a single binary (or docker container) to operate
You query data using SQL, (with extensions for time series)
You can insert data using SQL, but you will experience locks if using concurrent clients. However you can also ingest data using the ILP protocol which is designed for ingestion speed. There are official clients in 7 languages so you don't have to deal with the low-level details
It is blazingly fast. I have seen over 2 million inserts per second on a single instance and some users report sustained workloads of over 100,000 events per second
It is well supported on Digital Ocean
There are a lot of public references (and many users who are not a reference) in the finance/trading/crypto industries

MySQL Database with Multiple Servers

Basically, I'm working on a REST API for my application. I was researching for server performance, and I couldn't find information on splitting a database. Would it be better to have a single file system shared through multiple servers that use MySQL (if it's possible to store it on a shared file system), or should I just upgrade my current server or store different information on different databases (for example users a-n information on database 1 and o-z on another) if it's slowing it down? If anyone has more information on increasing database performance, or something I can read through it would be very much appreciated. Thanks in advance.
"Sharding" is where you put some of the rows of the main table on one physical server, some on other server(s). Only one system in a thousand needs this type of scaling.
"Partitioning" is where you split a single table into multiple "subtables" that act like a single table. There are very few use cases (I count only 4) where this provides any benefit. All the subtables live in the same server.
Having multiple MySQL instances on the same physical server adds complexity and may add some performance, but it is unlikely.
Having multiple MySQL instances on different physical server, but sharing the same data -- Do not attempt; MySQL does not know how to share its own data this way.
Using Replication lets you do arbitrary read scaling. This is slightly complex. It is a common approach. But it only handles apps that are more 'read' than 'write'.
Galera Clustering gives you some write scaling.
A single instance can handle lots of incoming requests (from a web server or other type of client). These clients could be scattered across multiple servers. That is scaling of clients, even without scaling MySQL, may be useful to you.
With a load balancer / proxy server / etc, you can also have multiple clients talking to multiple MySQL servers (read Slaves / Galera nodes / sharded servers / etc).
Many of the above techniques can be combined in the same system.
Bottom line: It smells like you don't yet know if you will need any scaling. When you get to that point, please provide more info on what the app is like so we can discuss the various options with less 'hand waving'.
I'm 99.999% certain all those words are just saying "premature optimization". Unless you have over 20GB of data (or 50GB or 100GB.. basically, a lot), use a single database and once it starts slowing down look at different options (sharding, etc).
And don't worry, you'll have plenty of other things to keep you busy without introducing advanced db tactics :)

SQLite faster than MySQL?

I want to set up a teamspeak 3 server. I can choose between SQLite and MySQL as database. Well I usually tend to "do not use SQLite in production". But on the other hand, it's a teamspeak server. Well okay, just let me google this... I found this:
Speed
SQLite3 is much faster than MySQL database. It's because file database is always faster than unix socket. When I requested edit of channel it took about 0.5-1 sec on MySQL database (127.0.0.1) and almost instantly (0.1 sec) on SQLite 3. [...]
http://forum.teamspeak.com/showthread.php/77126-SQLite-vs-MySQL-Answer-is-here
I don't want to start a SQLite vs MySQL debate. I just want to ask: Is his argument even valid? I can't imagine it's true what he says. But unfortunately I'm not expert enough to answer this question myself.
Maybe TeamSpeak dev's have some major differences in their db architecture between SQLite and MySQL which explains a huge difference in speed (I can't imagine this).
At First Access Time will Appear Faster in SQLite
The access time for SQLite will appear faster at first instance, but this is with a small number of users online. SQLite uses a very simplistic access algorithm, its fast but does not handle concurrency.
As the database starts to grow, and the amount of simultaneous access it will start to suffer. The way servers handle multiple requests is completely different and way more complex and optimized for high concurrency. For example, SQLite will lock the whole table if an update is going on, and queue the orders.
RDBMS's Makes a lot of extra work that make them more Scalable
MySQL for example, even with a single user will create an access QUEUE, lock tables partially instead of allowing only single user-per time executions, and other pretty complex tasks in order to make sure the database is still accessible for any other simultaneous access.
This will make a single user connection slower, but pays off in the future, when 100's of users are online, and in this case, the simple
"LOCK THE WHOLE TABLE AND EXECUTE A SINGLE QUERY EACH TIME"
procedure of SQLite will hog the server.
SQLite is made for simplicity and Self Contained Database Applications.
If you are expecting to have 10 simultaneous access writing at the database at a time SQLite may perform well, but you won't want an 100 user application that constant writes and reads data to the database using SQLite. It wasn't designed for such scenario, and it will trash resources.
Considering your TeamSpeak scenario you are likely to be ok with SQLite, even for some business it is OK, some websites need databases that will be read only unless when adding new content.
For this kind of uses SQLite is a cheap, easy to implement, self contained, perfect solution that will get the job done.
The relevant difference is that SQLite uses a much simpler locking algorithm (a simple global database lock).
Using fine-grained locking (as MySQL and most other DB servers do) is much more complex, and slower if there is only a single database user, but required if you want to allow more concurrency.
I have not personally tested SQLite vs MySQL, but it is easy to find examples on the web that say the opposite (for instance). You do ask a question that is not quite so religious: is that argument valid?
First, the essence of the argument is somewhat specious. A Unix socket would be used to communicate to a database server. A "file database" seems to refer to the fact that communication is through a compiled-in interface. In the terminology of SQLite, it is server-less. Most databases store data in files, so the terminology "file database" is a little misleading.
Performance of a database involves multiple factors, such as:
Communication of query to the database.
Speed of compilation (ability to store pre-compiled queries is a plus here).
Speed of processing.
Ability to handle complex processing.
Compiler optimizations and execution engine algorithms.
Communication of results back to the application.
Having the interface be compiled-in affects the first and last of these. There is nothing that prevents a server-less database from excelling at the rest. However, database servers are typically millions of lines of code -- much larger than SQLite. A lot of this supports extra functionality. Some of it supports improved optimizations and better algorithms.
As with most performance questions, the answer is to test the systems yourself on your data in your environment. Being server-less is not an automatic performance gain. Having a server doesn't make a database "better". They are different applications designed for different optimization points.
In short:
For Local application databses, single user applications, and little simple projects keeping small data SQLite is winner.
For Network database applications, multiuser and concurrency, load balancing and growing data managements, security and roll based authentications, big projects and widely used services you should choose MySql.
In your question I do not know much about teamspeak servers and what kind of data it actually needs to keep in its database but if it just needs a local DBMS and not needs to proccess lots of concurrency and managements SQLite will be my choice.

multiple rails engines talking to one mySQL server for horizontally scaling application servers

I've seen pictures like this where multiple rails engines write to a single mySQL server.
1) Is this possible? Or does Rails want each application server to write to one database server?
2) If this is possible, how is it accomplished? Are there queues and a scheduler between the application servers and the write database server?
Scaling a mysql db is a pretty difficult thing to do, but its certainly been done plenty of times and there are a lot of best practices out there for you to take advantage of. The first thing you should know is that before you worry about scaling writes for a while yet, you probably need to scale your reads first.
Scaling reads can be done fairly easily using replication. There are several tools out there that make managing replication a lot easier such as Amazon RDS. Generally speaking many web severs can connect to many databases (as suggested by others), however you quickly run into scale issues once you have a lot of traffic, connections or whatever other action you are performing that generates load on the server.
As replicated severs are read only, you need to manage which sever you connect to depending on the action you're performing. I.e. if you had a users table, when creating, updating or deleting users you need to use the "write" database (the primary "source" sever) but when reading the user table, you can use one of the read replicas. This reduces the load on the primary write sever (allowing it to deal with even more writes) and as you can have multiple read databases behind a load balancer, you can get away with this structure for a very long time and scale reads across tens of database severs before you'll hit any significant issues (however most apps get away with 1-3).
There are situations where you will need to use your write database for read actions (although you should avoid it as much as possible) as the read replicas can be slightly behind the write dbs due to latency in replicating the write db queries, however most of the time you should be able to code knowing that there is the possibility that the read db is delayed (i.e. queue actions a reasonable period of time such that the updates will propagate across all the read severs) and simply use one of your read dbs rather than the write db.
Beyond this the key items to work on are ensuring you have efficient indexes and applying other best practices around maintaining a sensible data structure. You might also want to consider having 3 distinct "groups" of database servers. I generally like to have write, read and "stats" db groups. The write group for create, update and delete operations (as well as select for update), the read for general read items that must return their results quickly, and stats for anything that is going to be under high load and that you do not rely on for a prompt response (this keeps heavy queries that are not time sensitive away from your read db that you need quick responses from for general reads)
Once you get into a situation where you can no longer buy larger hardware and you're near maxing out your write capacity, you'll need to look into sharding, however that will take a lot of traffic / data (so dont worry about it unless you've done all of the above already).

SQL Azure performance considerations

Which are the performance considerations I should keep in mind when I'm planning an SQL Azure application? Azure Storage, and the worker and the web roles looks very scalable, but if at the end they are using one database... it looks like the bottleneck.
I was trying to find numbers about:
How many concurrent connections does
SQL Azure support?
Which is the bandwidth?
But no luck.
For example, I'm planning and application that uses a very high level of inserts, but I need return the result of an aggregate function each time (e.g.: the sum of all records with same key in a column), so I can not go with table storage.
Batching is an option, but time response is critical as well, so I'm afraid the database will be bloated with lot of connections.
Sharding is another option, but even when the amount of inserts is massive, the amount of data is very small, 4 to 6 columns with one PK and no FK. So even a 1Gb DB would be an overkill (and an overpay :D) for a partition.
Which would be the performance keys I should keep in mind when I'm facing these kind of applications?
Cheers.
Achieving both scalability and performance can be very difficult, even in the cloud. Your question was primarily about scalability, so you may want to design your application in such a way that your data becomes "eventually" consistent, using queues for example. A worker role would listen for incoming insert requests and would perform the insert asynchronously.
To minimize the number of roundtrips to the database and optimize connection pooling make sure to batch your inserts as well. So you could send 100 inserts in one shot. Also keep in mind that SQL Azure now supports MARS (multiple active recordsets) so that you can return multiple SELECTs in a single batch back to the calling code. The use of batching and MARS should reduce the number of database connections to a minimum.
Sharding usually helps for Read operations; not so much for inserts (although I never benchmarked inserts with sharding). So I am not sure sharding will help you that much for your requirements.
Remember that the Azure offering is designed first for scalability and reasonable performance in a multitenancy environment, where your database is shared with others on the same server. So if you need strong performance with guaranteed response time you may need to reevaluate your hosting choices or indeed test the performance boundaries of Azure for your needs as suggested by tijmenvdk.
SQL Azure will throttle your connections if any form of resource contention occurs (this includes heavy load but might also occur when your database is physically moved around). Throttling is non-deterministic, meaning that you cannot predict if and when this happens. When throttling, SQL Azure will drop your connection, requiring you to perform a retry. Number of connections supported and bandwidth is not published "by design" due to the flexible nature of the underlying infrastructure. Having said that, the setup is optimized for high availability, not high throughput.
If the bursts happen at a known time, you might consider sharding just during those bursts and consolidating the data after the burst has happened. Another way to handle this, is to start queueing/batching writes if and only if throttling occurs. You can use an Azure Queue for that plus a worker role to empty the queue later. This "overflow mechanism" has the advantage of automatically engaging if throttling occurs.
As an alternative you could use Azure Table Storage and keep a separate table of running totals that you can report back instead of performing an aggregation over the data to return the required sum of all records (this might be tricky due to the lack of locking on the tables though).
Apologies for stating the obvious, but the first step would be to test if you run into throttling at all in your scenario. I would give the overflow solution a try.