I'm very new to slam in general. I have a question regarding if the Maximum likelihood methods in the fastslam algorithm utilise mahalanobis distance, because according to this text: http://robots.stanford.edu/papers/Thrun03g.pdf , it states at page 18 for regular EKF SLAM that it utilises the mahalanobis distance to determine the most likely landmark:
However when the same conditional probability is presented for the fastslam algorithm, but now since it's particles each particle will have its own hypothesis of the state variables, they never mention the mahalanobis distance term, even though the algorithm utilises the covariance matrix for features (page 18):
See page 21 for pseudocode of the fastslam1 algorithm.
Does the fastslam 1.0 algorithm presented in the text utilise mahalanobis distance to calculate the most likely corresponding landmark to the current measurement we have? Why? Why not? Is there a way to incorporate mahalanobis distance to a data association ML-function in fastslam in that case? I may have uttered some things wrong here so feel free to correct me.
Related
I have quite a simple dataset of quantities of litter found in a national park located on an island. For each data point I have corresponding GPS coordinates, and I've derived the distance of each point to the shore. My aim: observe if the quantities of litter increase or decrease with the distance to shore. I'm assuming that quantities of litter will increase with a decrease in distance, as litter is commonly found on beaches etc.
Quantities of litter are counts, i.e. non-parametric. Additionally I've tested the data to see if it follows a Poisson model and it does not (p-value <0.05), and I have a larger variance than the mean for each variable (quantity and distance) seemingly overdispersed. Therefore, I went on using a negbin regression, with an output as follows:
Omnibus test is highly significant (p=0.000). I was just slightly puzzled on the parameter estimates, and generally hoping that this approach makes sense. Any input much appreciated.
Interpreting the parameter estimates requires knowing the link function specified, which would be a log link if you specified your model as a negative binomial with log link on the Type of Model tab, but could be something else if you specified a custom model using a negative binomial distribution with another link (which could be identity, negative binomial, or power, instead).
If it's a log link, then for a distance of 0 (at the shore), you predict exp(2,636) for the count, or about 13,957. For a given distance from the shore, multiply the distance by -,042 and add that to the 2,636 value, then take the exponential function to the resulting power. So for every unit away from the shore you move, the log of the prediction decreases by ,042, and the prediction is multiplied by about ,959. One unit away, you predict about 13,383 for the count, two units away, about 12,833, etc. So the results are in general accord with your hypothesis. Different specific calculations would be required if you used a different link function.
I am working on an multi-class image recognition problem. The task is to have the correct answer being in the top 3 output probabilities. So I was thinking that maybe there exists a clever cost function that prioritizes the correct answer being in the top K and doesn't penalize much in between these top K.
This can be achieved by class-weighted cross-entropy loss, which essentially assigns the weight to the errors associated with each class. This loss is used in research, e.g. see the paper "Multi-task learning and Weighted Cross-entropy for DNN-based Keyword" by S. Panchapagesan at al. Before computing the cross-entropy, you can check if the predicted distribution satisfies your condition (e.g., ground truth class is in top-k of the predicted classes) and assign the zero (or near zero) weights accordingly, if it does.
There are open questions though: when the correct class is in top-k, should you penalize the k-1 incorrectly predicted classes? What if, for example, the prediction is (0.9, 0.05, 0.01, ...), the third class is correct and it is in top-3 -- is this prediction good enough or not? Should you care what exactly k-1 incorrect classes are?
All these question arise because this kind of loss doesn't have probabilistic interpretation, unlike standard cross-entropy. That's why I wouldn't recommend using it in practice, but reformulate the goal instead.
E.g., if the original problem is that for some inputs several classes are equally good, the best way to deal with it is to use soft labels, e.g. (0.33, 0.33, 0.33, 0, 0, 0, ...) instead of one-hot (note that this totally agrees with probabilistic interpretation). It will force the network to learn features associated with all three good classes, and generally lead to the same goal, but with better control over target classes.
I am trying to get filtered velocity/spacial data from noisy position data from a tracked vehicle. I have a set of noisy position/time data = (x_i,y_i,t_i) and a known curve along which the vehicle is traveling, curve = (x(s),y(s)), where s is total distance along the curve. I can run a Kalman filter on the data, but I don't know how to constrain it to the 'road' without throwing out data that is too far from the road, which I don't want to do.
Alternately, I'm trying to estimate the value of s along the constrained path with position data that is noisy in x and y
Does anyone have an idea of how to merge the two types of data?
Thanks!
Do you understand what a Kalman filter does? Fundamentally, it assigns a probability to each possible state given just observables. In simple cases, this doesn't use a priori knowledge. But in your case, you can simply set the off-road estimates to zero and renormalizing the remaining probabilities.
Note: this isn't throwing out observables which are too far off the road, or even discarding outcomes which are too far off. It means that an apparent off-road position strongly increases the probabilities of an outcome on, but near the edge of the road.
If you want the model to allow small excursions away from the road, you can use a fast decaying function to model the low but non-zero probability of a car being off the road.
You could have as states the distance s along the path, and the rate of change of s. The position observations X and Y will then be non-linear functions of the state (assuming your track is not a line) so you'll need to use an extended or unscented filter.
I am just learning Kalman filter. In the Kalman Filter terminology, I am having some difficulty with process noise. Process noise seems to be ignored in many concrete examples (most focused on measurement noise). If someone can point me to some introductory level link that described process noise well with examples, that’d be great.
Let’s use a concrete scalar example for my question, given:
x_j = a x_j-1 + b u_j + w_j
Let’s say x_j models the temperature within a fridge with time. It is 5 degrees and should stay that way, so we model with a = 1. If at some point t = 100, the temperature of the fridge becomes 7 degrees (ie. hot day, poor insulation), then I believe the process noise at this point is 2 degrees. So our state variable x_100 = 7 degrees, and this is the true value of the system.
Question 1:
If I then paraphrase the phrase I often see for describing Kalman filter, “we filter the signal x so that the effects of the noise w are minimized “, http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/ScalarKalman.html if we minimize the effects of the 2 degrees, are we trying to get rid of the 2 degree difference? But the true state at is x_100 == 7 degrees. What are we doing to the process noise w exactly when we Kalmen filter?
Question 2:
The process noise has a variance of Q. In the simple fridge example, it seems easy to model because you know the underlying true state is 5 degrees and you can take Q as the deviation from that state. But if the true underlying state is fluctuating with time, when you model, what part of this would be considered state fluctuation vs. “process noise”. And how do we go about determining a good Q (again example would be nice)?
I have found that as Q is always added to the covariance prediction no matter which time step you are at, (see Covariance prediction formula from http://greg.czerniak.info/guides/kalman1/) that if you select an overly large Q, then it doesn’t seem like the Kalman filter would be well-behaved.
Thanks.
EDIT1 My Interpretation
My interpretation of the term process noise is the difference between the actual state of the system and the state modeled from the state transition matrix (ie. a * x_j-1). And what Kalman filter tries to do, is to bring the prediction closer to the actual state. In that sense, it actually partially "incorporate" the process noise into the prediction through the residual feedback mechanism, rather than "eliminate" it, so that it can predict the actual state better. I have not read such an explanation anywhere in my search, and I would appreciate anyone commenting on this view.
In Kalman filtering the "process noise" represents the idea/feature that the state of the system changes over time, but we do not know the exact details of when/how those changes occur, and thus we need to model them as a random process.
In your refrigerator example:
the state of the system is the temperature,
we obtain measurements of the temperature on some time interval, say hourly,
by looking the thermometer dial. Note that you usually need to
represent the uncertainties involved in the measurement process
in Kalman filtering, but you didn't focus on this in your question.
Let's assume that these errors are small.
At time t you look at the thermometer, see that it says 7degrees;
since we've assumed the measurement errors are very small, that means
that the true temperature is (very close to) 7 degrees.
Now the question is: what is the temperature at some later time, say 15 minutes
after you looked?
If we don't know if/when the condenser in the refridgerator turns on we could have:
1. the temperature at the later time is yet higher than 7degrees (15 minutes manages
to get close to the maximum temperature in a cycle),
2. Lower if the condenser is/has-been running, or even,
3. being just about the same.
This idea that there are a distribution of possible outcomes for the real state of the
system at some later time is the "process noise"
Note: my qualitative model for the refrigerator is: the condenser is not running, the temperature goes up until it reaches a threshold temperature a few degrees above the nominal target temperature (note - this is a sensor so there may be noise in terms of the temperature at which the condenser turns on), the condenser stays on until the temperature
gets a few degrees below the set temperature. Also note that if someone opens the door, then there will be a jump in the temperature; since we don't know when someone might do this, we model it as a random process.
Yeah, I don't think that sentence is a good one. The primary purpose of a Kalman filter is to minimize the effects of observation noise, not process noise. I think the author may be conflating Kalman filtering with Kalman control (where you ARE trying to minimize the effect of process noise).
The state does not "fluctuate" over time, except through the influence of process noise.
Remember, a system does not generally have an inherent "true" state. A refrigerator is a bad example, because it's already a control system, with nonlinear properties. A flying cannonball is a better example. There is some place where it "really is", but that's not intrinsic to A. In this example, you can think of wind as a kind of "process noise". (Not a great example, since it's not white noise, but work with me here.) The wind is a 3-dimensional process noise affecting the cannonball's velocity; it does not directly affect the cannonball's position.
Now, suppose that the wind in this area always blows northwest. We should see a positive covariance between the north and west components of wind. A deviation of the cannonball's velocity northwards should make us expect to see a similar deviation to westward, and vice versa.
Think of Q more as covariance than as variance; the autocorrelation aspect of it is almost incidental.
Its a good discussion going over here. I would like to add that the concept of process noise is that what ever prediction that is made based on the model is having some errors and it is represented using the Q matrix. If you note the equations in KF for prediction of Covariance matrix (P_prediction) which is actually the mean squared error of the state being predicted, the Q is simply added to it. PPredict=APA'+Q . I suggest, it would give a good insight if you could find the derivation of KF equations.
If your state-transition model is exact, process noise would be zero. In real-world, it would be nearly impossible to capture the exact state-transition with a mathematical model. The process noise captures that uncertainty.
How should stereo (2 channel) audio data be represented for FFT? Do you
A. Take the average of the two channels and assign it to the real component of a number and leave the imaginary component 0.
B. Assign one channel to the real component and the other channel to the imag component.
Is there a reason to do one or the other? I searched the web but could not find any definite answers on this.
I'm doing some simple spectrum analysis and, not knowing any better, used option A). This gave me an unexpected result, whereas option B) went as expected. Here are some more details:
I have a WAV file of a piano "middle-C". By definition, middle-C is 260Hz, so I would expect the peak frequency to be at 260Hz and smaller peaks at harmonics. I confirmed this by viewing the spectrum via an audio editing software (Sound Forge). But when I took the FFT myself, with option A), the peak was at 520Hz. With option B), the peak was at 260Hz.
Am I missing something? The explanation that I came up with so far is that representing stereo data using a real and imag component implies that the two channels are independent, which, I suppose they're not, and hence the mess-up.
I don't think you're taking the average correctly. :-)
C. Process each channel separately, assigning the amplitude to the real component and leaving the imaginary component as 0.
Option B does not make sense. Option A, which amounts to convert the signal to mono, is OK (if you are interested in a global spectrum).
Your problem (double freq) is surely related to some misunderstanding in the use of your FFT routines.
Once you take the FFT you need to get the Magnitude of the complex frequency spectrum. To get the magnitude you take the absolute of the complex spectrum |X(w)|. If you want to look at the power spectrum you square the magnitude spectrum, |X(w)|^2.
In terms of your frequency shift I think it has to do with you setting the imaginary parts to zero.
If you imagine the complex Frequency spectrum as a series of complex vectors or position vectors in a cartesian space. If you took one discrete frequency bin X(w), there would be one real component representing its direction in the real axis (x -direction), and one imaginary component in the in the imaginary axis (y - direction). There are four important values about this discrete frequency, 1. real value, 2. imaginary value, 3. Magnitude and, 4. phase. If you just take the real value and set imaginary to 0, you are setting Magnitude = real and phase = 0deg or 90deg. You have hence forth modified the resulting spectrum, and applied a bias to every frequency bin. Take a look at the wiki on Magnitude of a vector, also called the Euclidean norm of a vector to brush up on your understanding. Leonbloy was correct, but I hope this was more informative.
Think of the FFT as a way to get information from a single signal. What you are asking is what is the best way to display data from two signals. My answer would be to treat each independently, and display an FFT for each.
If you want a really fast streaming FFT you can read about an algorithm I wrote here: www.depthcharged.us/?p=176