Good morning,
I'm trying to implement a DQN with Bellman's Equations, however I don't know why but every prediction seems random. Just below here is my code.
The neural network :
class simpleAgent(nn.Module) :
def __init__(self,taille_entree, taille_sortie):
super(simpleAgent, self).__init__()
self.fc1 = nn.Linear(taille_entree, 32)
self.fc2 = nn.Linear(32, taille_sortie)
self.beta = 0.999
self.epsilon = 0.99
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def selectAction(self, pos):
if random.uniform(0,1) < self.epsilon:
self.epsilon = self.epsilon * self.beta
action = random.randint(0,1)
return action
else:
return torch.argmax(self(pos)).item()
The training code :
def optimize_model():
global model, targetNetwork
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
if len(buffer_circ) < BATCH_SIZE:
return
transitions = buffer_circ.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
state = torch.stack(batch.state)
action = torch.stack(batch.action)
reward = torch.stack(batch.reward)
continu = torch.stack(batch.terminated)
next_state = torch.stack(batch.next_state)
q_value = torch.flatten(model(state).gather(1, action))
q_value_next = torch.max(targetNetwork(next_state), 1).values
cible = reward + torch.mul(discount_factor,torch.mul(continu, q_value_next))
loss = criterion(q_value, cible)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
def train():
global model, targetNetwork
env = gym.make('CartPole-v1', render_mode="rgb_array", disable_env_checker=True)
env.action_space.seed(42)
tab = []
for i in range(5000):
observation, info = env.reset()
rewards=[]
cumule = 0
update_target = 1
terminated = False
truncated = False
while not terminated :
old_observation = observation
action = model.selectAction(torch.from_numpy(observation))
observation, reward, terminated, truncated, info= env.step(action)
cumule += reward
reward = torch.tensor(reward)
terminated = terminated or truncated
state = torch.from_numpy(old_observation)
next_state = torch.from_numpy(observation)
if terminated:
print(i,cumule)
tab.append(cumule)
rewards.append(cumule)
break
buffer_circ.push(state, torch.tensor([action]), next_state, reward, torch.tensor(not terminated))
optimize_model()
if update_target % TARGET_UPDATE == 0:
targetNetwork.load_state_dict(model.state_dict())
update_target = 0
update_target += 1
print('Complete')
env.render()
env.close()
I'm using a target network that is updated every TARGET_UPDATE, and model is the neural network that I train and Target network a copy of it. Yet, I have the loss decreasing and I also implemented the greedy-exploration with selectAction. If you could tell what's wrong in my code, it would be nice.
Thank you in advance
Related
I've a trained resnet 50 model and I'm using it for inference of medical images in jpeg2000 format. I'm using dali pipeline to speed up the process. But, I run into OOM after inferring 10 batches. I'm deleting tensors after each batch inference, still facing OOM.
Batch: 32,
image_size: 512 * 512,
GPU: P100 16GB.
#pipeline_def
def j2k_decode_pipeline():
jpegs, labels = fn.readers.file(files = j2kfiles)
images = fn.experimental.decoders.image(jpegs, device='mixed', output_type=types.RGB, dtype=DALIDataType.INT16)
images = fn.resize(
images,
resize_x=IMAGE_SIZE,
resize_y=IMAGE_SIZE,
resize_z=3,
interp_type=types.INTERP_LANCZOS3)
return images, labels
def get_preds_jk2(max_batch_size):
cnt = math.ceil(len(j2kfiles)/max_batch_size)-1
pipe = j2k_decode_pipeline(batch_size=max_batch_size, num_threads=2, device_id=0, debug=True)
pipe.build()
dali_iter = DALIGenericIterator(pipe, ['data', 'label'])
model_weights_path = '/model-2/model_weights.pth'
model = models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.load_state_dict(torch.load(model_weights_path))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
preds, labels = [], []
for i, data in enumerate(dali_iter):
print('batch ', i)
labels.append(data[0]['label'])
# Testing correctness of labels
imgs = data[0]['data']
im_temp = imgs - imgs.min()
im_temp = im_temp / im_temp.max()
im_temp = im_temp * 255
imgs_8bit = im_temp.type(torch.uint8).float()
imgs_tensor = imgs_8bit.permute(0,3,1,2)
imgs_tensor = imgs_tensor.to(device)
del imgs, im_temp, imgs_8bit
gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
outputs = model(imgs_tensor)
output_probs = torch.nn.functional.softmax(outputs, dim=1).data.cpu().numpy()[:,1]
preds.append(output_probs)
del imgs_tensor, outputs, output_probs
gc.collect()
torch.cuda.empty_cache()
if i == cnt:
print(i)
break
return preds, labels
I am making a class-incremental learning multi-label classifier. Here the model first trains with 7 labels. After training, another dataset emerges that contains the same labels except one more. I want to automatically add an extra node to the trained network and continue training on this new dataset. How can I do this?
class FeedForewardNN(nn.Module):
def __init__(self, input_size, h1_size = 264, h2_size = 128, num_services=8):
super().__init__()
self.input_size = input_size
self.lin1 = nn.Linear(input_size, h1_size)
self.lin2 = nn.Linear(h1_size, h2_size)
self.lin3 = nn.Linear(h2_size, num_services)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.lin1(x)
x = self.relu(x)
x = self.lin2(x)
x = self.relu(x)
x = self.lin3(x)
x = self.sigmoid(x)
return x
This is the architecture of the feedforward Neural Network.
Then I first train on the data set with only 7 classes.
#Create NN
input_size = len(x_columns)
net1 = FeedForewardNN(input_size, num_services=7)
alpha= 0.001
#Define optimizer
optimizer = optim.Adam(net.parameters(), lr=alpha)
criterion = nn.BCELoss()
running_loss = 0
#Training Loop
loss_list = []
auc_list = []
for i in range(len(train_data_x)):
optimizer.zero_grad()
outputs = net1(train_data_x[i])
loss = criterion(outputs, train_data_y[i])
loss.backward()
optimizer.step()
However then, I want to add one additional output node, define the new weights but maintain the old trained weights, and train on this new data set.
I suggest to replace layer with new one, having desired shape, and than partially assign its parameter values with old ones as follows:
def increaseClassifier( m: torch.nn.Linear ):
w = m.weight
b = m.bias
old_shape = m.weight.shape
m2 = nn.Linear( old_shape[1], old_shape[0] +1 )
m2.weight = nn.parameter.Parameter( torch.cat( (m.weight, m2.weight[0:1]) ) )
m2.bias = nn.parameter.Parameter( torch.cat( (m.bias, m2.bias[0:1]) ) )
return m2
class FeedForewardNN(nn.Module):
...
def incrHere(self):
self.lin3 = increaseClassifier( self.lin3 )
UPD:
Can you explain, how these additional weights that come with this new output node are initialized?
The initial weights for new channel come from new layer creation, layer constructor make new parameters with some random initialization, then we are replace part of it with trained weight, and remained part is ready for new training.
m2.weight = nn.parameter.Parameter( torch.cat( (m.weight, m2.weight[0:1]) ) )
I'm running a spiking neural network for data that has 21 features with a batch size of 128. I get the following error after many iterations of training (this error doesn't arise immediately!):
RuntimeError: shape '[128, -1]' is invalid for input of size 378 pytorch
When I went to go print out what the shapes of the tensors are before, I get the following:
Train
torch.Size([128, 21])
Test
torch.Size([128, 21])
This is my network:
class SpikingNeuralNetwork(nn.Module):
"""
Parameters in SpikingNeuralNetwork class:
1. number_inputs: Number of inputs to the SNN.
2. number_hidden: Number of hidden layers.
3. number_outputs: Number of output classes.
4. beta: Decay rate.
"""
def __init__(self, number_inputs, number_hidden, number_outputs, beta):
super().__init__()
self.number_inputs = number_inputs
self.number_hidden = number_hidden
self.number_outputs = number_outputs
self.beta = beta
# Initialize layers
self.fc1 = nn.Linear(self.number_inputs, self.number_hidden) # Applies linear transformation to all input points
self.lif1 = snn.Leaky(beta = self.beta) # Integrates weighted input over time, emitting a spike if threshold condition is met
self.fc2 = nn.Linear(self.number_hidden, self.number_outputs) # Applies linear transformation to output spikes of lif1
self.lif2 = snn.Leaky(beta = self.beta) # Another spiking neuron, integrating the weighted spikes over time
"""
Forward propagation of SNN. The code below function will only be called once the input argument x
is explicitly passed into net.
#param x: input passed into the network
#return layer of output after applying final spiking neuron
"""
def forward(self, x):
num_steps = 25
# Initialize hidden states at t = 0
mem1 = self.lif1.init_leaky()
mem2 = self.lif2.init_leaky()
# Record the final layer
spk2_rec = []
mem2_rec = []
for step in range(num_steps):
cur1 = self.fc1(x)
spk1, mem1 = self.lif1(cur1, mem1)
cur2 = self.fc2(spk1)
spk2, mem2 = self.lif2(cur2, mem2)
spk2_rec.append(spk2)
mem2_rec.append(mem2)
return torch.stack(spk2_rec, dim = 0), torch.stack(mem2_rec, dim = 0)
This is my training loop:
def training_loop(net, train_loader, test_loader, dtype, device, optimizer):
num_epochs = 1
loss_history = []
test_loss_history = []
counter = 0
# Temporal dynamics
num_steps = 25
# Outer training loop
for epoch in range(num_epochs):
iter_counter = 0
train_batch = iter(train_loader)
# Minibatch training loop
for data, targets in train_batch:
data = data.to(device)
targets = targets.to(device)
# Forward pass
net.train()
print("Train")
print(data.size())
spk_rec, mem_rec = net(data.view(batch_size, -1))
# Initialize the loss and sum over time
loss_val = torch.zeros((1), dtype = dtype, device = device)
for step in range(num_steps):
loss_val += loss_function(mem_rec[step], targets.long().flatten().to(device))
# Gradient calculation and weight update
optimizer.zero_grad()
loss_val.backward()
optimizer.step()
# Store loss history for future plotting
loss_history.append(loss_val.item())
# Test set
with torch.no_grad():
net.eval()
test_data, test_targets = next(iter(test_loader))
test_data = test_data.to(device)
test_targets = test_targets.to(device)
# Test set forward pass
print("Test")
print(test_data.size())
test_spk, test_mem = net(test_data.view(batch_size, -1))
# Test set loss
test_loss = torch.zeros((1), dtype = dtype, device = device)
for step in range(num_steps):
test_loss += loss_function(test_mem[step], test_targets.long().flatten().to(device))
test_loss_history.append(test_loss.item())
# Print train/test loss and accuracy
if counter % 50 == 0:
train_printer(epoch, iter_counter, counter, loss_history, data, targets, test_data, test_targets)
counter = counter + 1
iter_counter = iter_counter + 1
return loss_history, test_loss_history
The error occurs on spk_rec, mem_rec = net(data.view(batch_size, -1)).
The code was adopted from https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_5.html, where it was originally used for the MNIST dataset. However, I am not working with an image dataset. I am working with a dataset that has 21 features and predicts just one target (with 100 classes). I tried to change data.view(batch_size, -1) and test_data.view(batch_size, -1) to data.view(batch_size, 21) and test_data.view(batch_size, 21) based on some other forum answers that I saw, and my program is running for now through the training loop. Does anyone have any suggestions for how I can run through the training with no errors?
EDIT: I now get the error RuntimeError: shape '[128, 21]' is invalid for input of size 378 from spk_rec, mem_rec = net(data.view(batch_size, -1)).
Here are my DataLoaders:
train_loader = DataLoader(dataset = train, batch_size = batch_size, shuffle = True)
test_loader = DataLoader(dataset = test, batch_size = batch_size, shuffle = True)
My batch size is 128.
Tryng to run it by myself to try to solve your problem I luck also: net params and snn.snn.Leaky
import torch
from torch import nn
from torch.utils.data import DataLoader
class SpikingNeuralNetwork(nn.Module):
"""
Parameters in SpikingNeuralNetwork class:
1. number_inputs: Number of inputs to the SNN.
2. number_hidden: Number of hidden layers.
3. number_outputs: Number of output classes.
4. beta: Decay rate.
"""
def __init__(self, number_inputs, number_hidden, number_outputs, beta):
super().__init__()
self.number_inputs = number_inputs
self.number_hidden = number_hidden
self.number_outputs = number_outputs
self.beta = beta
# Initialize layers
self.fc1 = nn.Linear(self.number_inputs,
self.number_hidden) # Applies linear transformation to all input points
self.lif1 = snn.Leaky(
beta=self.beta) # Integrates weighted input over time, emitting a spike if threshold condition is met
self.fc2 = nn.Linear(self.number_hidden,
self.number_outputs) # Applies linear transformation to output spikes of lif1
self.lif2 = snn.Leaky(beta=self.beta) # Another spiking neuron, integrating the weighted spikes over time
"""
Forward propagation of SNN. The code below function will only be called once the input argument x
is explicitly passed into net.
#param x: input passed into the network
#return layer of output after applying final spiking neuron
"""
def forward(self, x):
num_steps = 25
# Initialize hidden states at t = 0
mem1 = self.lif1.init_leaky()
mem2 = self.lif2.init_leaky()
# Record the final layer
spk2_rec = []
mem2_rec = []
for step in range(num_steps):
cur1 = self.fc1(x)
spk1, mem1 = self.lif1(cur1, mem1)
cur2 = self.fc2(spk1)
spk2, mem2 = self.lif2(cur2, mem2)
spk2_rec.append(spk2)
mem2_rec.append(mem2)
return torch.stack(spk2_rec, dim=0), torch.stack(mem2_rec, dim=0)
batch_size = 2
train = torch.rand(128, 21)
test = torch.rand(128, 21)
train_loader = DataLoader(dataset=train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test, batch_size=batch_size, shuffle=True)
net = SpikingNeuralNetwork(number_inputs=1)
loss_function = nn.CrossEntropyLoss()
optimizer = nn.optim.Adam(net.parameters(), lr=0.1)
def training_loop(net, train_loader, test_loader, dtype, device, optimizer):
num_epochs = 1
loss_history = []
test_loss_history = []
counter = 0
# Temporal dynamics
num_steps = 25
# Outer training loop
for epoch in range(num_epochs):
iter_counter = 0
train_batch = iter(train_loader)
# Minibatch training loop
for data, targets in train_batch:
data = data.to(device)
targets = targets.to(device)
# Forward pass
net.train()
print("Train")
print(data.size())
spk_rec, mem_rec = net(data.view(batch_size, -1))
# Initialize the loss and sum over time
loss_val = torch.zeros((1), dtype=dtype, device=device)
for step in range(num_steps):
loss_val += loss_function(mem_rec[step], targets.long().flatten().to(device))
# Gradient calculation and weight update
optimizer.zero_grad()
loss_val.backward()
optimizer.step()
# Store loss history for future plotting
loss_history.append(loss_val.item())
# Test set
with torch.no_grad():
net.eval()
test_data, test_targets = next(iter(test_loader))
test_data = test_data.to(device)
test_targets = test_targets.to(device)
# Test set forward pass
print("Test")
print(test_data.size())
test_spk, test_mem = net(test_data.view(batch_size, -1))
# Test set loss
test_loss = torch.zeros((1), dtype=dtype, device=device)
for step in range(num_steps):
test_loss += loss_function(test_mem[step], test_targets.long().flatten().to(device))
test_loss_history.append(test_loss.item())
# Print train/test loss and accuracy
if counter % 50 == 0:
train_printer(epoch, iter_counter, counter, loss_history, data, targets, test_data, test_targets)
counter = counter + 1
iter_counter = iter_counter + 1
return loss_history, test_loss_history
Your code works just fine on the MNIST dataset, so I think it might be a problem with how the DataLoader is being called. My guess is that the total dataset is not evenly divisible by your batch_size. If this is true, then you have two options:
Instead of spk_rec, mem_rec = net(data.view(batch_size, -1)), try spk_rec, mem_rec = net(data.flatten(1)) which preserves the first dimension of your data.
Alternatively, you may need to set drop_last=True in the DataLoader functions.
Hello guys I've joined a university-level image recognition competition.
In the test, they will give two images (people face) and my model need to detect pair of the image is the same person or not
My model is resnet18 with IR block and SE block. and it will use Arcface loss.
I can use only the MS1M dataset with a total of 86876 classes
The problem is that loss is getting better, but accuracy is 0 and not changing.
Here's part of code I'm working on.
Train
def train_model(model, net, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train']:
if phase == 'train':
model.train() # Set model to training mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in notebook.tqdm(dataloader):
inputs = inputs.to(device)
labels = labels.to(device).long()
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
features = model(inputs)
outputs = net(features, labels)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / len(dataloader)
epoch_acc = running_corrects.double() / len(dataloader)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'train' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
torch.save({'epoch': epoch,
'mode_state_dict': model.state_dict(),
'fc_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler': scheduler.state_dict(), # HERE IS THE CHANGE
}, f'/content/drive/MyDrive/inha_data/training_saver/training_stat{epoch}.pth')
print(f'finished {epoch} and saved model_save_{epoch}.pt')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best train Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
torch.save(model.state_dict(), 'model_save.pt')
return model
Parameters
train_dataset = MS1MDataset('train')
dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True,num_workers=4)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 디바이스 설정
num_classes = 86876
# normal classifier
# net = nn.Sequential(nn.Linear(512, num_classes))
# Feature extractor backbone, input is 112x112 image output is 512 feature vector
model_ft = resnet18(True)
#set metric
metric_fc = metrics.ArcMarginProduct(512, num_classes, s = 30.0, m = 0.50, easy_margin = False)
metric_fc.to(device)
# net = net.to(device)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = torch.optim.Adam([{'params': model_ft.parameters()}, {'params': metric_fc.parameters()}],
lr=0.1)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=4, gamma=0.1)
Arcface
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
import math
class ArcMarginProduct(nn.Module):
r"""Implement of large margin arc distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
cos(theta + m)
"""
def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False):
super(ArcMarginProduct, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = easy_margin
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input, label):
# --------------------------- cos(theta) & phi(theta) ---------------------------
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
sine = torch.sqrt((1.0 - torch.pow(cosine, 2)).clamp(0, 1))
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
# --------------------------- convert label to one-hot ---------------------------
# one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
one_hot = torch.zeros(cosine.size(), device='cuda')
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
# -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # you can use torch.where if your torch.__version__ is 0.4
output *= self.s
# print(output)
return output
dataset
data_transforms = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.125, contrast=0.125, saturation=0.125),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
#train_ms1_data = torchvision.datasets.ImageFolder('/content/drive/MyDrive/inha_data/train', transform = data_transforms)
class MS1MDataset(Dataset):
def __init__(self,split):
self.file_list = '/content/drive/MyDrive/inha_data/ID_List.txt'
self.images = []
self.labels = []
self.transformer = data_transforms['train']
with open(self.file_list) as f:
files = f.read().splitlines()
for i, fi in enumerate(files):
fi = fi.split()
image = "/content/" + fi[1]
label = int(fi[0])
self.images.append(image)
self.labels.append(label)
def __getitem__(self, index):
img = Image.open(self.images[index])
img = self.transformer(img)
label = self.labels[index]
return img, label
def __len__(self):
return len(self.images)
You can try to use a smaller m in ArcFace, even a minus value.
TRAINING CODE
if os.path.isfile(PATH):
print("checkpoint training '{}' ...".format(PATH))
checkpoint = torch.load(PATH)
start_epoch = checkpoint['epoch']
start_i = checkpoint['i']
net.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (trained for {} epochs, {} i)".format(PATH, checkpoint['epoch'],
checkpoint['i']))
else:
print('new training')
for epoch in range(num_epochs): # loop over the dataset multiple times
running_loss = 0.0
for i in range(len(train_folder_list2)):
# get the inputs; data is a list of [inputs, labels]
# net.train()
inputs, labels = train_input[i], train_list[i]
inputs = torch.as_tensor(inputs).cuda()
inputs = inputs.transpose(1, 3)
labels = torch.as_tensor(labels).cuda()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
# zero the parameter gradients
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 1:
save_checkpoint({
'epoch': start_epoch + epoch + 1,
'i': start_i + i + 1,
'state_dict': net.state_dict(),
})
TEST CODE
PATH = './checkpoint.pth'
model = Net().cuda()
if os.path.isfile(PATH):
print('checkpoint check!')
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
for k in range(len(train_folder_list2)):
inputs = train_input[k]
inputs = torch.as_tensor(inputs).cuda()
inputs = inputs.transpose(1, 3)
outputs = model(inputs)
result = outputs.cpu().detach().numpy()
This is the code to find the edges of the image.
If I run the training code, train it, and test it with the test code, it doesn't seem to find any edges in the image. The edges are on the same side, whatever image i put.
**ADD
CNN CODE
In addition, we added cnn code to give you information. Data input was put in the list separately from the image and label.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(293904, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 18)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 293904)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = x.view(18)
return x