Using the following multi-column data as an the input
| Run on Thu Oct 20 14:59:37 2022
|| GB non-polar solvation energies calculated with gbsa=2
idecomp = 1: Per-residue decomp adding 1-4 interactions to Internal.
Energy Decomposition Analysis (All units kcal/mol): Generalized Born solvent
DELTAS:
Total Energy Decomposition:
Residue | Location | Internal | van der Waals | Electrostatic | Polar Solvation | Non-Polar Solv. | TOTAL
-------------------------------------------------------------------------------------------------------------------------------------------------------
SER 1 | R SER 1 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.092 +/- 0.012 | 0.092 +/- 0.012 | 0.000 +/- 0.000 | 0.000 +/- 0.001
GLY 2 | R GLY 2 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.001 +/- 0.001 | -0.001 +/- 0.001 | 0.000 +/- 0.000 | 0.000 +/- 0.001
PHE 3 | R PHE 3 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.003 +/- 0.001 | 0.004 +/- 0.001 | 0.000 +/- 0.000 | 0.000 +/- 0.001
ARG 4 | R ARG 4 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.160 +/- 0.025 | 0.164 +/- 0.025 | 0.000 +/- 0.000 | 0.003 +/- 0.001
LYS 5 | R LYS 5 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.211 +/- 0.038 | 0.230 +/- 0.038 | 0.000 +/- 0.000 | 0.019 +/- 0.004
MET 6 | R MET 6 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.006 +/- 0.003 | 0.010 +/- 0.003 | 0.000 +/- 0.000 | 0.004 +/- 0.001
ALA 7 | R ALA 7 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.019 +/- 0.003 | 0.023 +/- 0.003 | 0.000 +/- 0.000 | 0.003 +/- 0.001
PHE 8 | R PHE 8 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.020 +/- 0.003 | -0.018 +/- 0.003 | 0.000 +/- 0.000 | 0.001 +/- 0.001
PRO 9 | R PRO 9 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.002 +/- 0.002 | 0.002 +/- 0.003 | 0.000 +/- 0.000 | 0.004 +/- 0.001
SER 10 | R SER 10 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.003 +/- 0.004 | -0.009 +/- 0.004 | 0.000 +/- 0.000 | -0.007 +/- 0.002
I call awk to extractthe informations from the first and 8th columns to reduce the input to the 2D data and slightly modify its format
SER_1 0.000
GLY_2 0.000
PHE_3 0.000
ARG_4 0.003
LYS_5 0.019
MET_6 0.004
ALA_7 0.003
PHE_8 0.001
PRO_9 0.004
SER_10 -0.007
then am trying to plot 2D bar chat using gnuplot combined with AWK integrated into bash script:
echo "vizualisation with Gnuplot + AWK (ver 2): plot data from stdin!"
{
echo '$data << EOD'
# reduse input format to 2D columns and rename the IDs
awk '
NF==8 { gsub(/^[[:space:]]+|[[:space:]]+$/,"",$1) # strip leading/trailing spaces from 1st field
gsub(/[[:space:]]+/,"_",$1) # convert all contiguous spaces to a single '_'
gsub(/^[[:space:]]+|[[:space:]]+$/,"",$8) # strip leading/trailing spaces from 8th field
split($8,a,"[[:space:]]") # split 8th field on white space
if (a[1]+0 == a[1] && a[1] > -10 ) # if 1st sub-field is numeric and > 0.005 then ...
print $1,a[1] # print to stdout
}
' $file |
if [ "$SORT_BARS" = 1 ]; then sort -k1,1; else cat
fi |
if [ "$COLOR_DATA" = 1 ]; then
awk -v colors="$color1 $color2 $color3 $color4 $color5 $color6" '
BEGIN { nc = split(colors,clrArr) }
{ print $0, clrArr[NR % nc + 1] }
'
else cat; fi
echo 'EOD'
cat << EOF
set term pngcairo size 800,600
set title "$file_name" noenhanced font "Century,22" textcolor "#b8860b"
set xtics noenhanced font "Helvetica,10"
set xlabel "Residue, #"
set ylabel "dG, kKal/mol"
set yrange [0:-8]
set ytics 0.1
set grid y
set key off
set boxwidth 0.9
set style fill solid 0.5
plot \$data using 0:2:3:xtic(1) with boxes lc rgb var, \
'' using 0:2:2 with labels offset 0,1
EOF
} | gnuplot > ${output}/${file_name2}.png
which produces the following error
gnuplot> plot $data using 0:2:3:xtic(1) with boxes lc rgb var
^
line 1: x range is invalid
since before I used this script to plot the same graphs based on the same input data with positive values, how could I adapt it to new format?
The resulted graph should be something like this (produced via xm-grace without bar coloring):
Just as an example: Although, gnuplot wants to be a plotting program, however, it also can do some data processing without the help of external tools.
Extracting the values from your input data using gnuplot looks (at least to me) easier than your awk script. Well, when it comes to sorting, gnuplot doesn't look too good, then, depending on the sort you might be back to external tools.
If your table has a strictly regular structure you could do the following:
Version: set column separator to "|" and further separate the column via word (check help datafile separator and help word)
Version: if you keep the default column separator (which is whitespace), your string and numerical data to extract is in columns 1, 2, and 28 (check help strcol and help column)
Do not to forget to skip 9 header lines (check help skip).
Data: SO74141830.dat
| Run on Thu Oct 20 14:59:37 2022
|| GB non-polar solvation energies calculated with gbsa=2
idecomp = 1: Per-residue decomp adding 1-4 interactions to Internal.
Energy Decomposition Analysis (All units kcal/mol): Generalized Born solvent
DELTAS:
Total Energy Decomposition:
Residue | Location | Internal | van der Waals | Electrostatic | Polar Solvation | Non-Polar Solv. | TOTAL
-------------------------------------------------------------------------------------------------------------------------------------------------------
SER 1 | R SER 1 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.092 +/- 0.012 | 0.092 +/- 0.012 | 0.000 +/- 0.000 | 0.000 +/- 0.001
GLY 2 | R GLY 2 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.001 +/- 0.001 | -0.001 +/- 0.001 | 0.000 +/- 0.000 | 0.000 +/- 0.001
PHE 3 | R PHE 3 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.003 +/- 0.001 | 0.004 +/- 0.001 | 0.000 +/- 0.000 | 0.000 +/- 0.001
ARG 4 | R ARG 4 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.160 +/- 0.025 | 0.164 +/- 0.025 | 0.000 +/- 0.000 | 0.003 +/- 0.001
LYS 5 | R LYS 5 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.211 +/- 0.038 | 0.230 +/- 0.038 | 0.000 +/- 0.000 | 0.019 +/- 0.004
MET 6 | R MET 6 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.006 +/- 0.003 | 0.010 +/- 0.003 | 0.000 +/- 0.000 | 0.004 +/- 0.001
ALA 7 | R ALA 7 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | -0.019 +/- 0.003 | 0.023 +/- 0.003 | 0.000 +/- 0.000 | 0.003 +/- 0.001
PHE 8 | R PHE 8 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.020 +/- 0.003 | -0.018 +/- 0.003 | 0.000 +/- 0.000 | 0.001 +/- 0.001
PRO 9 | R PRO 9 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.002 +/- 0.002 | 0.002 +/- 0.003 | 0.000 +/- 0.000 | 0.004 +/- 0.001
SER 10 | R SER 10 | 0.000 +/- 0.000 | -0.000 +/- 0.000 | 0.003 +/- 0.004 | -0.009 +/- 0.004 | 0.000 +/- 0.000 | -0.007 +/- 0.002
Script:
### extract data from file
reset session
FILE = "SO74141830.dat"
set datafile separator "|"
set table $Data
plot FILE u (word(strcol(1),1).'_'.word(strcol(1),2)):(word(strcol(8),1)) skip 9 w table
unset table
set datafile separator whitespace # reset to default
print $Data
set table $Data
plot FILE u (strcol(1).'_'.strcol(2)):(column(28)) skip 9 w table
unset table
print $Data
### end of script
Result:
SER_1 0.000
GLY_2 0.000
PHE_3 0.000
ARG_4 0.003
LYS_5 0.019
MET_6 0.004
ALA_7 0.003
PHE_8 0.001
PRO_9 0.004
SER_10 -0.007
SER_1 0
GLY_2 0
PHE_3 0
ARG_4 0.003
LYS_5 0.019
MET_6 0.004
ALA_7 0.003
PHE_8 0.001
PRO_9 0.004
SER_10 -0.007
Related
It is pretty much to look for the "mode", which is the value that appears most frequently in a data set.
Here is my test code in TCL:
proc mode {list} {
foreach val $list {dict incr h $val}
set h [lsort -stride 2 -real -index 1 -decreasing $h]
return [lindex $h 0]
}
set a [list 0 0 0 0.4 0.4 0.4 0.4 0.4 0.1 0.2 0.4 0.35 0.29 0.19 0.15 0.45 0.39 0.39 0.39 0.39 0.39 0.39 0.39]
set m [mode $a]
puts $m
Is it a good/efficient way for a large dataset?
How to remove those "0" elements before the mode calculation?
Is it a good/ efficient way for a large dataset?
Define "large" and measure!
As pointed out to you by others, your combo of dict incr/ lsort -integer is a solid choice iff length was the only factor:
Length | Method 1 | Method 2 | Ratio (m1 / m2)
-------+----------+----------+----------------
46 | 4.4 | 7.9 | 0.55
92 | 7.2 | 14.6 | 0.49
184 | 12.7 | 28.2 | 0.45
368 | 23.8 | 55.1 | 0.43
736 | 46.2 | 108.5 | 0.43
1472 | 90.6 | 217.3 | 0.42
2944 | 180.2 | 428.3 | 0.42
5888 | 359.8 | 857.4 | 0.42
11776 | 715.9 | 1704.9 | 0.42
23552 | 1437.0 | 3408.9 | 0.42
47104 | 2878.2 | 6855.4 | 0.42
94208 | 5741.7 | 13664.4 | 0.42
Method 1:
proc mode {list} {
set h [dict create]
foreach val $list {dict incr h $val}
set h [lsort -stride 2 -integer -index 1 -decreasing $h]
return [lindex $h 0]
}
Method 2:
proc mode2 {list} {
set maxCount 0
set mode ""
foreach val $list {
dict incr h $val
set count [dict get $h $val]
if {$count > $maxCount} {
set maxCount $count
set mode $val
}
}
return $mode
}
You mentioned "real" numbers. In many cases, the distribution of levels/ bins (unique values) in a collection is even more important. Let's take the worst case that each measurement point is unique, so the length equals the number of levels/ bins:
Length | Method 1 | Method 2 | Ratio (m1 / m2)
-------+----------+----------+----------------
23 | 4.3 | 4.8 | 0.90
46 | 7.7 | 8.9 | 0.86
92 | 15.6 | 17.1 | 0.91
184 | 31.0 | 34.3 | 0.90
368 | 63.7 | 67.9 | 0.94
736 | 133.2 | 137.8 | 0.97
1472 | 300.8 | 300.8 | 1.00
2944 | 651.5 | 628.0 | 1.04
5888 | 1560.8 | 1310.8 | 1.19
11776 | 2886.6 | 2702.7 | 1.07
23552 | 6408.2 | 5654.6 | 1.13
47104 | 23331.4 | 19110.5 | 1.22
94208 | 69697.9 | 55569.2 | 1.25
... then lsort will start becoming overly heavy on your bill. Also, if you want to detect more than one mode (bimodal etc.), then the picture changes. In either case, Method 2 above might become a valid candidate for large and heterogeneous data sets (w/ and w/o multi modes).
This is the driver code for the above measurement tables:
namespace import tcl::unsupported::timerate
timerate -calibrate {}
proc r {} {expr {10+rand()*40}}
puts " Length | Method 1 | Method 2 | Ratio (m1 / m2)"
puts " -------+----------+----------+----------------"
set l 23
while {$l <= 100000} {
set a [list]
for {set i 0} {$i<$l} {incr i} { lappend a [r]}
set m1 [lindex [timerate {mode $a} 1000] 0]
set m2 [lindex [timerate {mode2 $a} 1000] 0]
set ratio [expr {double($m1) / double($m2)}]
puts [format " %6d | %8.1f | %8.1f | %9.2f" $l $m1 $m2 $ratio]
incr l $l
}
puts " Length | Method 1 | Method 2 | Ratio (m1 / m2)"
puts " -------+----------+----------+----------------"
set a [list 0 0 0 0.4 0.4 0.4 0.4 0.4 0.1 0.2 0.4 0.35 0.29 0.19 0.15 0.45 0.39 0.39 0.39 0.39 0.39 0.39 0.39]
while {[llength $a]*2 <= 100000} {
lappend a {*}$a
set m1 [lindex [timerate {mode $a} 1000] 0]
set m2 [lindex [timerate {mode2 $a} 1000] 0]
set ratio [expr {double($m1) / double($m2)}]
puts [format " %6d | %8.1f | %8.1f | %9.2f" [llength $a] $m1 $m2 $ratio]
}
for my thesis i am currently investigating the effects of emissions on health on a regional basis. the dependent variable is bicategorical which takes the value 0 (if health is good) and 1 (if health is bad) with the exception of emissions and capita_gdp every variable is categorical:
here is an exemplary regression:
probit health i.year i.region##emissions age educ smoker gender urban capita_gdp, robust
nofvlabel allbaselevels
Probit regression Number of obs = 67,041
Wald chi2(64) = 5850.28
Prob > chi2 = 0.0000
Log pseudolikelihood = -43026.965 Pseudo R2 = 0.0660
-------------------------------------------------------------------------------------
| Robust
health | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------------+----------------------------------------------------------------
year |
1 | 0 (base)
2 | -.0236149 .0290446 -0.81 0.416 -.0805412 .0333115
3 | -.0552885 .0343119 -1.61 0.107 -.1225386 .0119615
4 | -.7498958 .0521191 -14.39 0.000 -.8520474 -.6477442
|
region |
1 | 0 (base)
2 | .3424928 .1944582 1.76 0.078 -.0386383 .723624
3 | .6631291 .343445 1.93 0.054 -.0100107 1.336269
4 | 1.005453 .1809361 5.56 0.000 .6508251 1.360081
5 | .5202438 .2705144 1.92 0.054 -.0099547 1.050442
6 | .853456 .2053275 4.16 0.000 .4510215 1.25589
7 | -1.32784 1.329886 -1.00 0.318 -3.934369 1.278688
8 | .2074103 .5587633 0.37 0.710 -.8877457 1.302566
9 | .8778635 1.005655 0.87 0.383 -1.093184 2.848911
10 | .614019 .2058646 2.98 0.003 .2105317 1.017506
11 | 1.103564 .2395228 4.61 0.000 .6341078 1.57302
12 | -.9928198 1.189953 -0.83 0.404 -3.325084 1.339444
13 | .2024027 .3014841 0.67 0.502 -.3884953 .7933008
14 | .8510637 .1966648 4.33 0.000 .4656078 1.23652
15 | -.4685238 1.062594 -0.44 0.659 -2.551171 1.614123
16 | .1222191 .4271317 0.29 0.775 -.7149435 .9593818
17 | 1.777416 .9296525 1.91 0.056 -.0446694 3.599502
18 | .7016812 .3960197 1.77 0.076 -.0745032 1.477866
19 | .2164103 .2324297 0.93 0.352 -.2391436 .6719642
20 | -.8683004 2.079837 -0.42 0.676 -4.944707 3.208106
21 | .6094313 .1969787 3.09 0.002 .2233601 .9955025
22 | .4586692 .2175369 2.11 0.035 .0323048 .8850336
23 | .1376296 .316405 0.43 0.664 -.4825129 .7577721
24 | .8800929 .2139805 4.11 0.000 .4606989 1.299487
25 | .5008748 .181908 2.75 0.006 .1443417 .8574079
26 | .7885192 .2055236 3.84 0.000 .3857004 1.191338
27 | .8370192 .2066431 4.05 0.000 .4320061 1.242032
28 | .0342872 .3383975 0.10 0.919 -.6289597 .697534
|
emissions | .2331187 .0475761 4.90 0.000 .1398713 .3263662
|
region#c.emissions|
1 | 0 (base)
2 | -.1763598 .0473856 -3.72 0.000 -.2692338 -.0834858
3 | .0902526 .3483855 0.26 0.796 -.5925705 .7730757
4 | -.2545669 .0436166 -5.84 0.000 -.3400539 -.1690798
5 | -.1903919 .0525988 -3.62 0.000 -.2934837 -.0873002
6 | -.2595892 .0565328 -4.59 0.000 -.3703914 -.148787
7 | .3660934 .3615611 1.01 0.311 -.3425534 1.07474
8 | -.1810636 .0873587 -2.07 0.038 -.3522836 -.0098436
9 | -.2360667 .2817683 -0.84 0.402 -.7883225 .316189
10 | -.2362498 .0452001 -5.23 0.000 -.3248403 -.1476593
11 | -.2986525 .0606014 -4.93 0.000 -.4174291 -.179876
12 | .4210453 .4355456 0.97 0.334 -.4326084 1.274699
13 | -.1393217 .063414 -2.20 0.028 -.2636109 -.0150324
14 | -.2428271 .0452505 -5.37 0.000 -.3315166 -.1541377
15 | -.1078827 .1281398 -0.84 0.400 -.359032 .1432667
16 | -.1121361 .0991541 -1.13 0.258 -.3064746 .0822024
17 | -.3670531 .1360779 -2.70 0.007 -.6337609 -.1003453
18 | -.241021 .1572069 -1.53 0.125 -.5491408 .0670988
19 | -.2128744 .0452858 -4.70 0.000 -.3016328 -.1241159
20 | .103139 .4313025 0.24 0.811 -.7421983 .9484763
21 | -.217597 .0532092 -4.09 0.000 -.3218851 -.1133089
22 | -.1796928 .0509009 -3.53 0.000 -.2794568 -.0799288
23 | -.1510797 .0529603 -2.85 0.004 -.2548799 -.0472795
24 | -.2589344 .0509662 -5.08 0.000 -.3588264 -.1590425
25 | -.231851 .0448358 -5.17 0.000 -.3197276 -.1439745
26 | -.2411263 .0442314 -5.45 0.000 -.3278182 -.1544344
27 | -.2452313 .0465597 -5.27 0.000 -.3364867 -.153976
28 | -.0563099 .1191566 -0.47 0.637 -.2898525 .1772328
|
age | .1085835 .0049886 21.77 0.000 .098806 .1183609
educ | -.1802489 .0107034 -16.84 0.000 -.2012272 -.1592707
smoker | .080728 .0145963 5.53 0.000 .0521198 .1093362
gender | -.2019473 .0145416 -13.89 0.000 -.2304483 -.1734463
urban | -.1362217 .0112233 -12.14 0.000 -.1582189 -.1142245
capita_gdp | -8.36e-06 .0000194 -0.43 0.667 -.0000464 .0000297
_cons | -.4987429 .1638654 -3.04 0.002 -.8199132 -.1775726
-------------------------------------------------------------------------------------
My question is, how can I exactly interpret the coefficients of emissions and the interaction of region.c#emissions on the dependent variable ? To my understanding the coefficient of emissions for region 1 is the base level and the coefficient of emissions in region 2 is lower than region 1 by -.176 ?
Correct. Two extra things worth noting:
Interactions work both ways. So the interaction coefficient tells you that the emissions effect is 0.176 smaller in region 2, but also that the effect of being in region 2 is 0.176 smaller if emissions are one unit larger. That also means you cannot directly interpret any coefficient involved in the interaction (region & emissions) as they both depend on each other.
Stata has an excellent margins and marginsplot command that calculates for you what the coefficients are at particular levels of region and/or emissions. It has a bit of a learning curve, but if you get the hang of it you can produce beautiful graphs to illustrate the interaction effect that will be much more informative than a long regression table.
There are many tutorials online on how to use margins and there's also this presentation by Ben Jann.
I have a dataset that I would like to run a regression on in Stata. I want to make one of the dummy variables the base so I use the ib1.month1 in the regress command.
Is it possible to include in my regression all other variables in the dataset without explicitly writing out each variable again?
You can use the ds command:
sysuse auto, clear
drop make
ds price foreign, not
regress price ib1.foreign `r(varlist)'
Source | SS df MS Number of obs = 69
-------------+---------------------------------- F(10, 58) = 8.66
Model | 345416162 10 34541616.2 Prob > F = 0.0000
Residual | 231380797 58 3989324.09 R-squared = 0.5989
-------------+---------------------------------- Adj R-squared = 0.5297
Total | 576796959 68 8482308.22 Root MSE = 1997.3
------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
foreign |
Domestic | -3334.848 957.2253 -3.48 0.001 -5250.943 -1418.754
mpg | -21.80518 77.3599 -0.28 0.779 -176.6578 133.0475
rep78 | 184.7935 331.7921 0.56 0.580 -479.3606 848.9476
headroom | -635.4921 383.0243 -1.66 0.102 -1402.198 131.2142
trunk | 71.49929 95.05012 0.75 0.455 -118.7642 261.7628
weight | 4.521161 1.411926 3.20 0.002 1.694884 7.347438
length | -76.49101 40.40303 -1.89 0.063 -157.3665 4.38444
turn | -114.2777 123.5374 -0.93 0.359 -361.5646 133.0092
displacement | 11.54012 8.378315 1.38 0.174 -5.230896 28.31115
gear_ratio | -318.6479 1124.34 -0.28 0.778 -2569.259 1931.964
_cons | 13124.34 6726.3 1.95 0.056 -339.8103 26588.5
------------------------------------------------------------------------------
I am currently working on a country panel dataset in which I am running a Dif-in-Dif regression including unit specific trends in Stata
My main concern is that the adjusted R-squared obtained is really high, sometimes even 0.99. I am assuming this is a sign of some kind of mistake but I do not know how to correct it.
For the model, I have near 5000 observations. The number of countries are 201, I have 36 years and 5 control variables, then the number of parameters would be around 450.
Here I attach the code used:
xtset id_num year // id_num = id_country
reg `outcome' i.treatment i.year i.id_num c.year#i.id_num `controls' if id_country!="USA" & `subgroup'==1, cluster(id_num)
In case is useful, this is the first part of the output
note: 201.id_num#c.year omitted because of collinearity
Linear regression Number of obs = 4,789
F(39, 174) = .
Prob > F = .
R-squared = 0.9994
Root MSE = .20753
(Std. Err. adjusted for 175 clusters in id_country)
-------------------------------------------------------------------------------
| Robust
obesity_as | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
1.treatment | .1847802 .1341994 1.38 0.170 -.080088 .4496483
|
year |
1981 | .2162895 .0156983 13.78 0.000 .185306 .2472731
1982 | .4461132 .0224864 19.84 0.000 .4017319 .4904944
1983 | .6690157 .0281392 23.78 0.000 .6134777 .7245538
1984 | .915047 .0311529 29.37 0.000 .8535609 .9765332
1985 | 1.177176 .0344991 34.12 0.000 1.109085 1.245266
1986 | 1.421679 .0389734 36.48 0.000 1.344758 1.498601
1987 | 1.68354 .0413294 40.73 0.000 1.601969 1.765112
1988 | 1.963494 .0440206 44.60 0.000 1.876611 2.050377
1989 | 2.236331 .0472635 47.32 0.000 2.143048 2.329615
1990 | 2.52923 .0498206 50.77 0.000 2.4309 2.62756
I have data for 2000-2016 and I am trying to estimate the following regression:
xtset id
xtreg lnp i.year i.year#fp, fe vce(robust)
However, when I do this, Stata omits 2008 because of collinearity.
Is there a way to specify which year is omitted?
More generally, you can specify the omitted level of a factor variable (i.e. the
base) by using the ib operator (see also help fvvarlist).
Below is a reproducible example using Stata's toy dataset nlswork:
webuse nlswork, clear
xtset idcode
Using 77 as the base year:
xtreg ln_wage ib77.year age, fe vce(robust)
Fixed-effects (within) regression Number of obs = 28,510
Group variable: idcode Number of groups = 4,710
R-sq: Obs per group:
within = 0.1060 min = 1
between = 0.0914 avg = 6.1
overall = 0.0805 max = 15
F(15,4709) = 69.49
corr(u_i, Xb) = 0.0467 Prob > F = 0.0000
(Std. Err. adjusted for 4,710 clusters in idcode)
------------------------------------------------------------------------------
| Robust
ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
year |
68 | -.108365 .1111117 -0.98 0.329 -.3261959 .1094659
69 | -.0335029 .0995142 -0.34 0.736 -.2285973 .1615915
70 | -.0604953 .0867605 -0.70 0.486 -.2305866 .1095959
71 | -.0218073 .0742761 -0.29 0.769 -.1674232 .1238087
72 | -.0226893 .0622792 -0.36 0.716 -.1447857 .0994071
73 | -.0203581 .049851 -0.41 0.683 -.1180894 .0773732
75 | -.0305043 .0259707 -1.17 0.240 -.081419 .0204104
78 | .0225868 .0147272 1.53 0.125 -.0062854 .0514591
80 | .0058999 .0381391 0.15 0.877 -.0688706 .0806704
82 | .0006801 .0622403 0.01 0.991 -.1213399 .1227001
83 | .0127622 .074435 0.17 0.864 -.1331653 .1586897
85 | .0381987 .0989316 0.39 0.699 -.1557535 .2321508
87 | .0298993 .1237839 0.24 0.809 -.2127751 .2725736
88 | .0716091 .1397635 0.51 0.608 -.2023927 .345611
|
age | .0125992 .0123091 1.02 0.306 -.0115323 .0367308
_cons | 1.312096 .3453967 3.80 0.000 .6349571 1.989235
-------------+----------------------------------------------------------------
sigma_u | .4058746
sigma_e | .30300411
rho | .64212421 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Using 80 as the base year:
xtreg ln_wage ib80.year age, fe vce(robust)
Fixed-effects (within) regression Number of obs = 28,510
Group variable: idcode Number of groups = 4,710
R-sq: Obs per group:
within = 0.1060 min = 1
between = 0.0914 avg = 6.1
overall = 0.0805 max = 15
F(15,4709) = 69.49
corr(u_i, Xb) = 0.0467 Prob > F = 0.0000
(Std. Err. adjusted for 4,710 clusters in idcode)
------------------------------------------------------------------------------
| Robust
ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
year |
68 | -.1142649 .1480678 -0.77 0.440 -.4045471 .1760172
69 | -.0394028 .136462 -0.29 0.773 -.3069323 .2281266
70 | -.0663953 .1237179 -0.54 0.592 -.3089402 .1761497
71 | -.0277072 .1112026 -0.25 0.803 -.2457164 .190302
72 | -.0285892 .0991208 -0.29 0.773 -.2229124 .165734
73 | -.026258 .0866489 -0.30 0.762 -.1961303 .1436142
75 | -.0364042 .0625743 -0.58 0.561 -.1590791 .0862706
77 | -.0058999 .0381391 -0.15 0.877 -.0806704 .0688706
78 | .0166869 .0258678 0.65 0.519 -.0340261 .0673999
82 | -.0052198 .0257713 -0.20 0.840 -.0557437 .0453041
83 | .0068623 .0378166 0.18 0.856 -.0672759 .0810005
85 | .0322987 .0620538 0.52 0.603 -.0893558 .1539533
87 | .0239993 .0868397 0.28 0.782 -.1462471 .1942457
88 | .0657092 .1028815 0.64 0.523 -.1359868 .2674052
|
age | .0125992 .0123091 1.02 0.306 -.0115323 .0367308
_cons | 1.317996 .3824809 3.45 0.001 .5681546 2.067838
-------------+----------------------------------------------------------------
sigma_u | .4058746
sigma_e | .30300411
rho | .64212421 (fraction of variance due to u_i)
------------------------------------------------------------------------------