Probit regression with country fixed effects for panel data - regression

Which function in R is a suitable function for probit regressions with country fixed effects for panel data? Moreover I want to input clustered (by country) standard errors.

Related

If I have a multi-modal regression model (output: a,b,c,d) based on some input (x,y,z), can I provide prior (b) to predict one or more of the outputs

if the inputs to my model are x,y,z and my outputs are continuous variables a,b,c,d I can obviously use the model to predict the vector [a,b,c,d] from [x,y,z].
However what happens if I find myself in a situation whereby I have say value b as a prior, before inference? Can i run the network in a manner such that I am predicting [a,c,d] based on [x,y,z,b]?
Real World example: I have an image with pixel locations (x,y) and pixel values (R,G,B). I then build a neural implicit model to predict pixel values based on pixel locations, say now I have a situation where I have the green values for some pixels as well as their locations, can I use these green values as a prior with my original network to get an improved result. Note that I am not interested in training a new network on said data.
In mathematical terms: I have network f(x,y,z) -> (a,b,c,d) how can I perform f(x,y,z|b) -> (a,c,d)?
I have not tried much here, thinking of maybe passing the prior value back through the network but am kinda lost.

Support vector regression based GIS anaysis

I'm new here and I really want some help. I have a dataset including geographical information (longitude, latitude.. ) and I want to ensure the prediction of some aspects using this dataset with Support Vector Regression, but I don't know how to perform this task. I have the following inquires,
Is there a specific precessing I need to go through?
Does SVR consider a geographic dataset as normal data set or are there some specificities in term of tools and treatment?
Any recommended prediction analytics tools (including SVR) considering geographical data?
This given solution is for the situation that you want to extract the independent variable base on the dependent variable from a raster.
but if you have you all dependent and independent data with their corresponding location you simply use svm function in R and you then add a raster or vector (new) data to your predict function for prediction, or you also can use the estimated coefficient of dependent variable in raster calculator in GIS and multiply them to the corresponding independent variable and finally you will get your predicted raster.
Simply you can do the following for spatial data in R.
First of all, the support vector regression can be used for prediction of real value and you can use the library("e1071") in R in order to execute this algorithm.
you can import your dataset as CSV along with lat and long columns.
transform your data.fram to Spatial data.frame
#Read data
dat<-read.csv(choose.files())
#convert the data to SPDF.
dat_sp=SpatialPoints(cbind(dat$x,dat$y))
#add your Geographical referense system
dat_crs=CRS("+proj=utm +zone=39 +datum=WGS84")
#Data Frams for SpatialPoint Data(Creating a SpatialPoints data frame for dat)
dat_spdf=SpatialPointsDataFrame(coords = dat_sp,data = dat, proj4string = dat_crs)
plot(dat_spdf, col='blue', cex=1, pch=16, axes=TRUE)
#Extract value
dat_spdf$ref <- extract(raster , dat_spdf)
then you can extract your data on a raster data or whatever you have(your independent variable).
and finally, you can use the following cold in R.
SVM(dependent ~.,independent)
But you need to really have an intuition about what the SVR is and how to evaluate the result.
you also can show your result as a final raster map.
you can use toolbox package or you may use raster package.

How to plot a transfer function from a Cauer network

The picture below shows a Cauer network, which is a continued fraction network.
I have built the 3rd olrder transfer function 3rd Octave like this:
function uebertragung=G(R1,Tau1,R2,Tau2,R3,Tau3)
s= tf("s");
C1= Tau1/R1;
C2= Tau2/R2;
C3= Tau3/R3;
# --- Uebertragungsfunktion 3.Ordnung --- #
uebertragung= 1/((s*R1*C1)^3+5*(s*R2*C2)^2+6*s*R3*C3+1);
endfunction
R1,R2,R3,C1,C2,C3 are the 6 parameters my characteristic curve depends on.
I need to put this parameters into the tranfser function, get a result and plot the characteristic curve from the data.
The characteristic curve shows thermal impedance vs time. Like these 2 curves from an igbt data sheet.
My problem is I don't know how to handle transfer functions properly. I need data to plot the characteristic curve but I don't know how to generate them out of the transfer function.
Any tips are welcome. Do I have to make Laplace transformation?
If you need further Information ask me and I try to provide them all.
From the data sheet, the equation they are using for their transient thermal impedance graph is the Foster chain step function response:
Z(t) = sum (R_i * (1-exp(-t/tau_i))) = sum (R_i * (1-exp(-t/(R_i*C_i))))
I verified that the stage R's and C's in the table by the graph will produce the plot you shared with that function.
The method for producing a step function response of an s-domain (Laplace domain) impedance function (Z) is to take the inverse Laplace transform of the product of the transfer function and 1/s (the Laplace domain form of a constant value step function). With the Foster model impedance function:
Z(s) = sum (R_i/(1+R_i*C_i*s))
that will produce the equation above.
Using the transfer function in Octave, you can use the Control package function step to calculate the transient response for you rather than performing the inverse Laplace transform yourself. So once you have Z(s), step(Z) will produce or plot the transient response. See help step for details. You can then adjust the plot (switch to log scale, set axes limits, etc) to look like one of the spec sheet plots.
Now, you want to do the same thing with a Cauer network model. It is important to realize that the R's and C's will not be the same for the two models. The Foster network is a decoupled model that has each primary complex pole isolated by layout, but the R's and C's are actually convolutions of the physical thermal resistances and capacitances in the real package. On the contrary, the Cauer model has R's and C's that match the physical package layers, and the poles in the s-domain transfer function will be complex products of the multiple layers.
So, however you are obtaining your R's and C's for the Cauer model, you can't just use the same values they have in their Foster model parameter table. They can be calculated from physical layer and material properties, however, assuming you have that information. Once you do have useful values, the procedure for going from Z(s) to the transient impedance function is the same for either network, and they should produce the same result.
As an example, the following procedure should work in both Octave and Matlab to plot the Thermal impedance curve from the spec sheet data using the Foster Z(s) model as a starting point. For the Cauer model, just use a different Z(s) function.
(Note that Octave has some issues in the step function that insert t = 0 entries into the time series output, even when they aren't specified, which can cause some errors when trying to plot on a log scale. so this example puts in a t=0 node then ignores it. wanted to explain so that line didn't seem confusing).
s = tf('s')
R1 = 8.5e-3; R2 = 2e-3;
tau1 = 151e-3; tau2 = 5.84e-3;
C1 = tau1/R1; C2 = tau2/R2;
input_imped = R1/(1+R1*C1*s)+R2/(1+R2*C2*s)
times = linspace(0, 10, 100000);
[Zvals,output_times] = step(input_imped, times);
loglog(output_times(2:end), Zvals(2:end));
xlim([.001 10]); ylim([0.0001, .1]);
grid;
xlabel('t [s]');
ylabel('Z_t_h_(_j_-_c_) [K/W] IGBT');
text(1,0.013 ,'Z_t_h_(_j_-_c_) IGBT');

Spatial Join for two variable visualization

I want to know if I can use Spatial Join functions for visualize a dataset based in two variables.
My csv has 541000 rows and I'm trying to make a visualization in Zeppelin with Spark to minimize de point draws.
All examples I've seen are to GIS systems but there are not the type of data I need.
My csv is this:
id, variableX, variableY, type.
I'm trying to apply a Spatial Join logic to variableX and variableY.
Thank you.
spark-highcharts might do what you want.
It's too much to plot half million points directly. There are some aggregation or filter needed. spark-highcharts will do the aggregation automatically.
For 2 dimension data, chart type like, line, area, spline.
For 3 dimension data, chart type like, arearange, scatter can be used.
With following code to plot bank data provided in Zeppelin Tutorial. It can plot a spline chart with xAxis use column age, and yAxis using aggregated average balance
import com.knockdata.spark.highcharts._
import com.knockdata.spark.highcharts.model._
highcharts(bank.series("name" -> "age", "y" -> avg($"balance")).orderBy($"age")).
xAxis(new XAxis("age").typ("category")).
chart(Chart.spline).
plot()

Applying a Kalman filter on a leg follower robot

I was asked to create a leg follower robot (I already did it) and in the second part of this assignment I have to develop a Kalman filter in order to improve the following process of the robot. The robot gets from the person the distance where she is to the robot and also the angle (it is a relative angle, because the reference is the robot itself, not absolute x-y coordinates)
About this assignment I have a serious doubt. Everything I have read, every sample I have seen about kalman filter has been in one dimension (a car running distance or a rock falling from a building) and according to the task I would have to apply it in 2 dimensions. Is it possible to apply a kalman filter like this?
If it is possible to calculate kalman filter in 2 dimensions then I would understand that what is asked to do is to follow the legs in a linnearized way, despite a person walks weirdly (with random movements) --> About this I have the doubt of how to establish the function of the state matrix, could anyone please tell me how to do it or to tell me where I can find more information about this?
thanks.
Well you should read up on Kalman Filter. Basically what it does is estimate a state through its mean and variance separately. The state can be whatever you want. You can have local coordinates in your state but also global coordinates.
Note that the latter will certainly result in nonlinear system dynamics, in which case you could use the Extended Kalman Filter, or to be more correct the continuous-discrete Kalman Filter, where you treat the system dynamics in a continuous manner and the measurements in discrete time.
Example with global coordinates:
Assuming you have a small cubic mass which can drive forward with velocity v. You could simply model the dynamics in local coordinates only, where your state s would be s = [v], which is a linear model.
But, you could also incorporate the global coordinates x and y, assuming we are moving on a plane only. Then you would have s = [x, y, phi, v]'. We need phi to keep track of the current orientation since the cube can only move forward in respect to its orientation of course. Let's define phi as the angle between the cube's forward direction and the x-axis. Or in other words: With phi=0 the cube would move along the x-axis, with phi=90° it would move along the y-axis.
The nonlinear system dynamics with global coordinates can then be written as
s_dot = [x_dot, y_dot, phi_dot, v_dot]'
with
x_dot = cos(phi) * v
y_dot = sin(phi) * v
phi_dot = ...
v_dot = ... (Newton's Law)
In EKF (Extended Kalman Filter) Prediction step you would use the (discretized) equations above to predict the mean of the state in the first step of and the linearized (and discretized) equations for prediction of the Variance.
There are two things to keep in mind when you decide what your state vector s should look like:
You might be tempted to use my linear example s = [v] and then integrate the velocity outside of the Kalman Filter in order to obtain the global coordinate estimates. This would work, but you would lose the awesomeness of the Kalman Filter since you would only integrate the mean of the state, not its variance. In other words, you would have no idea what the current uncertainties for your global coordinates are.
The second step of the Kalman Filter, the measurement or correction update, requires that you can describe your sensor output as a function of your states. So you may have to add states to your representation just so that you can express your measurements correctly as z[k] = h(s[k], w[k]) where z are measurements and w is a noise vector with Gaussian distribution.