How to calculate backpropagation offline - deep-learning

I want to learn how to backpropagate neural net offline, so I came up with the example following:
and 1 stays for bias. Activation function in last layer is linear.
where
My intuitive problem
I want to calculate backprogation offline but I'm not sure how it should be done. I understand intuition behind online backprop where we calculate gradient observation by observation. But I don't have idea how it should work offline i.e. to calculate with all observations at once. Could you please give me a hint in which direction should I follow?

So you say that you know how to do backpropagation on a single sample, but not on many samples at the same time, right? Then let's just assume that you have some loss function, e.g. the mean squared error. Then, for a single sample (x, label) your loss would be (y - label)^2. Since you said you know how to do backpropagation on a single sample, you should know that we now take the gradient of our loss with respect to out last node, y. This gradient should be 2 * (y - label). From there on, wo propagate the gradient through the whole network.
If we now have a batch of samples instead, we just use the loss function for the whole batch. Lets say out batch has two samples. Then our mean square error would just be the sum of the individual losses divided by the number of samples. Thus, the loss would be 1/2 * ((y_1 - label_1)^2 + ((y_2 - label_2)^2). And now we can just do the same as before: We take the gradient of our loss function with respect to our last node, y. It is important to realize, that both y_1 and y_2 in our loss are actually the output of our final node y, just for the different samples. This means, that the gradient is 1/2 * (2*(y_1 - label_1) + 2*(y_2 - label_2)). From here you have a single gradient value for the whole batch (if you plug in y_1, y_2, label_1, and label_2) and can propagate the gradient through the network as before.
As a summary: Instead of calculating the loss for a single sample, we now use a loss function that includes our whole batch (e.g. by just summing over all samples). This produces a single gradient, and we can proceed as before.

Related

How does score function help in policy gradient?

I'm trying to learn policy gradient methods for reinforcement learning but I stuck at the score function part.
While searching for maximum or minimum points in a function, we take the derivative and set it to zero, then look for the points that holds this equation.
In policy gradient methods, we do it by taking the gradient of the expectation of trajectories and we get:
Objective function image
Here I could not get how this gradient of log policy shifts the distribution (through its parameters θ) to increase the scores of its samples mathematically? Don't we look for something that make this objective function's gradient zero as I explained above?
What you want to maximize is
J(theta) = int( p(tau;theta)*R(tau) )
The integral is over tau (the trajectory) and p(tau;theta) is its probability (i.e., of seeing the sequence state, action, next state, next action, ...), which depends on both the dynamics of the environment and the policy (parameterized by theta). Formally
p(tau;theta) = p(s_0)*pi(a_0|s_0;theta)*P(s_1|s_0,a_0)*pi(a_1|s_1;theta)*P(s_2|s_1,a_1)*...
where P(s'|s,a) is the transition probability given by the dynamics.
Since we cannot control the dynamics, only the policy, we optimize w.r.t. its parameters, and we do it by gradient ascent, meaning that we take the direction given by the gradient. The equation in your image comes from the log-trick df(x)/dx = f(x)*d(logf(x))/dx.
In our case f(x) is p(tau;theta) and we get your equation. Then since we have access only to a finite amount of data (our samples) we approximate the integral with an expectation.
Step after step, you will (ideally) reach a point where the gradient is 0, meaning that you reached a (local) optimum.
You can find a more detailed explanation here.
EDIT
Informally, you can think of learning the policy which increases the probability of seeing high return R(tau). Usually, R(tau) is the cumulative sum of the rewards. For each state-action pair (s,a) you therefore maximize the sum of the rewards you get from executing a in state s and following pi afterwards. Check this great summary for more details (Fig 1).

Backpropagation on Two Layered Networks

i have been following cs231n lectures of Stanford and trying to complete assignments on my own and sharing these solutions both on github and my blog. But i'm having a hard time on understanding how to modelize backpropagation. I mean i can code modular forward and backward passes but what bothers me is that if i have the model below : Two Layered Neural Network
Lets assume that our loss function here is a softmax loss function. In my modular softmax_loss() function i am calculating loss and gradient with respect to scores (dSoft = dL/dY). After that, when i'am following backwards lets say for b2, db2 would be equal to dSoft*1 or dW2 would be equal to dSoft*dX2(outputs of relu gate). What's the chain rule here ? Why isnt dSoft equal to 1 ? Because dL/dL would be 1 ?
The softmax function is outputs a number given an input x.
What dSoft means is that you're computing the derivative of the function softmax(x) with respect to the input x. Then to calculate the derivative with respect to W of the last layer you use the chain rule i.e. dL/dW = dsoftmax/dx * dx/dW. Note that x = W*x_prev + b where x_prev is the input to the last node. Therefore dx/dW is just x and dx/db is just 1, which means that dL/dW or simply dW is dsoftmax/dx * x_prev and dL/db or simply db is dsoftmax/dx * 1. Note that here dsoftmax/dx is dSoft we defined earlier.

Determining the values of the filter matrices in a CNN

I am getting started with deep learning and have a basic question on CNN's.
I understand how gradients are adjusted using backpropagation according to a loss function.
But I thought the values of the convolving filter matrices (in CNN's) needs to be determined by us.
I'm using Keras and this is how (from a tutorial) the convolution layer was defined:
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
There are 32 filter matrices with dimensions 3x3 is used.
But, how are the values for these 32x3x3 matrices are determined?
It's not the gradients that are adjusted, the gradient calculated with the backpropagation algorithm is just the group of partial derivatives with respect to each weight in the network, and these components are in turn used to adjust the network weights in order to minimize the loss.
Take a look at this introductive guide.
The weights in the convolution layer in your example will be initialized to random values (according to a specific method), and then tweaked during training, using the gradient at each iteration to adjust each individual weight. Same goes for weights in a fully connected layer, or any other layer with weights.
EDIT: I'm adding some more details about the answer above.
Let's say you have a neural network with a single layer, which has some weights W. Now, during the forward pass, you calculate your output yHat for your network, compare it with your expected output y for your training samples, and compute some cost C (for example, using the quadratic cost function).
Now, you're interested in making the network more accurate, ie. you'd like to minimize C as much as possible. Imagine you want to find the minimum value for simple function like f(x)=x^2. You can start at some random point (as you did with your network), then compute the slope of the function at that point (ie, the derivative) and move down that direction, until you reach a minimum value (a local minimum at least).
With a neural network it's the same idea, with the difference that your inputs are fixed (the training samples), and you can see your cost function C as having n variables, where n is the number of weights in your network. To minimize C, you need the slope of the cost function C in each direction (ie. with respect to each variable, each weight w), and that vector of partial derivatives is the gradient.
Once you have the gradient, the part where you "move a bit following the slope" is the weights update part, where you update each network weight according to its partial derivative (in general, you subtract some learning rate multiplied by the partial derivative with respect to that weight).
A trained network is just a network whose weights have been adjusted over many iterations in such a way that the value of the cost function C over the training dataset is as small as possible.
This is the same for a convolutional layer too: you first initialize the weights at random (ie. you place yourself on a random position on the plot for the cost function C), then compute the gradients, then "move downhill", ie. you adjust each weight following the gradient in order to minimize C.
The only difference between a fully connected layer and a convolutional layer is how they calculate their outputs, and how the gradient is in turn computed, but the part where you update each weight with the gradient is the same for every weight in the network.
So, to answer your question, those filters in the convolutional kernels are initially random and are later adjusted with the backpropagation algorithm, as described above.
Hope this helps!
Sergio0694 states ,"The weights in the convolution layer in your example will be initialized to random values". So if they are random and say I want 10 filters. Every execution algorithm could find different filter. Also say I have Mnist data set. Numbers are formed of edges and curves. Is it guaranteed that there will be a edge filter or curve filter in 10?
I mean is first 10 filters most meaningful most distinctive filters we can find.
best

How to detect local maxima and curve windows correctly in semi complex scenarios?

I have a series of data and need to detect peak values in the series within a certain number of readings (window size) and excluding a certain level of background "noise." I also need to capture the starting and stopping points of the appreciable curves (ie, when it starts ticking up and then when it stops ticking down).
The data are high precision floats.
Here's a quick sketch that captures the most common scenarios that I'm up against visually:
One method I attempted was to pass a window of size X along the curve going backwards to detect the peaks. It started off working well, but I missed a lot of conditions initially not anticipated. Another method I started to work out was a growing window that would discover the longer duration curves. Yet another approach used a more calculus based approach that watches for some velocity / gradient aspects. None seemed to hit the sweet spot, probably due to my lack of experience in statistical analysis.
Perhaps I need to use some kind of a statistical analysis package to cover my bases vs writing my own algorithm? Or would there be an efficient method for tackling this directly with SQL with some kind of local max techniques? I'm simply not sure how to approach this efficiently. Each method I try it seems that I keep missing various thresholds, detecting too many peak values or not capturing entire events (reporting a peak datapoint too early in the reading process).
Ultimately this is implemented in Ruby and so if you could advise as to the most efficient and correct way to approach this problem with Ruby that would be appreciated, however I'm open to a language agnostic algorithmic approach as well. Or is there a certain library that would address the various issues I'm up against in this scenario of detecting the maximum peaks?
my idea is simple, after get your windows of interest you will need find all the peaks in this window, you can just compare the last value with the next , after this you will have where the peaks occur and you can decide where are the best peak.
I wrote one simple source in matlab to show my idea!
My example are in wave from audio file :-)
waveFile='Chick_eco.wav';
[y, fs, nbits]=wavread(waveFile);
subplot(2,2,1); plot(y); legend('Original signal');
startIndex=15000;
WindowSize=100;
endIndex=startIndex+WindowSize-1;
frame = y(startIndex:endIndex);
nframe=length(frame)
%find the peaks
peaks = zeros(nframe,1);
k=3;
while(k <= nframe - 1)
y1 = frame(k - 1);
y2 = frame(k);
y3 = frame(k + 1);
if (y2 > 0)
if (y2 > y1 && y2 >= y3)
peaks(k)=frame(k);
end
end
k=k+1;
end
peaks2=peaks;
peaks2(peaks2<=0)=nan;
subplot(2,2,2); plot(frame); legend('Get Window Length = 100');
subplot(2,2,3); plot(peaks); legend('Where are the PEAKS');
subplot(2,2,4); plot(frame); legend('Peaks in the Window');
hold on; plot(peaks2, '*');
for j = 1 : nframe
if (peaks(j) > 0)
fprintf('Local=%i\n', j);
fprintf('Value=%i\n', peaks(j));
end
end
%Where the Local Maxima occur
[maxivalue, maxi]=max(peaks)
you can see all the peaks and where it occurs
Local=37
Value=3.266296e-001
Local=51
Value=4.333496e-002
Local=65
Value=5.049438e-001
Local=80
Value=4.286804e-001
Local=84
Value=3.110046e-001
I'll propose a couple of different ideas. One is to use discrete wavelets, the other is to use the geographer's concept of prominence.
Wavelets: Apply some sort of wavelet decomposition to your data. There are multiple choices, with Daubechies wavelets being the most widely used. You want the low frequency peaks. Zero out the high frequency wavelet elements, reconstruct your data, and look for local extrema.
Prominence: Those noisy peaks and valleys are of key interest to geographers. They want to know exactly which of a mountain's multiple little peaks is tallest, the exact location of the lowest point in the valley. Find the local minima and maxima in your data set. You should have a sequence of min/max/min/max/.../min. (You might want to add an arbitrary end points that are lower than your global minimum.) Consider a min/max/min sequence. Classify each of these triples per the difference between the max and the larger of the two minima. Make a reduced sequence that replaces the smallest of these triples with the smaller of the two minima. Iterate until you get down to a single min/max/min triple. In your example, you want the next layer down, the min/max/min/max/min sequence.
Note: I'm going to describe the algorithmic steps as if each pass were distinct. Obviously, in a specific implementation, you can combine steps where it makes sense for your application. For the purposes of my explanation, it makes the text a little more clear.
I'm going to make some assumptions about your problem:
The windows of interest (the signals that you are looking for) cover a fraction of the entire data space (i.e., it's not one long signal).
The windows have significant scope (i.e., they aren't one pixel wide on your picture).
The windows have a minimum peak of interest (i.e., even if the signal exceeds the background noise, the peak must have an additional signal excess of the background).
The windows will never overlap (i.e., each can be examined as a distinct sub-problem out of context of the rest of the signal).
Given those, you can first look through your data stream for a set of windows of interest. You can do this by making a first pass through the data: moving from left to right, look for noise threshold crossing points. If the signal was below the noise floor and exceeds it on the next sample, that's a candidate starting point for a window (vice versa for the candidate end point).
Now make a pass through your candidate windows: compare the scope and contents of each window with the values defined above. To use your picture as an example, the small peaks on the left of the image barely exceed the noise floor and do so for too short a time. However, the window in the center of the screen clearly has a wide time extent and a significant max value. Keep the windows that meet your minimum criteria, discard those that are trivial.
Now to examine your remaining windows in detail (remember, they can be treated individually). The peak is easy to find: pass through the window and keep the local max. With respect to the leading and trailing edges of the signal, you can see n the picture that you have a window that's slightly larger than the actual point at which the signal exceeds the noise floor. In this case, you can use a finite difference approximation to calculate the first derivative of the signal. You know that the leading edge will be somewhat to the left of the window on the chart: look for a point at which the first derivative exceeds a positive noise floor of its own (the slope turns upwards sharply). Do the same for the trailing edge (which will always be to the right of the window).
Result: a set of time windows, the leading and trailing edges of the signals and the peak that occured in that window.
It looks like the definition of a window is the range of x over which y is above the threshold. So use that to determine the size of the window. Within that, locate the largest value, thus finding the peak.
If that fails, then what additional criteria do you have for defining a region of interest? You may need to nail down your implicit assumptions to more than 'that looks like a peak to me'.

How to represent stereo audio data for FFT

How should stereo (2 channel) audio data be represented for FFT? Do you
A. Take the average of the two channels and assign it to the real component of a number and leave the imaginary component 0.
B. Assign one channel to the real component and the other channel to the imag component.
Is there a reason to do one or the other? I searched the web but could not find any definite answers on this.
I'm doing some simple spectrum analysis and, not knowing any better, used option A). This gave me an unexpected result, whereas option B) went as expected. Here are some more details:
I have a WAV file of a piano "middle-C". By definition, middle-C is 260Hz, so I would expect the peak frequency to be at 260Hz and smaller peaks at harmonics. I confirmed this by viewing the spectrum via an audio editing software (Sound Forge). But when I took the FFT myself, with option A), the peak was at 520Hz. With option B), the peak was at 260Hz.
Am I missing something? The explanation that I came up with so far is that representing stereo data using a real and imag component implies that the two channels are independent, which, I suppose they're not, and hence the mess-up.
I don't think you're taking the average correctly. :-)
C. Process each channel separately, assigning the amplitude to the real component and leaving the imaginary component as 0.
Option B does not make sense. Option A, which amounts to convert the signal to mono, is OK (if you are interested in a global spectrum).
Your problem (double freq) is surely related to some misunderstanding in the use of your FFT routines.
Once you take the FFT you need to get the Magnitude of the complex frequency spectrum. To get the magnitude you take the absolute of the complex spectrum |X(w)|. If you want to look at the power spectrum you square the magnitude spectrum, |X(w)|^2.
In terms of your frequency shift I think it has to do with you setting the imaginary parts to zero.
If you imagine the complex Frequency spectrum as a series of complex vectors or position vectors in a cartesian space. If you took one discrete frequency bin X(w), there would be one real component representing its direction in the real axis (x -direction), and one imaginary component in the in the imaginary axis (y - direction). There are four important values about this discrete frequency, 1. real value, 2. imaginary value, 3. Magnitude and, 4. phase. If you just take the real value and set imaginary to 0, you are setting Magnitude = real and phase = 0deg or 90deg. You have hence forth modified the resulting spectrum, and applied a bias to every frequency bin. Take a look at the wiki on Magnitude of a vector, also called the Euclidean norm of a vector to brush up on your understanding. Leonbloy was correct, but I hope this was more informative.
Think of the FFT as a way to get information from a single signal. What you are asking is what is the best way to display data from two signals. My answer would be to treat each independently, and display an FFT for each.
If you want a really fast streaming FFT you can read about an algorithm I wrote here: www.depthcharged.us/?p=176