What exactly is happening in a second call of iterate? - function

I have the following code in Kotlin:
fun iterate(first: String, second: String, iter: Int, func: (String, String) -> String) {
for(i in 0..iter)
println(func(first, second))
}
fun concatenation(one: String, two: String): String {
return "$one $two";
}
fun main(args: Array<String>) {
iterate("Me", "You", 5, ::concatenation)
iterate("Another", "One", 6) {a, b -> a + b}
}
Can anyone explain what's happening in curly brackets in the second call of iterate function? Am I overriding it?
Also, I tried to swap func and iter paratemers in function declaration. This way I am not able anymore to use curly brackets in the second call and insert a code, because I don't know where to put iter argument.

Your function iterate() takes four parameters: two Strings, and Int, and a function.
When you call iterate(), you can give the String arguments in several ways: for example, you could give the name of a variable holding the String (such as one); or you could give a literal String value (such as "Me").
And you can give the function argument in both of those ways, too.*
The equivalent of the first way is to give a reference to an existing function.  That's what ::concatenation is.  (:: is used to create function references.)
The equivalent of the second way is to use a lambda, which is a way of writing out the contents of a function.  {a, b -> a + b} is a lambda: it's a function which takes two parameters, and returns their concatenation.  (In this case the compiler can tell from the context that the two parameters must be Strings; in other cases, you might need to specify their types.)
What's tricky about the code in this question is that the lambda doesn't look like it's being passed as an argument to the function!  It's outside the parens:
iterate("Another", "One", 6) {a, b -> a + b}
And this is a feature that's specific to Kotlin: if the last parameter is a function, you can put the lambda after the close paren.  (And, if that's the only argument, you can omit the parens entirely.)
So it means exactly the same as:
iterate("Another", "One", 6, {a, b -> a + b})
This may look confusing, but it supports function calls that look like new language syntax.  For example, you may have used the with() function:
with (someObject) {
// In here, ‘this’ refers to someObject.
}
That's not a keyword in the language; it's simply a normal function which takes its action as the last parameter.
So I bet you can now see the answer to your last question.  If you were to swap the iter and func params around, you'd have to call it like:
iterate("Another", "One", {a, b -> a + b}, 6)
(Because func is no longer the last parameter, it has to be inside the parens now.)
(* There are additional ways to specify string params and function params, too, but there's no room to go into them all here!)

Your func parameter's type is a function - its type is (String, String) -> String which means it takes two String parameters (in the parentheses) and returns a String (after the arrow).
That's what all function types look like, (x) -> y. A function type that takes no parameters and doesn't return a value has a type () -> Unit (because every function returns something in Kotlin, Unit is the "no meaningful value" type).
So for your func parameter, you can pass in any function with that type - takes two strings, returns a string. Your concatenation function matches that, so you can pass it in - you're using a function reference, ::concatenation which is a way to pass that function - it's a reference to it.
With your second iterate call, you're creating a function object to pass in, instead of referring to one that's declared as an actual method on the class. You're using a lambda that takes two parameters, a and b, and calls + on them (and implicitly returns that value as the result).
Now you're not saying that they're Strings here (you could declare their types explicitly if you wanted), but the type system is basically checking that this can apply to two String variables, and that the result of + on those would also be a String. So it all works fine, and it can be used in your iterate function.
Like #IR42 says in the comments, you're using a trailing lambda - basically when the last parameter in a function call is a lambda, instead of keeping it in the parentheses, you can move it outside (and remove the parentheses if the lambda was the only thing in there).
But this only works when it's the last parameter - otherwise it wouldn't know for sure which one you'd moved out! - which is why you can't change the order and keep the trailing lambda. You can switch up the order, but the call will have to be like this:
iterate("Me", "You", ::concatenation, 5)
iterate("Another", "One", {a, b -> a + b}, 6)

Related

Lambdas assigned to variables in Kotlin. Why?

I noticed that I get the same effect if I define this trivial function:
fun double ( i: Int ) = i*2
and if I define a variable and assign a lambda (with an identical body) to it:
var double = { i : Int -> i*2 }
I get the same result if I call double(a) with either declaration.
This leaves me confused. When is it needed, recommended, advantageous to define a variable as a lambda rather than define a function to it?
When is it needed, recommended, advantageous to define a variable as a lambda rather than define a function to it?
Whenever you have the choice of either, you should use a fun declaration. Even with a fun you can still get a first-class callable object from it by using a function reference.
On the JVM, a fun is significantly more lightweight, both in terms of RAM and invocation overhead. It compiles into a Java method, whereas a val compiles into an instance field + getter + a synthetic class that implements a functional interface + a singleton instance of that class that you must fetch, dereference, and invoke a method on it.
You should consider a function-typed val or var only when something is forcing you to do it. One example is that you can dynamically replace a var and effectively change the definition of the function. You may also receive function objects from the outside, or you may need to comply with an API that needs them.
In any case, if you ever use a function-typed property of a class, you'll know why you're doing it.
First, if I understand you right, your question is "Why are functions first-class citizens in Kotlin -- And when to use them as such?", right?
Kotlin functions are first-class, which means that they can be stored in variables and data structures, passed as arguments to and returned from other higher-order functions. You can operate with functions in any way that is possible for other non-function values. (see here)
As stated in the docs, one use case are higher-order functions. As a first step, I will leave the wikipedia link here: https://en.wikipedia.org/wiki/Higher-order_function
Basically, a higher-order function is a function that takes functions as parameters, or returns a function.
This means that a higher-order function has at least one parameter of a function type or returns a value of a function type.
Following a short example of a higher-order function that receives a parameter of function type (Int) -> Boolean:
fun foo(pred: (Int) -> Boolean) : String = if(pred(x)) "SUCCESS" else "FAIL"
This higher-order function can now be called with any (Int) -> Boolean function.
The docs also state ... [can be used] in any way that is possible for other non-function values.
This means that you can, for example, assign different functions to a variable, depending on your current context.
For example:
// This example is verbose on purpose ;)
var checker: (Int) -> Boolean
if (POSITIVE_CHECK) {
checker = { x -> x > 0 } // Either store this function ...
} else {
checker = { x -> x < 0 } // ... or this one ...
}
if (checker(someNumber)) { // ... and use whatever function is now stored in variable "checker" here
print("Check was fine")
}
(Code untested)
You can define variable and assign it lambda when you want change behaviour for some reason. For example, you have different formula for several cases.
val formula: (Int) -> Int = when(value) {
CONDITION1 -> { it*2 }
CONDITION2 -> { it*3 }
else -> { it }
}
val x: Int = TODO()
val result = formula(x)
If you simply need helper function, you should define it as fun.
If you pass a lambda as a parameter of a function it will be stored in a variable. The calling application might need to save that (e.g. event listener for later use). Therefore you need to be able to store it as a variable as well. As said in the answer however, you should do this only when needed!
For me, I would write the Lambda variable as followed:
var double: (Int) -> Int = { i -> //no need to specify parameter name in () but in {}
i*2
}
So that you can easily know that its type is (i: Int) -> Int, read as takes an integer and returns an integer.
Then you can pass it to somewhere say a function like:
fun doSomething(double: (Int) -> Int) {
double(i)
}

Kotlin function declaration: equals sign before curly braces

In Kotlin, the function declaration syntax allows you to write equals sign before the curly braces.
Consider these two examples:
Without = sign:
fun foo1() {
println("baz1")
}
The code inside the body gets executed by just calling foo1().
With = sign:
fun foo2() = {
println("baz2")
}
Here, when foo2() is called, nothing happens, but to get the body executed one can write foo2()().
What is the difference in these two declarations and why do they behave differently?
You can run the code using the following program:
fun main() {
foo1()
foo2()
}
/*
This code example produces the following results:
baz1
*/
This question, though having not much meaning, is [intentionally asked and answered by the author][1], because a few questions have already been posted where people got problems because of incorrect function definitions.
Despite visual similarity, the idea of these two declarations is completely different.
1. Function declaration without equals sign
Function declaration without equals sign is a Unit-returning function (similar to Java's void functions).
What's inside the curly braces is its body, which gets executed right on the function call. The function can be rewritten with Unit explicitly specified:
fun foo1(): Unit {
println("baz1")
return Unit
}
Kotlin doesn't require the return statement and explicit return type for Unit-returning functions, and both are usually omitted.
2. Function declaration with equals sign
Function declaration with equals sign is a single-expression function, and what it does is just return what's to the right of equals sign.
A simpler example: fun getInt() = 1 is just a shorter form of fun getInt(): Int { return 1 }.
In foo2, the right hand side is a lambda expression. The code inside the lambda code block is not executed. In other words, foo2 is a function that returns another function.
Return type of foo2 is () -> Unit, a function itself, and thus foo2 is a higher-order function.
Without the syntactic sugar and with explicit type, foo2 can be rewritten as
fun foo2(): () -> Unit {
val result: () -> Unit = { println("baz2") }
return result
}
As to the usage, the function which foo2 returns can be stored in a variable, passed around and can later be invoked:
val f = foo2()
f() //equivalent to
f.invoke()
This is also why foo2()() in the example executes the code from the lambda body.
Alternatively, we can add () at the end when we declare foo2(), as shown in the following example. As such, the lambda expression will be invoked when calling foo3(). But this is not a good pattern.
fun foo3() = {
println("baz3")
}()

why declaration of methods in different style different results in scala

Below are two methods that are declared in different style. Both are doing the same work. I am wondering, why
different syntax is required to check type of function (yellow
block)
different syntax is required to call function (green block)
declaration of both methods on scala repl gives different results
(red block)
Also, please suggest, which one is the preferred way to declare
methods or are there any special use cases for both the styles of
method declaration?
Edit 1:
Below are the commands from screenshot :-
Welcome to Scala version 2.11.7 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_79).
Type in expressions to have them evaluated.
Type :help for more information.
scala> def add(x:Int, y :Int): Int = {x+y}
add: (x: Int, y: Int)Int
scala> def sum = (x:Int, y:Int) => {x+y}
sum: (Int, Int) => Int
scala> :t add
<console>:12: error: missing arguments for method add;
follow this method with `_' if you want to treat it as a partially applied function
add
^
scala> :t add(_, _)
(Int, Int) => Int
scala> :t sum
(Int, Int) => Int
scala> add
<console>:12: error: missing arguments for method add;
follow this method with `_' if you want to treat it as a partially applied function
add
^
scala> add(_, _)
res1: (Int, Int) => Int = <function2>
scala> sum
res2: (Int, Int) => Int = <function2>
Edit 2:
#Shadowlands
i have read on dzone, that states "when a function is expected but a method is provided, it will be automatically converted into a function. This is called the ETA expansion.".
Now, if ETA takes care to convert your methods to function. Is it really required to use sum style, because it looks like an additional overhead of Function<> object.
Simply put, add is a function that takes two Int arguments and returns an Int result, while sum is a 0-argument function that returns a new function that, in turn, takes two Int arguments and returns an Int result. Indeed, sum could readily be defined as:
def sum = add _
As to which way to define your functions, this depends on how it is to be used. Generally, use the add style most of the time, as it is easier to understand and work with. If, however, you will be passing the function as an argument to another function, then the sum-style formulation can be more convenient and may convey more of your intent on how the function is expected to be used.
This is how REPL is implemented. The code that you type is wrapped in object. Thus your def add becomes method of this object, while def sum is a method that returns Function. When you are addressing add like this: add(_, _) you are addressing method, while when you are addressing sum as sum you are addressing result of sum's execution, which is function.
Differences between methods and functions are described here.
PS. Try to check the type of sum _

Function objects in C++ (C++11)

I am reading about boost::function and I am a bit confused about its use and its relation to other C++ constructs or terms I have found in the documentation, e.g. here.
In the context of C++ (C++11), what is the difference between an instance of boost::function, a function object, a functor, and a lambda expression? When should one use which construct? For example, when should I wrap a function object in a boost::function instead of using the object directly?
Are all the above C++ constructs different ways to implement what in functional languages is called a closure (a function, possibly containing captured variables, that can be passed around as a value and invoked by other functions)?
A function object and a functor are the same thing; an object that implements the function call operator operator(). A lambda expression produces a function object. Objects with the type of some specialization of boost::function/std::function are also function objects.
Lambda are special in that lambda expressions have an anonymous and unique type, and are a convenient way to create a functor inline.
boost::function/std::function is special in that it turns any callable entity into a functor with a type that depends only on the signature of the callable entity. For example, lambda expressions each have a unique type, so it's difficult to pass them around non-generic code. If you create an std::function from a lambda then you can easily pass around the wrapped lambda.
Both boost::function and the standard version std::function are wrappers provided by the li­brary. They're potentially expensive and pretty heavy, and you should only use them if you actually need a collection of heterogeneous, callable entities. As long as you only need one callable entity at a time, you are much better off using auto or templates.
Here's an example:
std::vector<std::function<int(int, int)>> v;
v.push_back(some_free_function); // free function
v.push_back(&Foo::mem_fun, &x, _1, _2); // member function bound to an object
v.push_back([&](int a, int b) -> int { return a + m[b]; }); // closure
int res = 0;
for (auto & f : v) { res += f(1, 2); }
Here's a counter-example:
template <typename F>
int apply(F && f)
{
return std::forward<F>(f)(1, 2);
}
In this case, it would have been entirely gratuitous to declare apply like this:
int apply(std::function<int(int,int)>) // wasteful
The conversion is unnecessary, and the templated version can match the actual (often unknowable) type, for example of the bind expression or the lambda expression.
Function Objects and Functors are often described in terms of a
concept. That means they describe a set of requirements of a type. A
lot of things in respect to Functors changed in C++11 and the new
concept is called Callable. An object o of callable type is an
object where (essentially) the expression o(ARGS) is true. Examples
for Callable are
int f() {return 23;}
struct FO {
int operator()() const {return 23;}
};
Often some requirements on the return type of the Callable are added
too. You use a Callable like this:
template<typename Callable>
int call(Callable c) {
return c();
}
call(&f);
call(FO());
Constructs like above require you to know the exact type at
compile-time. This is not always possible and this is where
std::function comes in.
std::function is such a Callable, but it allows you to erase the
actual type you are calling (e.g. your function accepting a callable
is not a template anymore). Still calling a function requires you to
know its arguments and return type, thus those have to be specified as
template arguments to std::function.
You would use it like this:
int call(std::function<int()> c) {
return c();
}
call(&f);
call(FO());
You need to remember that using std::function can have an impact on
performance and you should only use it, when you are sure you need
it. In almost all other cases a template solves your problem.

Difference between method and function in Scala

I read Scala Functions (part of Another tour of Scala). In that post he stated:
Methods and functions are not the same thing
But he didn't explain anything about it. What was he trying to say?
Jim has got this pretty much covered in his blog post, but I'm posting a briefing here for reference.
First, let's see what the Scala Specification tell us. Chapter 3 (types) tell us about Function Types (3.2.9) and Method Types (3.3.1). Chapter 4 (basic declarations) speaks of Value Declaration and Definitions (4.1), Variable Declaration and Definitions (4.2) and Functions Declarations and Definitions (4.6). Chapter 6 (expressions) speaks of Anonymous Functions (6.23) and Method Values (6.7). Curiously, function values is spoken of one time on 3.2.9, and no where else.
A Function Type is (roughly) a type of the form (T1, ..., Tn) => U, which is a shorthand for the trait FunctionN in the standard library. Anonymous Functions and Method Values have function types, and function types can be used as part of value, variable and function declarations and definitions. In fact, it can be part of a method type.
A Method Type is a non-value type. That means there is no value - no object, no instance - with a method type. As mentioned above, a Method Value actually has a Function Type. A method type is a def declaration - everything about a def except its body.
Value Declarations and Definitions and Variable Declarations and Definitions are val and var declarations, including both type and value - which can be, respectively, Function Type and Anonymous Functions or Method Values. Note that, on the JVM, these (method values) are implemented with what Java calls "methods".
A Function Declaration is a def declaration, including type and body. The type part is the Method Type, and the body is an expression or a block. This is also implemented on the JVM with what Java calls "methods".
Finally, an Anonymous Function is an instance of a Function Type (ie, an instance of the trait FunctionN), and a Method Value is the same thing! The distinction is that a Method Value is created from methods, either by postfixing an underscore (m _ is a method value corresponding to the "function declaration" (def) m), or by a process called eta-expansion, which is like an automatic cast from method to function.
That is what the specs say, so let me put this up-front: we do not use that terminology! It leads to too much confusion between so-called "function declaration", which is a part of the program (chapter 4 -- basic declarations) and "anonymous function", which is an expression, and "function type", which is, well a type -- a trait.
The terminology below, and used by experienced Scala programmers, makes one change from the terminology of the specification: instead of saying function declaration, we say method. Or even method declaration. Furthermore, we note that value declarations and variable declarations are also methods for practical purposes.
So, given the above change in terminology, here's a practical explanation of the distinction.
A function is an object that includes one of the FunctionX traits, such as Function0, Function1, Function2, etc. It might be including PartialFunction as well, which actually extends Function1.
Let's see the type signature for one of these traits:
trait Function2[-T1, -T2, +R] extends AnyRef
This trait has one abstract method (it has a few concrete methods as well):
def apply(v1: T1, v2: T2): R
And that tell us all that there is to know about it. A function has an apply method which receives N parameters of types T1, T2, ..., TN, and returns something of type R. It is contra-variant on the parameters it receives, and co-variant on the result.
That variance means that a Function1[Seq[T], String] is a subtype of Function1[List[T], AnyRef]. Being a subtype means it can be used in place of it. One can easily see that if I'm going to call f(List(1, 2, 3)) and expect an AnyRef back, either of the two types above would work.
Now, what is the similarity of a method and a function? Well, if f is a function and m is a method local to the scope, then both can be called like this:
val o1 = f(List(1, 2, 3))
val o2 = m(List(1, 2, 3))
These calls are actually different, because the first one is just a syntactic sugar. Scala expands it to:
val o1 = f.apply(List(1, 2, 3))
Which, of course, is a method call on object f. Functions also have other syntactic sugars to its advantage: function literals (two of them, actually) and (T1, T2) => R type signatures. For example:
val f = (l: List[Int]) => l mkString ""
val g: (AnyVal) => String = {
case i: Int => "Int"
case d: Double => "Double"
case o => "Other"
}
Another similarity between a method and a function is that the former can be easily converted into the latter:
val f = m _
Scala will expand that, assuming m type is (List[Int])AnyRef into (Scala 2.7):
val f = new AnyRef with Function1[List[Int], AnyRef] {
def apply(x$1: List[Int]) = this.m(x$1)
}
On Scala 2.8, it actually uses an AbstractFunction1 class to reduce class sizes.
Notice that one can't convert the other way around -- from a function to a method.
Methods, however, have one big advantage (well, two -- they can be slightly faster): they can receive type parameters. For instance, while f above can necessarily specify the type of List it receives (List[Int] in the example), m can parameterize it:
def m[T](l: List[T]): String = l mkString ""
I think this pretty much covers everything, but I'll be happy to complement this with answers to any questions that may remain.
One big practical difference between a method and a function is what return means. return only ever returns from a method. For example:
scala> val f = () => { return "test" }
<console>:4: error: return outside method definition
val f = () => { return "test" }
^
Returning from a function defined in a method does a non-local return:
scala> def f: String = {
| val g = () => { return "test" }
| g()
| "not this"
| }
f: String
scala> f
res4: String = test
Whereas returning from a local method only returns from that method.
scala> def f2: String = {
| def g(): String = { return "test" }
| g()
| "is this"
| }
f2: String
scala> f2
res5: String = is this
function A function can be invoked with a list of arguments to produce a
result. A function has a parameter list, a body, and a result type.
Functions that are members of a class, trait, or singleton object are
called methods. Functions defined inside other functions are called
local functions. Functions with the result type of Unit are called procedures.
Anonymous functions in source code are called function literals.
At run time, function literals are instantiated into objects called
function values.
Programming in Scala Second Edition.
Martin Odersky - Lex Spoon - Bill Venners
Let Say you have a List
scala> val x =List.range(10,20)
x: List[Int] = List(10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
Define a Method
scala> def m1(i:Int)=i+2
m1: (i: Int)Int
Define a Function
scala> (i:Int)=>i+2
res0: Int => Int = <function1>
scala> x.map((x)=>x+2)
res2: List[Int] = List(12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Method Accepting Argument
scala> m1(2)
res3: Int = 4
Defining Function with val
scala> val p =(i:Int)=>i+2
p: Int => Int = <function1>
Argument to function is Optional
scala> p(2)
res4: Int = 4
scala> p
res5: Int => Int = <function1>
Argument to Method is Mandatory
scala> m1
<console>:9: error: missing arguments for method m1;
follow this method with `_' if you want to treat it as a partially applied function
Check the following Tutorial that explains passing other differences with examples like other example of diff with Method Vs Function, Using function as Variables, creating function that returned function
Functions don't support parameter defaults. Methods do. Converting from a method to a function loses parameter defaults. (Scala 2.8.1)
There is a nice article here from which most of my descriptions are taken.
Just a short comparison of Functions and Methods regarding my understanding. Hope it helps:
Functions:
They are basically an object. More precisely, functions are objects with an apply method; Therefore, they are a little bit slower than methods because of their overhead. It is similar to static methods in the sense that they are independent of an object to be invoked.
A simple example of a function is just like bellow:
val f1 = (x: Int) => x + x
f1(2) // 4
The line above is nothing except assigning one object to another like object1 = object2. Actually the object2 in our example is an anonymous function and the left side gets the type of an object because of that. Therefore, now f1 is an object(Function). The anonymous function is actually an instance of Function1[Int, Int] that means a function with 1 parameter of type Int and return value of type Int.
Calling f1 without the arguments will give us the signature of the anonymous function (Int => Int = )
Methods:
They are not objects but assigned to an instance of a class,i.e., an object. Exactly the same as method in java or member functions in c++ (as Raffi Khatchadourian pointed out in a comment to this question) and etc.
A simple example of a method is just like bellow:
def m1(x: Int) = x + x
m1(2) // 4
The line above is not a simple value assignment but a definition of a method. When you invoke this method with the value 2 like the second line, the x is substituted with 2 and the result will be calculated and you get 4 as an output. Here you will get an error if just simply write m1 because it is method and need the input value. By using _ you can assign a method to a function like bellow:
val f2 = m1 _ // Int => Int = <function1>
Here is a great post by Rob Norris which explains the difference, here is a TL;DR
Methods in Scala are not values, but functions are. You can construct a function that delegates to a method via η-expansion (triggered by the trailing underscore thingy).
with the following definition:
a method is something defined with def and a value is something you can assign to a val
In a nutshell (extract from the blog):
When we define a method we see that we cannot assign it to a val.
scala> def add1(n: Int): Int = n + 1
add1: (n: Int)Int
scala> val f = add1
<console>:8: error: missing arguments for method add1;
follow this method with `_' if you want to treat it as a partially applied function
val f = add1
Note also the type of add1, which doesn’t look normal; you can’t declare a variable of type (n: Int)Int. Methods are not values.
However, by adding the η-expansion postfix operator (η is pronounced “eta”), we can turn the method into a function value. Note the type of f.
scala> val f = add1 _
f: Int => Int = <function1>
scala> f(3)
res0: Int = 4
The effect of _ is to perform the equivalent of the following: we construct a Function1 instance that delegates to our method.
scala> val g = new Function1[Int, Int] { def apply(n: Int): Int = add1(n) }
g: Int => Int = <function1>
scala> g(3)
res18: Int = 4
Practically, a Scala programmer only needs to know the following three rules to use functions and methods properly:
Methods defined by def and function literals defined by => are functions. It is defined in page 143, Chapter 8 in the book of Programming in Scala, 4th edition.
Function values are objects that can be passed around as any values. Function literals and partially applied functions are function values.
You can leave off the underscore of a partially applied function if a function value is required at a point in the code. For example: someNumber.foreach(println)
After four editions of Programming in Scala, it is still an issue for people to differentiate the two important concepts: function and function value because all editions don't give a clear explanation. The language specification is too complicated. I found the above rules are simple and accurate.
In Scala 2.13, unlike functions, methods can take/return
type parameters (polymorphic methods)
implicit parameters
dependent types
However, these restrictions are lifted in dotty (Scala 3) by Polymorphic function types #4672, for example, dotty version 0.23.0-RC1 enables the following syntax
Type parameters
def fmet[T](x: List[T]) = x.map(e => (e, e))
val ffun = [T] => (x: List[T]) => x.map(e => (e, e))
Implicit parameters (context parameters)
def gmet[T](implicit num: Numeric[T]): T = num.zero
val gfun: [T] => Numeric[T] ?=> T = [T] => (using num: Numeric[T]) => num.zero
Dependent types
class A { class B }
def hmet(a: A): a.B = new a.B
val hfun: (a: A) => a.B = hmet
For more examples, see tests/run/polymorphic-functions.scala
The difference is subtle but substantial and it is related to the type system in use (besides the nomenclature coming from Object Oriented or Functional paradigm).
When we talk about a function, we talk about the type Function: it being a type, an instance of it can be passed around as input or output to other functions (at least in the case of Scala).
When we talk about a method (of a class), we are actually talking about the type represented by the class it is part of: that is, the method is just a component of a larger type, and cannot be passed around by itself. It must be passed around with the instance of the type it is part of (i.e. the instance of the class).
A method belongs to an object (usually the class, trait or object in which you define it), whereas a function is by itself a value, and because in Scala every value is an object, therefore, a function is an object.
For example, given a method and a function below:
def timesTwoMethod(x :Int): Int = x * 2
def timesTwoFunction = (x: Int) => x * 2
The second def is an object of type Int => Int (the syntactic sugar for Function1[Int, Int]).
Scala made functions objects so they could be used as first-class entities. This way you can pass functions to other functions as arguments.
However, Scala can also treat methods as functions via a mechanism called Eta Expansion.
For example, the higher-order function map defined on List, receives another function f: A => B as its only parameter. The next two lines are equivalent:
List(1, 2, 3).map(timesTwoMethod)
List(1, 2, 3).map(timesTwoFunction)
When the compiler sees a def given in a place where a function is needed, it automatically converts the method into an equivalent function.
A method operates on an object but a function doesn't.
Scala and C++ has Fuction but in JAVA, you have to imitate them with static methods.