How to use a function in MIPS [closed] - mips

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 1 year ago.
Improve this question
I am just starting out with MIPS and was confused with the calling of functions from main in MIPS like how to send parameters and get the returning value from the function. A little help would be appreciated.

Here is a simple code to understand how to implement functions in MIPS. Here we are just using a function to calculate the sum of three values.
.data
A: .word 2
B: .word 3
C: .word 9
Answer: .word 0
.text
.globl main
main:
#These are basically the parameters
lw $a0, A #Load value from memory location A into the register $a0
lw $a1, B #Load value from memory location B into the register $a1
lw $a2, C #Load value from memory location C into the register $a2
jal Sum #Calling the function
sw $v0, Answer #Storing the contents of $v0 into the memory location Answer(The returning value)
li $v0, 10
syscall
.end main
.globl Sum #Function for Sum
.ent Sum
Sum:
add $v0, $a0, $a1
add $v0, $v0, $a2
jr $ra
.end Sum
You can follow the comments and can see how the function is used. Here are some important points to note:
Combination of registers and stack is used for argument transition. Integer arguments are passed using the registers $a0, $a1, $a2, $a3 and floating point values can be passed using $f12 and $f14. The first argument should either be passed in $a0 or $f12 depending on whether the argument is integer or floating point. Similarly the second argument should either be passed in $a1 or $f14. The third argument has to be passed in $a2 for integer and if the third argument is float then it has to be passed on the stack. Similarly the fourth argument has to be passed on $a3 and if the fourth argument is float then it has to be passed on the stack. Any additional arguments are passed on the stack.
Integer registers $v0/$v1 are used to return an integer value from a function call and floating point registers $f0 and $f1 are used to return a floating point value from the function.
The call to a function is as follows:
jal FunctionName,
whereas the return from function is as follows:
jr $ra.
You can also use the book mentioned below as a guide to learning MIPS using software called QTSpim, it might help you with any other confusions.
MIPS Assembly Language Programming using QtSpim Ed Jorgensen, Ph.D. Version 1.1.50 July 2019.
Hope this helped.

Sending parameters to a function:
Use either $a0 or $f12 ($a0 if integer or $f12 if float single or double precision) to pass the first parameter.
Use either $a1 or $f14 ($a1 if integer or $f14 if float single or double precision) to pass the second parameter.
Use $a2 to pass the third parameter(integer only). If the third parameter is float, it must be passed on the stack.
Use $a3 to pass the forth parameter(integer only) but If the forth parameter is float, then it must be passed on the stack.
Keep in mind: If the first parameter is integer, $a0 is used and $f12 is then not used. And if the first parameter is floating-point value, $f12 is used and $a0 is not used at all. Any additional parameters are passed on the stack.
move the contents of temporary registers which are to be passed as parameters to a function in accordance to the above points before calling the function using jump commands.
returning values from a function:
Integer registers $v0 or $v1/$v0 are used to return an integer value from a
function. Floating-point registers $f0 and $f1 are used to return a
floating-point value from a function.

Function initialization:
.globl functionName
.ent functionName
functionName:
#Code here
.end functionName
Calling conventions:
- Arguments:
◦ The first argument is passed in either $a0 or $f12 ($a0 if integer or $f12 if
float single or double precision).
◦ The second argument is passed in either $a1 or $f14 ($a1 if integer or $f14 if
float single or double precision).
◦ The third argument is passed in $a2 (integer only).
◦ If the third argument is float, it must be passed on the stack.
◦ The fourth argument is passed in $a3 (integer only).
◦ If the fourth argument is float, it must be passed on the stack.
Remaining arguments are passed on the stack. Arguments on the stack should be placed
on the stack in reverse order. Call-by-reference arguments load address (la instruction)
and call-by-value load the value.
Calling a function:
In order to call a function from main, you'll use jal functionName
Returning a function:
In order to return to the main function, you'll use jr $ra
Function Result:
Integer registers $v0 or $v1/$v0 are used to return an integer value from a
function/procedure call. Floating-point registers $f0 and $f1 are used to return a
floating-point value from a function/procedure.
Registers Preservation Conventions:
The MIPS calling convention requires that only specific registers (not all) be saved
across procedure calls.
• Integer registers $s0 - $s7 must be saved by the procedure.
• Floating-point registers $f20 - $f30 must be saved by the procedure.

Related

MIPS palindrome checker

I am having a hard time figuring out where to start with this project. I am needing to write code in PLP that is a palindrome checker.
the task is to write a program that recieves a string of characters via UART, checks if this string is a palindrome, then uses a print function to print either"yes" of "no". I have been given a template that I am to follow when creating the program.
The template project file contains six function stubs that need to be implemented. five are called from the main loop and the sixth is called from "period_check: in the template file it contains descriptions of what each function needs to do and how it should be implemented. I have attempted to fill in some, however I do not think I am on the right track. Please help.
***** I have gotten this much code in, but it does not print out the right output****
it prints no for everything vs no for non palindromes and yes for palindrome.
.org 0x10000000
# Initializations
# NOTE: You may add initializations after line 10, but please do not
# remove or change the initializations to $sp, $s0, $s1, or $s2
li $sp, 0x10fffffc # Starting address of empty stack
li $s0, 0xf0000000 # UART base address
li $s1, array_ptr # Array head pointer
li $s2, array_ptr # Array tail pointer
####################################################################
# Do not make changes to the jump to main, the allocation of
# memory for the array, or the main loop
####################################################################
j main
nop
array_ptr: # Label pointing to 100 word array
.space 100
main:
jal poll_UART
nop
jal period_check
nop
jal space_check
nop
jal case_check
nop
jal array_push
nop
j main
nop
####################################################################
# ******************************************************************
####################################################################
# The "poll_UART" function should poll the status register of the UART.
# If the 2^1 bit position (ready bit) is set to 1 then it
# should copy the receive buffer's value into $v0 and send
# a clear status command (2^1) to the command register before
# returning (a return statement is already included). In order to
# receive full credit, $s0 must contain the base address of the UART
# and must be used with the appropriate offsets to access UART
# registers and buffers
poll_UART:
lw $t1, 4($s0)
li $t2, 0b10
and $t3, $t1, $t2
beq $t3, $0, main
nop
lw $v0, 8($s0)
sw $t2, 0($s0)
jr $ra
nop
# The "period_check" function should check if the current character ($v0)
# is a period ("."). If it is a period then the function should go to the
# label, "palindrome_check". If the character is not a period then it
# should use the included return.
period_check:
li $t0, 0x2E
beq $v0, $t0, palindrome_check
nop
# The "space_check" function should check if the current character ($v0)
# is a space (" "). If it is then it should jump to "main" so
# that it skips saving the space character. If not it should
# use the included return.
space_check:
li $t4, 0x20
beq $t4, $v0, main
jr $ra
nop
# The "case_check" function should perform a single inequality check.
# If the current character ($v0) is greater than the ASCII value of 'Z',
# which indicates the current character is lowercase, then it should convert
# the value of $v0 to the uppercase equivalent and then return. If the
# current character ($v0) is already uppercase (meaning the inequality
# mentioned before was not true) then the function should return without
# performing a conversion.
case_check:
li $t5, 0x5A
slt $t6, $v0, $t5
li $t7, 1
beq $t6, $t7, convert
convert:
addiu $v0, $v0, -32
jr $ra
nop
# The "array_push" function should save the current character ($v0) to the
# current location of the tail pointer, $s2. Then it should increment the
# tail pointer so that it points to the next element of the array. Last
# it should use the included return statement.
array_push:
sw $v0, 0($s2)
addiu, $s2, $s2, 4
jr $ra
nop
# The "palindrome_check" subroutine should be jumped to by the period
# check function if a period is encountered. This subroutine should contain
# a loop that traverses the array from the front towards the back (using the
# head pointer, $s1) and from the back towards the front(using the tail
# pointer, $s2). If the string is a palindrome then as the array is traversed
# the characters pointed to should be equal. If the characters are not equal
# then the string is not a palindrome and the print function should be used
# to print "No". If the pointers cross (i.e. the head pointer's address is
# greater than or equal to the tail pointer's address) and the compared
# characters are equal then the string is a palindrome and "Yes" should be
# printed.
#
# Remember to restore the head and tail pointers to the first element
# of the array before the subroutine jumps back to main to begin processing the
# next string. Also, keep in mind that because the tail pointer is updated at
# the end of "array_push" it technically points one element past the last
# character in the array. You will need to compensate for this by either
# decrementing the pointer once at the start of the array or using an offset
# from this pointer's address.
palindrome_check:
addiu $s2, $s2, -8
move $s3, $s1
subu $s6, $s2, $s3
beq $s6, $0, palindrome
nop
check_loop:
lw $s4, 0($s3)
lw $s5, 0($s2)
bne $s5, $t0, not_palindrome
nop
adjust_pointers:
addiu $s2, $s2, -4
addiu $s3, $s3, 4
slt $t8, $s3, $s2
bne $t8, $t0, check_loop
nop
j palindrome
nop
palindrome:
li $a0, 1
call project3_print
move $s2, $s1
j main
not_palindrome:
li $a0, 0
call project3_print
move $s2, $s1
j main
nop
Ok, this is just my opinion, but you are definitely not on the right track.
The control flow you're showing is problematic.
To see one reason why, try writing this same in C or any other language that you know.  You won't be able to do it because of the non-local goto's that's using, where one procedure jumps (without calling) to another procedure.
Further, finding whether an input is a palindrome is not a fixed sequence of one-time steps that are executed on each input character.
You will (1) need to store the characters for later comparison, and (2) need a decision point where you can determine (and print) yes it is, or no it isn't.  You don't have any control structure for that.
that recieves a string of characters via UART, checks if this string is a palindrome, then uses a print function to print either"yes" of "no".
Yes, your main should reflect the above description you've been given:
receive a string of characters
checks if this string is a palindrome
print either "yes" of "no"
In other words you might have something like:
int len = input_string();
if ( check_palindrome(len) ) {
print "yes";
else
print "no"
Suggest you write it in C or other language you know, then translate that to assembly.
Also consider that we some things we program are functions returning a value rather than procedures that don't return values.  Returning a value so that main can take a different course of action (e.g. print yes vs. no) is much better than using non-local goto's to alter the flow of control from within a subroutine.
If your instruction/coursework has given you that main, and is recommending non-local goto's that would be very sad.
I feel for you and your classmates, as this is one of the worst examples of teaching assembly I've seen in a long long time.
array_ptr: # Label pointing to 100 word array
.space 100
The label name is misleading.  This space is used as an array of words, not a pointer to an array.  The storage reserved is 25 words, since .space operates in terms of bytes and words are 4 bytes each.  So, the comment is just plain wrong.
The various "functions" called using jal are single use function, so there's really no need for functions in this assignment at all.  The "functions" also are going to each other and back to main instead of returning properly like they would in structured programming.  So, this is what we call spaghetti code — such code is difficult to reason over and one of the reasons that other languages don't even bother to offer this kind of flow control.
The array being used is storing whole words, when the input elements are only characters, so that's harmless but unnecessary.
beq $t6, $t7, convert
convert:
This control structure will never choose between two options, it will always convert.  Why?  Because in the case $t6 is true it will branch to convert: and in the case that $t6 is not true it will fall through to convert:, so same location, will run same code in either case.
You should be able to observe this during debugging.
Debugging Tips
Get to know your data.  You should know the address of the array as you debug.  You can find this during execution, e.g. look at a register after li ... array_ptr (btw, that opcode should be la, but no matter if it works).  Otherwise you can observe the data section and its layout to find that out before running the first instruction.
Single step each line like one would to debug code in any other language, verifying program state between each line.  In MIPS assembly, not much program state changes between lines so usually this is pretty simple — usually each instruction only changes one register or one memory location — but you must verify that such change is as you're expecting.  Once the first part of the program is properly storing characters into the array, you can use the break point feature to stop at the palindrome check routine and single step only from there on.
Use the smallest possible input first, (in the most degenerate case that would be an empty string, but you may not be handling those so instead) might try a single letter input (should be a palindrome).  Once that is working, try two letter input.  As I said, first make sure that the character values are being placed into the array properly, and only when you've verified that's working, go on to debug the palindrome check code.

How to translate MIPS into C and how to reduce MIPS instructions?

Supposing that f, g, h, i are stored in $s0~$s4 respectively and the base addresses of arrays A and B are in $S6 and $S7.
sll $t0, $s0, 2
add $t0, $s6, $t0
sll $tl, $sl, 2
add $tl, $s7, $tl
lw $s0, 0($t0)
addi $t2 , $t0, 4
lw $t0, 0($t2)
add $t0, $t0, $s0
SW $t0, 0($tl)
I'm not familiar with MIPS so I Wonder how to translate MIPS into C and how to minimize these MIPS instructions?
how to translate MIPS into C
You recognize the patterns, here for array indexing / array element access.
On a byte addressable machine (all modern hardware), a 4-byte integer occupies 4 bytes in memory, and each of those bytes has a unique memory address.  Because of the way the hardware works, we only use one of those 4 addresses to refer to the whole 4-byte integer, namely we use the lowest address among the 4.  The hardware can load a 4-byte integer from memory given that one address (the lowest).
Since each 4-byte integer in memory occupies 4 addresses, in an array of 4-byte integers, the memory address of the first element and the memory address of the second element are 4 addresses apart even though are sequential index positions (i.e. they are only 1 index position apart).
The formula for indexing a 4-byte integer array, then is to convert the index into a byte offset, then add the byte offset to the base address of the array.  The first part of that: converting an index to a byte offset, is sometimes referred to as "scaling".  Scaling is conceptually done by multiplication, so in A[i], i needs to be scaled by the size of the array elements of A.  If 4-byte integers that means scaling (multiplying) the index by 4.  A quick way of doing that is shifting by 2 bit positions, which has the same effect as multiplying by 4.
The C language automatically scales when doing array references, whereas assembly language requires explicit scaling.  C can do this because it knows the type of the array, whereas assembly language does not.
In C we can do expressions like A[i].  The C language allows us to break that down somewhat into *(A+i), which separates the pointer arithmetic addition A+i from the dereferencing of that sum, dereferencing with the unary indirection operator, *.  As previously mentioned, C automatically scales, so A+i becomes the equivalent of A+i*4, in which we can substitute shifting for multiplication: A+(i<<2).
Next, we need to know if the dereference is for read or for write.  When A[i] is accessed for its value, we will see it on what we call the "right hand side" of an assignment operator, as in ... = A[i].  When A[i] is access to update/store a value, we will see it on what we call the left hand side of an assignment operator, as in A[i] = ....
So, the sequence for doing A[i] for read (right hand side) in C is the following in assembly:
sll $temp1, $i, 2
addu $temp2, $A, $temp1
lw $temp3, 0($temp1)
Where $tempN is some register (usually a designated temporary) chosen to hold an intermediate value.  Since multiple instructions are needed to accomplish anything, sequences of instructions are interconnected with registers that hold the intermediate states.  And also, in assembly we name registers, not variables, so in my above $i and $A should be a registers names representing those variables rather than variable names directly used.
The pattern for write/store array access is similar but ends with a sw instruction instead, to store some value into memory at the index position.
These instruction sequence are interconnected by the use of these registers, and the sequences can be interrupted or interspersed with other instructions — what we have to follow then is the above pattern by paying attention to to the register usages that interconnect them rather than the specific sequences.
In your sample code:
sll $t0, $s0, 2 # sourcing an index in $s0, scaling it into temp $t0
add $t0, $s6, $t0 # adding a base array in $s6, putting back into $t0
sll $tl, $sl, 2
add $tl, $s7, $tl
lw $s0, 0($t0) # accessing the value of $s6[$s0*4], aka A[f]
addi $t2 , $t0, 4
lw $t0, 0($t2)
add $t0, $t0, $s0
SW $t0, 0($tl)
We can see the pattern for a read access to an index in $s0, and an array in $s6, these, we are told, map to f and A, so those three instructions comprise A[f] to read a value from A at index f.
The rest are done similarly.  Your job is to use this knowledge to find the other array indexing patterns in the above sequence.  Find out how the results of the array indexing operations are used and you'll have the complete C code.
NOTE that the sample you've been given incorrectly uses add and addi when pointer arithmetic should use addu and addiu — we don't want signed integer overflow checking on pointer arithmetic, as pointers are unsigned.
One of the add instructions is not for pointer arithmetic, but should probably still have used addu if this is intended to be replicated in C, because the C language does not have a built in operator to trap on overflow.

How does a program written in MIPS knows what to return?

I have this program I just wrote:
countzeroes:
li $v0, 0 # count = 0
li $t0, 0 # int i = 0
li $v1, 1 # compare bit = 1
cz_loop:
bge $t0, 32, cz_exit # exit loop if i >= 32
andi $t1, $a0, 1 # bit = arg0 & 1
beq $t1, $v1, cz_skip # skip if bit = 1
addi $v0, $v0, 1 # adds 1 to count
cz_skip:
srl $a0, $a0, 1 # shifts input right by 1
add $t0, $t0, 1 # i++
j cz_loop
cz_exit:
jr $ra
Pretty simple, just computes the number of zeroes in a 32 bit word. I was wondering how the program knows how to return $v0 at the end? I know v0 and v1 are return registers, but I was wondering if those two are always returned. If not, how does the program know to return v0?
In addition, I know jr $ra jumps to the return address- but what does that mean?
Thanks for your help.
"how the program knows how to return $v0 at the end?"
It doesn't know, you're writing the "return" value in $v0, in fact you could return the "result or return values" in any available register such as the temporals, it's just a convention to use the $v0 register to return values (in MIPS).
"I was wondering if those two are always returned"
Remember that in any subroutine in your program you always have access to all registers, so there's not "restriction" about what register store values that can be semantically called "return values", so I could easily create a method that returns 3 numbers in $t0, $t1, $t2 but that's my choice, you can return values in the stack also, there are a lot of possibilities, and this depends and lays down on the good programming practices and also the calling conventions, here you can find the MIPS calling convention: https://courses.cs.washington.edu/courses/cse410/09sp/examples/MIPSCallingConventionsSummary.pdf
" jr $ra jumps to the return address- but what does that mean?"
The program is executed instruction by instruction(the program has an instruction pointer aka program counter), when you call a subroutine the address of the next instruction is being stored in the $ra register, then when you make jr $ra, the program execution returns to that address (the instruction pointer gets the value of $ra).
In MIPS there are three different jumps you'll see. j, jr & jal.
j: it is considered an unconditional jump. Simply just do:
j function
jr:aka jump to register. Exactly as the name sounds you jump to register. This is when you have a register already saved somewhere in your program you want to jump back to. It will usually look like so:
jr $ra
$ra being the register which had been previously set aside before your jal (see below) which will jump the program back to that address.
jal: aka Jump and link copies the address of the next instruction into the register and then jumps to the address label. In other words, both jal and jr are used in conjunction with each other mainly for going to functions which are usually placed after the exit calls.
Ex:
main:
#program
jal function
#continue with program
function:
#
#do something
#
jr $ra
Also, most helpful site when I started learning: http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm
Some other quick hints that I wish someone told me when I started:
Always start with "main:"
Be wary of the difference between high/low registers in multiplying
and dividing integers
Always keep track of your registers because with so many $s and $t
and $f and $p and $a and $v registers working at one time things can
get messy very quickly.

Expand variable number of arguments in memory to argument space

I have a function that takes a memory address as $a0 and I access the (variable) number of words by using x($a0), where x is multiples of 8. I need to store these in the $sp register so I can use the $a0 register for passing arguments to other functions. Completely new to MIPS assembly, so any pointers here would help!
Multiples of 8 i assume you are using mips-64
first u make a loop and increment a0 by 8 each time:
loop: lw $t0, 0($a0) ;fetch data and store in t0
addi $sp,$sp,-8 ;increase stack
sw $t0, 0($sp) ;store data fetched
addi $a0,$a0,8 ;increment a0 to go to next entry
;here you check that you haven't reached x yet
;let's say 8*x+$a0(initial) is stored in $t1 (this is easy to do just use sll by 3 to multiply by 8 then add a0 before loop)
bne $a0,$t1,loop
;now you can use $a0

the functions (procedures) in MIPS

I'm new in MIPS language and I don't understand how the functions (procedures) in the MIPS assembly language work. Here are but I will specify my problem :
What does:
jal
jr
$ra
mean in mips language and the important thing
How can we use them when we want to create a function or (procedure)?
Firstly, you might want to check this quick MIPS reference. It really helped me.
Secondly, to explain jal, jr and $ra. What jal <label> does is jump to the label label and store the program counter (think of it as the address of the current instruction) in the $ra register. Now, when you want to return from label to where you initially were, you just use jr $ra.
Here's an example:
.text
main:
li $t0, 1
jal procedure # call procedure
li $v0, 10
syscall
procedure:
li $t0, 3
jr $ra # return
You will notice when running this in a SPIM emulator that the value left in $t0 is 3, the one loaded in the so-called procedure.
Hope this helps.
1.the first two are instructions,the third it's kind of special register
jal=jump and link (Address of following instruction put in $ra,and jump to target address)
jr=jump to specify register
$ra=return address
we often use the instruction like this ...
jr $ra (Copy $ra to program counter)
it means return(jump) to the address saved in $ra .
2.
Here's an example function (procedure) in C
int main(){
x=addthem(a,b);
}
int addthem(int a, int b){
return a+b;
}
function in MIPS
.text
main: #assume value a is already in $t0, b in $t1
add $a0,$0,$t0 # it's the same function as move the value
add $a1,$0,$t1
jal addthem # call procedure
add $t3,$0,$v0 # move the return value from $v0 to where we want
syscall
addthem:
addi $sp,$sp,-4 # Moving Stack pointer
sw $t0, 0($sp) # Store previous value
add $t0,$a0,$a1 # Procedure Body
add $v0,$0,$t0 # Result
lw $t0, 0($sp) # Load previous value
addi $sp,$sp,4 # Moving Stack pointer
jr $ra # return (Copy $ra to PC)
You will want to read the System V Application Binary Interface, MIPS RISC Processor Supplement. This describes the conventions used for calling functions, in particular how the stack is managed and parameters are exchanged (there is no hardware stack in MIPS, everything is a matter of software conventions, and the ABI defines those conventions).
The document above assumes some basic knowledge of what MIPS instructions do, so you will also need the MIPS32 Architecture for Programmers, in particular volume II (instruction set), which describes the detailed effect of each instruction. But, do yourself a favor, download and read volume I (introduction) first.
The jal instruction is the "jump and link" opcode. It jumps at the target address (which is the address of the first opcode of the called procedure) while saving the current instruction pointer into the link register, which is register 31 (to be precise, it saves in register 31 the value x+8, where x is the address of the jal opcode itself).
jal: aka jump and link against any function name will redirect you to the required function.
jr $ra: It returns the value from a function that was called.
main function:
.data
x: .word 3 # initializing x to be 3
y: .word 5 # initializing y to be 5
answer: .word 0 # intialzing answer to be 0
prompt: .asciiz "Add X to Y: " # console prompt for final answer
.text
.globl main
.ent main
main:
lw $a0, x # pass arguments to function $a0 - x, $a1 - y
lw $a1, y
jal adds # adds function is called
sw $v0, answer # answer from the returned value
la $a0, prompt # displaying prompt on the console
li $v0, 4
syscall
lw $a0, answer # displaying final answer on the console
li $v0, 1
syscall
li $v0, 10 # end program
syscall
.end main
adds function:
.globl adds
.ent adds
adds: # adds function
li $v0, 0
add $v0, $a0, $a1 # adding arguments to the callee
jr $ra # return
.end adds