What is the effect of a row of zeros in singular value decomposition? - cuda

I am writing some CUDA code for finding the 3 parameters of a circle (centre X,Y & radius) from many (m) measurements of positions around the perimeter.
As m > 3 I am (successfully) using Singular Value Decomposition (SVD) for this purpose (using the cuSolver library). Effectively I am solving m simulaneous equations with 3 unknowns.
However, not all of my perimeter positions are valid (say q of them), and so I have to go through my initial set of m measurements and remove the q invalid ones. This involves moving the size m data array from the card to the host, processing linearly to remove the q invalid entries and then re loading the smaller (m-q) array back onto the card...
My question is; if I were to set all terms on both sides of the q invalid equations to zero, could I just run the m equations (including the zeros) through my SVD analysis (without the data transfer etc) or would this cause other problems?
My instinct tells me that this is a bit like applying weights to the data but instinct and SVD are not terms that sit well together in my experience...
I am hesitant just to try this as I don't know if it will work in some cases and not in others...

I have tested the idea by inserting rows of zeros into my matrix. The solution that I am getting is not significantly affected by this.
So I am answering my own question with a non-rigorous Yes it is OK do do this.
If anybody has a more rigorous or more considered answer I would very much like to hear it.

Related

fft: fitting binned data

I want to fit a curve to data obtained from an FFT. While working on this, I remembered that an FFT gives binned data, and therefore I wondered if I should treat this differently with curve-fitting.
If the bins are narrow compared to the structure, I think it should not be necessary to treat the data differently, but for me that is not the case.
I expect the right way to fit binned data is by minimizing not the difference between values of the bin and fit, but between bin area and the area beneath the fitted curve, for each bin, such that the energy in each bin matches the energy in the range of the bin as signified by the curve.
So my question is: am I thinking correctly about this? If not, how should I go about it?
Also, when looking around for information about this subject, I encountered the "Maximum log likelihood" for example, but did not find enough information about it to understand if and how it applied to my situation.
PS: I have no clue if this is the right site for this question, please let me know if there is a better place.
For an unwindowed FFT, the correct interpolation between bins is by using a Sinc (sin(x)/x) or periodic Sinc (Dirichlet) interpolation kernel. For an FFT of samples of a band-limited signal, thus will reconstruct the continuous spectrum.
A very simple and effective way of interpolating the spectrum (from an FFT) is to use zero-padding. It works both with and without windowing prior to the FFT.
Take your input vector of length N and extend it to length M*N, where M is an integer
Set all values beyond the original N values to zeros
Perform an FFT of length (N*M)
Calculate the magnitude of the ouput bins
What you get is the interpolated spectrum.
Best regards,
Jens
This can be done by using maximum log likelihood estimation. This is a method that finds the set of parameters that is most likely to have yielded the measured data - the technique originates in statistics.
I have finally found an understandable source for how to apply this to binned data. Sadly I cannot enter formulas here, so I refer to that source for a full explanation: slide 4 of this slide show.
EDIT:
For noisier signals this method did not seem to work very well. A method that was a bit more robust is a least squares fit, where the difference between the area is minimized, as suggested in the question.
I have not found any literature to defend this method, but it is similar to what happens in the maximum log likelihood estimation, and yields very similar results for noiseless test cases.

How to represent stereo audio data for FFT

How should stereo (2 channel) audio data be represented for FFT? Do you
A. Take the average of the two channels and assign it to the real component of a number and leave the imaginary component 0.
B. Assign one channel to the real component and the other channel to the imag component.
Is there a reason to do one or the other? I searched the web but could not find any definite answers on this.
I'm doing some simple spectrum analysis and, not knowing any better, used option A). This gave me an unexpected result, whereas option B) went as expected. Here are some more details:
I have a WAV file of a piano "middle-C". By definition, middle-C is 260Hz, so I would expect the peak frequency to be at 260Hz and smaller peaks at harmonics. I confirmed this by viewing the spectrum via an audio editing software (Sound Forge). But when I took the FFT myself, with option A), the peak was at 520Hz. With option B), the peak was at 260Hz.
Am I missing something? The explanation that I came up with so far is that representing stereo data using a real and imag component implies that the two channels are independent, which, I suppose they're not, and hence the mess-up.
I don't think you're taking the average correctly. :-)
C. Process each channel separately, assigning the amplitude to the real component and leaving the imaginary component as 0.
Option B does not make sense. Option A, which amounts to convert the signal to mono, is OK (if you are interested in a global spectrum).
Your problem (double freq) is surely related to some misunderstanding in the use of your FFT routines.
Once you take the FFT you need to get the Magnitude of the complex frequency spectrum. To get the magnitude you take the absolute of the complex spectrum |X(w)|. If you want to look at the power spectrum you square the magnitude spectrum, |X(w)|^2.
In terms of your frequency shift I think it has to do with you setting the imaginary parts to zero.
If you imagine the complex Frequency spectrum as a series of complex vectors or position vectors in a cartesian space. If you took one discrete frequency bin X(w), there would be one real component representing its direction in the real axis (x -direction), and one imaginary component in the in the imaginary axis (y - direction). There are four important values about this discrete frequency, 1. real value, 2. imaginary value, 3. Magnitude and, 4. phase. If you just take the real value and set imaginary to 0, you are setting Magnitude = real and phase = 0deg or 90deg. You have hence forth modified the resulting spectrum, and applied a bias to every frequency bin. Take a look at the wiki on Magnitude of a vector, also called the Euclidean norm of a vector to brush up on your understanding. Leonbloy was correct, but I hope this was more informative.
Think of the FFT as a way to get information from a single signal. What you are asking is what is the best way to display data from two signals. My answer would be to treat each independently, and display an FFT for each.
If you want a really fast streaming FFT you can read about an algorithm I wrote here: www.depthcharged.us/?p=176

Determining edge weights given a list of walks in a graph

These questions regard a set of data with lists of tasks performed in succession and the total time required to complete them. I've been wondering whether it would be possible to determine useful things about the tasks' lengths, either as they are or with some initial guesstimation based on appropriate domain knowledge. I've come to think graph theory would be the way to approach this problem in the abstract, and have a decent basic grasp of the stuff, but I'm unable to know for certain whether I'm on the right track. Furthermore, I think it's a pretty interesting question to crack. So here we go:
Is it possible to determine the weights of edges in a directed weighted graph, given a list of walks in that graph with the lengths (summed weights) of said walks? I recognize the amount and quality of permutations on the routes taken by the walks will dictate the quality of any possible answer, but let's assume all possible walks and their lengths are given. If a definite answer isn't possible, what kind of things can be concluded about the graph? How would you arrive at those conclusions?
What if there were several similar walks with possibly differing lengths given? Can you calculate a decent average (or other illustrative measure) for each edge, given enough permutations on different routes to take? How will discounting some permutations from the available data set affect the calculation's accuracy?
Finally, what if you had a set of initial guesses as to the weights and had to refine those using the walks given? Would that improve upon your guesstimation ability, and how could you apply the extra information?
EDIT: Clarification on the difficulties of a plain linear algebraic approach. Consider the following set of walks:
a = 5
b = 4
b + c = 5
a + b + c = 8
A matrix equation with these values is unsolvable, but we'd still like to estimate the terms. There might be some helpful initial data available, such as in scenario 3, and in any case we can apply knowledge of the real world - such as that the length of a task can't be negative. I'd like to know if you have ideas on how to ensure we get reasonable estimations and that we also know what we don't know - eg. when there's not enough data to tell a from b.
Seems like an application of linear algebra.
You have a set of linear equations which you need to solve. The variables being the lengths of the tasks (or edge weights).
For instance if the tasks lengths were t1, t2, t3 for 3 tasks.
And you are given
t1 + t2 = 2 (task 1 and 2 take 2 hours)
t1 + t2 + t3 = 7 (all 3 tasks take 7 hours)
t2 + t3 = 6 (tasks 2 and 3 take 6 hours)
Solving gives t1 = 1, t2 = 1, t3 = 5.
You can use any linear algebra techniques (for eg: http://en.wikipedia.org/wiki/Gaussian_elimination) to solve these, which will tell you if there is a unique solution, no solution or an infinite number of solutions (no other possibilities are possible).
If you find that the linear equations do not have a solution, you can try adding a very small random number to some of the task weights/coefficients of the matrix and try solving it again. (I believe falls under Perturbation Theory). Matrices are notorious for radically changing behavior with small changes in the values, so this will likely give you an approximate answer reasonably quickly.
Or maybe you can try introducing some 'slack' task in each walk (i.e add more variables) and try to pick the solution to the new equations where the slack tasks satisfy some linear constraints (like 0 < s_i < 0.0001 and minimize sum of s_i), using Linear Programming Techniques.
Assume you have an unlimited number of arbitrary characters to represent each edge. (a,b,c,d etc)
w is a list of all the walks, in the form of 0,a,b,c,d,e etc. (the 0 will be explained later.)
i = 1
if #w[i] ~= 1 then
replace w[2] with the LENGTH of w[i], minus all other values in w.
repeat forever.
Example:
0,a,b,c,d,e 50
0,a,c,b,e 20
0,c,e 10
So:
a is the first. Replace all instances of "a" with 50, -b,-c,-d,-e.
New data:
50, 50
50,-b,-d, 20
0,c,e 10
And, repeat until one value is left, and you finish! Alternatively, the first number can simply be subtracted from the length of each walk.
I'd forget about graphs and treat lists of tasks as vectors - every task represented as a component with value equal to it's cost (time to complete in this case.
In tasks are in different orderes initially, that's where to use domain knowledge to bring them to a cannonical form and assign multipliers if domain knowledge tells you that the ratio of costs will be synstantially influenced by ordering / timing. Timing is implicit initial ordering but you may have to make a function of time just for adjustment factors (say drivingat lunch time vs driving at midnight). Function might be tabular/discrete. In general it's always much easier to evaluate ratios and relative biases (hardnes of doing something). You may need a functional language to do repeated rewrites of your vectors till there's nothing more that romain knowledge and rules can change.
With cannonical vectors consider just presence and absence of task (just 0|1 for this iteratioon) and look for minimal diffs - single task diffs first - that will provide estimates which small number of variables. Keep doing this recursively, be ready to back track and have a heuristing rule for goodness or quality of estimates so far. Keep track of good "rounds" that you backtraced from.
When you reach minimal irreducible state - dan't many any more diffs - all vectors have the same remaining tasks then you can do some basic statistics like variance, mean, median and look for big outliers and ways to improve initial domain knowledge based estimates that lead to cannonical form. If you finsd a lot of them and can infer new rules, take them in and start the whole process from start.
Yes, this can cost a lot :-)

How many combinations of k neighboring pixels are there in an image?

I suck at math, so I can't figure this out: how many combinations of k neighboring pixels are there in an image? Combinations of k pixels out of n * n total pixels in the image, but with the restriction that they must be neighbors, for each k from 2 to n * n. I need the sum for all values of k for a program that must take into account that many elements in a set that it's reasoning about.
Neighbors are 4-connected and do not wrap-around.
Once you get the number of distinct shapes for a blob of pixels of size k (here's a reference) then it comes down to two things:
How many ways on your image can you place this blob?
How many of these are the same so that you don't double-count (because of symmetries)?
Getting an exact answer is a huge computational job (you're looking at more than 10^30 distinct shapes for k=56 -- imagine if k = 10,000) but you may be able to get good enough for what you need by fitting for the first 50 values of k.
(Note: the reference in the wikipedia article takes care of duplicates with their definition of A_k.)
It seems that you are working on a problem that can be mapped to Markovian Walks.
If I understand your question, you are trying to count paths of length k like this:
Start (end)-> any pixel after visiting k neighbours
* - - - - -*
| |
| |
- - - -
in a structure that is similar to a chess board, and you want to connect only vertical and horizontal neighbours.
I think that you want the paths to be self avoiding, meaning that a pixel should not be traversed twice in a walk (meaning no loops). This condition lead to a classical problem called SAWs (Self Avoiding Walks).
Well, now the bad news: The problem is open! No one solved it yet.
You can find a nice intro to the problem here, starting at page 54 (or page 16, the counting is confusing because the page numbers are repeating in the doc). But the whole paper is very interesting and easy to read. It manages to explain the mathematical background, the historical anecdotes and the scientific importance of markovian chains in a few slides.
Hope this helps ... to avoid the problem.
If you were planning to iterate over all possible polyominos, I'm afraid you'll be waiting a long time. From the wikipedia site about polyominos, it's going to be at least O(4.0626^n) and probably closer to O(8^n). By the time n=14, the count will be over 5 billion and too big to fit into an int. By time n=30, the count will be more than 17 quintillion and you won't be able to fit it into a long. If all the world governments pooled together their resources to iterate through all polyominos in a 32 x 32 icon, they would not be able to do it before the sun goes supernova.
Now that doesn't mean what you want to do is intractable. It is likely almost all the work you do on one polyominal was done in part on others. It may be a fun task make an exponential speedup using dynamic programming. What is it you're trying to accomplish?

Invert 4x4 matrix - Numerical most stable solution needed

I want to invert a 4x4 matrix. My numbers are stored in fixed-point format (1.15.16 to be exact).
With floating-point arithmetic I usually just build the adjoint matrix and divide by the determinant (e.g. brute force the solution). That worked for me so far, but when dealing with fixed point numbers I get an unacceptable precision loss due to all of the multiplications used.
Note: In fixed point arithmetic I always throw away some of the least significant bits of immediate results.
So - What's the most numerical stable way to invert a matrix? I don't mind much about the performance, but simply going to floating-point would be to slow on my target architecture.
Meta-answer: Is it really a general 4x4 matrix? If your matrix has a special form, then there are direct formulas for inverting that would be fast and keep your operation count down.
For example, if it's a standard homogenous coordinate transform from graphics, like:
[ux vx wx tx]
[uy vy wy ty]
[uz vz wz tz]
[ 0 0 0 1]
(assuming a composition of rotation, scale, translation matrices)
then there's an easily-derivable direct formula, which is
[ux uy uz -dot(u,t)]
[vx vy vz -dot(v,t)]
[wx wy wz -dot(w,t)]
[ 0 0 0 1 ]
(ASCII matrices stolen from the linked page.)
You probably can't beat that for loss of precision in fixed point.
If your matrix comes from some domain where you know it has more structure, then there's likely to be an easy answer.
I think the answer to this depends on the exact form of the matrix. A standard decomposition method (LU, QR, Cholesky etc.) with pivoting (an essential) is fairly good on fixed point, especially for a small 4x4 matrix. See the book 'Numerical Recipes' by Press et al. for a description of these methods.
This paper gives some useful algorithms, but is behind a paywall unfortunately. They recommend a (pivoted) Cholesky decomposition with some additional features too complicated to list here.
I'd like to second the question Jason S raised: are you certain that you need to invert your matrix? This is almost never necessary. Not only that, it is often a bad idea. If you need to solve Ax = b, it is more numerically stable to solve the system directly than to multiply b by A inverse.
Even if you have to solve Ax = b over and over for many values of b, it's still not a good idea to invert A. You can factor A (say LU factorization or Cholesky factorization) and save the factors so you're not redoing that work every time, but you'd still solve the system each time using the factorization.
You might consider doubling to 1.31 before doing your normal algorithm. It'll double the number of multiplications, but you're doing a matrix invert and anything you do is going to be pretty tied to the multiplier in your processor.
For anyone interested in finding the equations for a 4x4 invert, you can use a symbolic math package to resolve them for you. The TI-89 will do it even, although it'll take several minutes.
If you give us an idea of what the matrix invert does for you, and how it fits in with the rest of your processing we might be able to suggest alternatives.
-Adam
Let me ask a different question: do you definitely need to invert the matrix (call it M), or do you need to use the matrix inverse to solve other equations? (e.g. Mx = b for known M, b) Often there are other ways to do this w/o explicitly needing to calculate the inverse. Or if the matrix M is a function of time & it changes slowly then you could calculate the full inverse once, & there are iterative ways to update it.
If the matrix represents an affine transformation (many times this is the case with 4x4 matrices so long as you don't introduce a scaling component) the inverse is simply the transpose of the upper 3x3 rotation part with the last column negated. Obviously if you require a generalized solution then looking into Gaussian elimination is probably the easiest.