OpenAI gym GuessingGame-v0 possible solutions - reinforcement-learning

I have been struggling to solve the GuessingGame-v0 environment which is part of the OpenAI gym.
In the environment each episode a random number within a range is selected and the agent must "guess" what this random number is. The agent is only provided with the observation of whether the guess was too large or too small.
After researching how to frame the problem I think it may be possible to frame the problem as a Hidden Markov Model, but I am unsure of how to do this.
Each episode the randomly selected number changes and because of this I don't know how the model won't have to change each episode as the goal state is continually shifting.
I could not find any resources on the environment or any environments similar to it other than the documentation provided by OpenAI which I did not find useful.
I would greatly appreciate any assistance on how to solve this environment.

I'm putting this as an answer so people don't have to read through the list of comments.
You need a program that can simply cycle through:
generate the random number
agent guesses a number (within the allowable guess range)
test whether the number is within 1%.
if the number is within 1%, stop the iteration, maybe print the guess at this point
if the iteration is at step 200, stop the iteration and maybe produce some out that gives the final guessed number and the fact it is not within 1%
if not 200 steps or 1%: a) if the number is too high, record the guess and that it is too high, or b) if the number is too low, record the guess and that it is too low. Iterate through that number bound. Repeat until either the 1% or 200 steps criterion is reached.
Another thought for you: do you need a starting low number and a starting high number?
There are a number of ways in which to implement this solution. There is also a range of programming software in which the solution can be implemented. The particular software you use is probably the one with which you are most familiar.
Good luck!

Related

Will alpha-beta pruning remove randomness in my solution with minimax?

Existing implementation:
In my implementation of Tic-Tac-Toe with minimax, I look for all boxes where I can get best result and chose 1 of them randomly, so that the same solution isn't displayed each time.
For ex. if the returned list is [1, 0 , 1, -1], at some point, I will randomly chose between the two highest values.
Question about Alpha-Beta Pruning:
Based on what I understood, when the algorithm finds that it is winning from one path, it would no longer need to look for other paths that might/ might not lead to a winning case.
So will this, like I feel, cause the earliest possible box that leads to the best solution to be displayed as the result and seem the same each time? For example at the time of first move, all moves lead to a draw. So will the 1st box be selected each time?
How can I bring randomness to the solution like with the minimax solution? One way that I thought about now could be to randomly pass the indices to the alpha-beta algorithm. So the result will be the first best solution in that randomly sorted list of positions.
Thanks in advance. If there is some literature on this, I'd be glad to read it.
If someone could post some good reference for aplha-beta pruning, That'll be excellent as I had a hard time understanding how to apply it.
To randomly pick among multiple best solutions (all equal) in alpha-beta pruning, you can modify your evaluation function to add a very small random number whenever you evaluate a game state. You should just make sure that the magnitude of that random number is never greater than the true difference between the evaluations of two states.
For example, if the true evaluation function for your game state can only return values -1, 0, and 1, you could add a randomly generated number in the range [0.0, 0.01] to the evaluation of every game state.
Without this, alpha-beta pruning doesn't necessarily find only one solution. Consider this example from wikipedia. In the middle, you see that two solutions with an evaluation of 6 were found, so it can find more than one. I do actually think it will still find all moves leading to optimal solutions at the root node, but not actually find all solutions deep down in the tree. Suppose, in the example image, that the pruned node with score of 9 in the middle actually had a score of 6. It would still get pruned there, so that particular solution wouldn't be found, but the move from root node leading to it (the middle move at root) would still be found. So, eventually, you would be able to reach it.
Some interesting notes:
This implementation would also work in minimax, and avoid the need to store a list of multiple (equally good) solutions
In more complex games than Tic Tac Toe, where you cannot search the complete state space, adding a small random number for the max player and deducting a small random number for the min player like this may actually slightly improve your heuristic evaluation function. The reason for this is as follows. Suppose in state A you have 5 moves available, and in state B you have 10 moves available, which all result in the same heuristic evaluation score. Intuitively, the successors of state B may be slightly better, because you had more moves available; in many games, having more moves available means that you are in a better position. Because you generated 10 random numbers for the 10 successors of state B, it is also a bit more likely that the highest generated random number is among those 10 (instead of the 5 numbers generated for successors of A)

Is standard deviation (STDDEV) the right function for the job?

We wrote a monitoring system. This monitor is made of agents. Each agent runs on a different server, and monitors that specific server resources (RAM, CPU, SQL Server Status, Replication Status, Free Disk Space, Internet Access, specific bussiness metrics, etc.).
The agents report every measure they take to a central database where these "observations" are stored.
For example, every few seconds an agent would store in the central database a specific bussiness metric called "unprocessed_files" with its corresponding value:
(unprocessed_files, 41)
That value is constanty being written to our DB (among many others, as explained above).
We are now implementing a client application, a screen, that displays the status of every thing we monitor. So, how can we calculate what's a "normal" value and what's a wrong value?
For example, we know that if our servers are working correctly, the unprocessed_files would always be close to 0, but maybe (We don't know yet), 45 is an acceptable value.
So the question is, should we use the Standard Deviation in order to know what the acceptable range of values is?
ACCEPTABLE_RANGE = AVG(value) +- STDDEV(value) ?
We would like to notify with a red color when something is not going well.
For your backlog (unprocessed file) metric, using a standard deviation to know when to sound an alarm (turn something red) is going to drive you crazy with false alarms.
Why? most of the time your backlog will be zero. So, the standard deviation will also be very close to zero. Standard deviation tells you how much your metric varies. Therefore, whenever you get a nonzero backlog, it will be outside the avg + stdev range.
For a backlog, you may want to turn stuff yellow when the value is > 1 and red when the value is > 10.
If you have a "how long did it take" metric, standard deviation might be a valid way to identify alarm conditions. For example, you might have a web request that usually takes about half a second, but typically varies from 0.25 to 0.8 second. If they suddenly start taking 2.5 seconds, then you know something has gone wrong.
Standard deviation is a measurement that makes most sense for a normal distribution (bell curve distribution). When you handle your measurements as if they fit a bell curve, you're implicitly making the assumption that each measurement is entirely independent of the others. That assumption works poorly for typical metrics of a computing system (backlog, transaction time, load average, etc). So, using stdev is OK, but not great. You'll probably struggle to make sense of stdev numbers: that's because they don't actually make much sense.
You'd be better off, like #duffymo suggested, looking at the 95th percentile (the worst-performing operations). But MySQL doesn't compute those kinds of distributions natively. postgreSQL does. So does Oracle Standard Edition and higher.
How do you determine an out-of-bounds metric? It depends on the metric, and on what you're trying to do. If it's a backlog measurement, and it grows from minute to minute, you have a problem to investigate. If it's a transaction time, and it's far longer than average (avg + 3 x stdev, for example, you have a problem. The open source monitoring system Nagios has worked this out for various kinds of metrics.
Read a book by N. N. Taleb called "The Black Swan" if you want to know how assuming the real world fits normal distributions can crash the global economy.
Standard deviation is just a way of characterizing how much a set of values spreads away from its average (i.e. mean). In a sense, it's an "average deviation from average", though a little more complicated than that. It is true that values which differ from the mean by many times the standard deviation tend to be rare, but that doesn't mean the standard deviation is a good benchmark for identifying anomalous values that might indicate something is wrong.
For one thing, if you set your acceptable range at the average plus or minus one standard deviation, you're probably going to get very frequent results outside that range! You could use the average plus or minus two standard deviations, or three, or however many you want to reduce the number of notifications/error conditions as low as you want, but there's no telling whether any of this actually helps you identify error conditions.
I think your main problem is not statistics. Your problem is that you don't know what kinds of results actually indicate an error. So before you program in any acceptable range, just let the system run for a while and collect some calibration data showing what kinds of values you see when it's running normally, and what kinds of values you see when it's not running normally. Make sure you have some way to tell which are which. Once you have a good amount of data for both conditions, you can analyze it (start with a simple histogram) and see what kinds of values are characteristic of normal operation and what kinds are characteristics of error conditions. Then you can set your acceptable range based on that.
If you want to get fancy, there is a statistical technique called likelihood ratio testing that can help you evaluate just how likely it is that your system is working properly. But I think it's probably overkill. Monitoring systems don't need to be super-precise about this stuff; just show a cautionary notice whenever the readings start to seem abnormal.

Project Euler 298 - there must be a correct answer? (only pastebinned code)

Project Euler has a paging file problem (though it's disguised in other words).
I tested my code(pastebinned so as not to spoil it for anyone) against the sample data and got the same memory contents+score as the problem. However, there is nowhere near a consistent grouping of scores. It asks for the expected difference in scores after 50 turns. A random sampling of scores:
1.50000000
1.78000000
1.64000000
1.64000000
1.80000000
2.02000000
2.06000000
1.56000000
1.66000000
2.04000000
I've tried a few of those as answers, but none of them have been accepted... I know some people have succeeded, so I'm really confused - what the heck am I missing?
Your problem likely is that you don't seem to know the definition of Expected Value.
You will have to run the simulation multiple times and for each score difference, maintain the frequency of that occurence and then take the weighted mean to get the expected value.
Of course, given that it is Project Euler problem, there is probably a mathematical formula which can be used readily.
Yep, there is a correct answer. To be honest, Monte Carlo can theoretically come close in on the expect value given the law of large numbers. However, you won't want to try it here. Because practically each time you run the simu, you will have a slightly different result rounded to eight decimal places (And I think this setting does exactly deprive anybody of any chance of even thinking to use Monte Carlo). If you are lucky, you will have one simu that delivers the answer after lots of trials, given that you have submitted all the previous and failed. I think, captcha is the second way that euler project let you give up any brute-force approach.
Well, agree with Moron, you have to figure out "expected value" first. The principle of this problem is, you have to find a way to enumerate every possible "essential" outcomes after 50 rounds. Each outcome will have its own |L-R|, so sum them up, you will have the answer. No need to say, brute-force approach fails in most of the case, especially in this case. Fortunately, we have dynamic programming (dp), which is fast!
Basically, dp saves the computation results in each round as states and uses them in the next. Thus it avoids repeating the same computation over and over again. The difficult part of this problem is to find a way to represent a state, that is to say, how you would like to save your temp results. If you have solved problem 290 in dp, you can get some hints there about how to understand the problem and formulate a state.
Actually, that isn't the most difficult part for the mind. The hardest mental piece is whether you realize that some memory statuses of the two players are numerically different but substantially equivalent. For example, L:12345 R:12345 vs L:23456 R:23456 or even vs L:98765 R:98765. That is due to the fact that the call is random. That is also why I wrote possible "essential" outcomes. That is, you can summarize some states into one. And only by doing so, your program can finish in reasonal time.
I would run your simulation a whole bunch of times and then do a weighted average of the | L- R | value over all the runs. That should get you closer to the expected value.
Just submitting one run as an answer is really unlikely to work. Imagine it was dice roll expected value. Roll on dice, score a 6, submit that as expected value.

What does 'seeding' mean?

Very simple question. What does the term 'seeding' mean in general? I'll put the context, i.e., you must seed for random functions.
It means: pick a place to start.
Think of a pseudo random number generator as just a really long list of numbers. This list is circular, it eventually repeats.
To use it, you need to pick a starting place. This is called a "seed".
Most random functions that are common on personal computers aren't random, but deterministic to a degree. The 'seed' for these psuedo-random functions are the starting point upon which future values are based. This is useful for debugging purposes: if you keep the seed the same from execution to execution you'll get the same numbers.
To get numbers that are more random a different seed is often used from execution to execution. This is often based on the time of the machine.
This method is completely different than generating a 'true' random number based on some sort of physical property in the world around us. Lava lamps and sun spots are two of the more 'fun' properties that can be observed to generate 'more random' numbers. Anyone can hit http://www.random.org/ to get a real random number if its truly neccessary like for a poker website. If you don't have a good generator folks can attempt to figure out how the generator works and predict future numbers.
Imagine a card game and development of the game program vs. running the game to actually play it.
Pseudo-random number generators use a seed or seeds to determine the starting point of the sequence. Some of them always make the same sequence, others can produce different sequences depending on the seed. Some use a cascade, a simple RNG is given a simple seed, and this is run for a while to produce a more complex seed for the masterpiece RNG.
It is quite useful to be able to deliberately repeat the sequence when developing the program or when one wishes to reproduce previous results.
However, imagine a card game. It's obviously not a good idea to always deal the same sequence of cards.
"Seeding" random function prevents it from giving out the same sequence of random numbers.
Think of it as a super-random start of your random generator.

How should I start designing an AI algorithm for an artillery warfare game?

Here's the background... in my free time I'm designing an artillery warfare game called Staker (inspired by the old BASIC games Tank Wars and Scorched Earth) and I'm programming it in MATLAB. Your first thought might be "Why MATLAB? There are plenty of other languages/software packages that are better for game design." And you would be right. However, I'm a dork and I'm interested in learning the nuts and bolts of how you would design a game from the ground up, so I don't necessarily want to use anything with prefab modules. Also, I've used MATLAB for years and I like the challenge of doing things with it that others haven't really tried to do.
Now to the problem at hand: I want to incorporate AI so that the player can go up against the computer. I've only just started thinking about how to design the algorithm to choose an azimuth angle, elevation angle, and projectile velocity to hit a target, and then adjust them each turn. I feel like maybe I've been overthinking the problem and trying to make the AI too complex at the outset, so I thought I'd pause and ask the community here for ideas about how they would design an algorithm.
Some specific questions:
Are there specific references for AI design that you would suggest I check out?
Would you design the AI players to vary in difficulty in a continuous manner (a difficulty of 0 (easy) to 1 (hard), all still using the same general algorithm) or would you design specific algorithms for a discrete number of AI players (like an easy enemy that fires in random directions or a hard enemy that is able to account for the effects of wind)?
What sorts of mathematical algorithms (pseudocode description) would you start with?
Some additional info: the model I use to simulate projectile motion incorporates fluid drag and the effect of wind. The "fluid" can be air or water. In air, the air density (and thus effect of drag) varies with height above the ground based on some simple atmospheric models. In water, the drag is so great that the projectile usually requires additional thrust. In other words, the projectile can be affected by forces other than just gravity.
In a real artillery situation all these factors would be handled either with formulas or simply brute-force simulation: Fire an electronic shell, apply all relevant forces and see where it lands. Adjust and try again until the electronic shell hits the target. Now you have your numbers to send to the gun.
Given the complexity of the situation I doubt there is any answer better than the brute-force one. While you could precalculate a table of expected drag effects vs velocity I can't see it being worthwhile.
Of course a game where the AI dropped the first shell on your head every time wouldn't be interesting. Once you know the correct values you'll have to make the AI a lousy shot. Apply a random factor to the shot and then walk to towards the target--move it say 30+random(140)% towards the true target each time it shoots.
Edit:
I do agree with BCS's notion of improving it as time goes on. I said that but then changed my mind on how to write a bunch of it and then ended up forgetting to put it back in. The tougher it's supposed to be the smaller the random component should be.
Loren's brute force solution is appealing as because it would allow easy "Intelligence adjustments" by adding more iterations. Also the adjustment factors for the iteration could be part of the intelligence as some value will make it converge faster.
Also for the basic system (no drag, wind, etc) there is a closed form solution that can be derived from a basic physics text. I would make the first guess be that and then do one or more iteration per turn. You might want to try and come up with an empirical correction correlation to improve the first shot (something that will make the first shot distributions average be closer to correct)
Thanks Loren and BCS, I think you've hit upon an idea I was considering (which prompted question #2 above). The pseudocode for an AIs turn would look something like this:
nSims; % A variable storing the numbers of projectile simulations
% done per turn for the AI (i.e. difficulty)
prevParams; % A variable storing the previous shot parameters
prevResults; % A variable storing some measure of accuracy of the last shot
newParams = get_new_guess(prevParams,prevResults);
loop for nSims times,
newResults = simulate_projectile_flight(newParams);
newParams = get_new_guess(newParams,newResults);
end
fire_projectile(newParams);
In this case, the variable nSims is essentially a measure of "intelligence" for the AI. A "dumb" AI would have nSims=0, and would simply make a new guess each turn (based on results of the previous turn). A "smart" AI would refine its guess nSims times per turn by simulating the projectile flight.
Two more questions spring from this:
1) What goes into the function get_new_guess? How should I adjust the three shot parameters to minimize the distance to the target? For example, if a shot falls short of the target, you can try to get it closer by adjusting the elevation angle only, adjusting the projectile velocity only, or adjusting both of them together.
2) Should get_new_guess be the same for all AIs, with the nSims value being the only determiner of "intelligence"? Or should get_new_guess be dependent on another "intelligence" parameter (like guessAccuracy)?
A difference between artillery games and real artillery situations is that all sides have 100% information, and that there are typically more than 2 opponents.
As a result, your evaluation function should consider which opponent it would be more urgent to try and eliminate. For example, if I have an easy kill at 90%, but a 50% chance on someone who's trying to kill me and just missed two shots near me, it's more important to deal with that chance.
I think you would need some way of evaluating the risk everyone poses to you in terms of ammunition, location, activity, past history, etc.
I'm now addressing the response you posted:
While you have the general idea I don't believe your approach will be workable--it's going to converge way too fast even for a low value of nSims. I doubt you want more than one iteration of get_new_guess between shells and it very well might need some randomizing beyond that.
Even if you can use multiple iterations they wouldn't be good at making a continuously increasing difficulty as they will be big steps. It seems to me that difficulty must be handled by randomness.
First, get_initial_guess:
To start out I would have a table that divides the world up into zones--the higher the difficulty the more zones. The borders between these zones would have precalculated power for 45, 60 & 75 degrees. Do a test plot, if a shell smacks terrain try again at a higher angle--if 75 hits terrain use it anyway.
The initial shell should be fired at a random power between the values given for the low and high bounds.
Now, for get_new_guess:
Did the shell hit terrain? Increase the angle. I think there will be a constant ratio of how much power needs to be increased to maintain the same distance--you'll need to run tests on this.
Assuming it didn't smack a mountain, note if it's short or long. This gives you a bound. The new guess is somewhere between the two bounds (if you're missing a bound, use the value from the table in get_initial_guess in it's place.)
Note what percentage of the way between the low and high bound impact points the target is and choose a power that far between the low and high bound power.
This is probably far too accurate and will likely require some randomizing. I've changed my mind about adding a simple random %. Rather, multiple random numbers should be used to get a bell curve.
Another thought: Are we dealing with a system where only one shell is active at once? Long ago I implemented an artillery game where you had 5 barrels, each with a fixed reload time that was above the maximum possible flight time.
With that I found myself using a strategy of firing shells spread across the range between my current low bound and high bound. It's possible that being a mere human I wasn't using an optimal strategy, though--this was realtime, getting a round off as soon as the barrel was ready was more important than ensuring it was aimed as well as possible as it would converge quite fast, anyway. I would generally put a shell on target on the second salvo and the third would generally all be hits. (A kill required killing ALL pixels in the target.)
In an AI situation I would model both this and a strategy of holding back some of the barrels to fire more accurate rounds later. I would still fire a spread across the target range, the only question is whether I would use all barrels or not.
I have personally created such a system - for the web-game Zwok, using brute force. I fired lots of shots in random directions and recorded the best result. I wouldn't recommend doing it any other way as the difference between timesteps etc will give you unexpected results.