Project Euler 298 - there must be a correct answer? (only pastebinned code) - language-agnostic

Project Euler has a paging file problem (though it's disguised in other words).
I tested my code(pastebinned so as not to spoil it for anyone) against the sample data and got the same memory contents+score as the problem. However, there is nowhere near a consistent grouping of scores. It asks for the expected difference in scores after 50 turns. A random sampling of scores:
1.50000000
1.78000000
1.64000000
1.64000000
1.80000000
2.02000000
2.06000000
1.56000000
1.66000000
2.04000000
I've tried a few of those as answers, but none of them have been accepted... I know some people have succeeded, so I'm really confused - what the heck am I missing?

Your problem likely is that you don't seem to know the definition of Expected Value.
You will have to run the simulation multiple times and for each score difference, maintain the frequency of that occurence and then take the weighted mean to get the expected value.
Of course, given that it is Project Euler problem, there is probably a mathematical formula which can be used readily.

Yep, there is a correct answer. To be honest, Monte Carlo can theoretically come close in on the expect value given the law of large numbers. However, you won't want to try it here. Because practically each time you run the simu, you will have a slightly different result rounded to eight decimal places (And I think this setting does exactly deprive anybody of any chance of even thinking to use Monte Carlo). If you are lucky, you will have one simu that delivers the answer after lots of trials, given that you have submitted all the previous and failed. I think, captcha is the second way that euler project let you give up any brute-force approach.
Well, agree with Moron, you have to figure out "expected value" first. The principle of this problem is, you have to find a way to enumerate every possible "essential" outcomes after 50 rounds. Each outcome will have its own |L-R|, so sum them up, you will have the answer. No need to say, brute-force approach fails in most of the case, especially in this case. Fortunately, we have dynamic programming (dp), which is fast!
Basically, dp saves the computation results in each round as states and uses them in the next. Thus it avoids repeating the same computation over and over again. The difficult part of this problem is to find a way to represent a state, that is to say, how you would like to save your temp results. If you have solved problem 290 in dp, you can get some hints there about how to understand the problem and formulate a state.
Actually, that isn't the most difficult part for the mind. The hardest mental piece is whether you realize that some memory statuses of the two players are numerically different but substantially equivalent. For example, L:12345 R:12345 vs L:23456 R:23456 or even vs L:98765 R:98765. That is due to the fact that the call is random. That is also why I wrote possible "essential" outcomes. That is, you can summarize some states into one. And only by doing so, your program can finish in reasonal time.

I would run your simulation a whole bunch of times and then do a weighted average of the | L- R | value over all the runs. That should get you closer to the expected value.
Just submitting one run as an answer is really unlikely to work. Imagine it was dice roll expected value. Roll on dice, score a 6, submit that as expected value.

Related

OpenAI gym GuessingGame-v0 possible solutions

I have been struggling to solve the GuessingGame-v0 environment which is part of the OpenAI gym.
In the environment each episode a random number within a range is selected and the agent must "guess" what this random number is. The agent is only provided with the observation of whether the guess was too large or too small.
After researching how to frame the problem I think it may be possible to frame the problem as a Hidden Markov Model, but I am unsure of how to do this.
Each episode the randomly selected number changes and because of this I don't know how the model won't have to change each episode as the goal state is continually shifting.
I could not find any resources on the environment or any environments similar to it other than the documentation provided by OpenAI which I did not find useful.
I would greatly appreciate any assistance on how to solve this environment.
I'm putting this as an answer so people don't have to read through the list of comments.
You need a program that can simply cycle through:
generate the random number
agent guesses a number (within the allowable guess range)
test whether the number is within 1%.
if the number is within 1%, stop the iteration, maybe print the guess at this point
if the iteration is at step 200, stop the iteration and maybe produce some out that gives the final guessed number and the fact it is not within 1%
if not 200 steps or 1%: a) if the number is too high, record the guess and that it is too high, or b) if the number is too low, record the guess and that it is too low. Iterate through that number bound. Repeat until either the 1% or 200 steps criterion is reached.
Another thought for you: do you need a starting low number and a starting high number?
There are a number of ways in which to implement this solution. There is also a range of programming software in which the solution can be implemented. The particular software you use is probably the one with which you are most familiar.
Good luck!

Will alpha-beta pruning remove randomness in my solution with minimax?

Existing implementation:
In my implementation of Tic-Tac-Toe with minimax, I look for all boxes where I can get best result and chose 1 of them randomly, so that the same solution isn't displayed each time.
For ex. if the returned list is [1, 0 , 1, -1], at some point, I will randomly chose between the two highest values.
Question about Alpha-Beta Pruning:
Based on what I understood, when the algorithm finds that it is winning from one path, it would no longer need to look for other paths that might/ might not lead to a winning case.
So will this, like I feel, cause the earliest possible box that leads to the best solution to be displayed as the result and seem the same each time? For example at the time of first move, all moves lead to a draw. So will the 1st box be selected each time?
How can I bring randomness to the solution like with the minimax solution? One way that I thought about now could be to randomly pass the indices to the alpha-beta algorithm. So the result will be the first best solution in that randomly sorted list of positions.
Thanks in advance. If there is some literature on this, I'd be glad to read it.
If someone could post some good reference for aplha-beta pruning, That'll be excellent as I had a hard time understanding how to apply it.
To randomly pick among multiple best solutions (all equal) in alpha-beta pruning, you can modify your evaluation function to add a very small random number whenever you evaluate a game state. You should just make sure that the magnitude of that random number is never greater than the true difference between the evaluations of two states.
For example, if the true evaluation function for your game state can only return values -1, 0, and 1, you could add a randomly generated number in the range [0.0, 0.01] to the evaluation of every game state.
Without this, alpha-beta pruning doesn't necessarily find only one solution. Consider this example from wikipedia. In the middle, you see that two solutions with an evaluation of 6 were found, so it can find more than one. I do actually think it will still find all moves leading to optimal solutions at the root node, but not actually find all solutions deep down in the tree. Suppose, in the example image, that the pruned node with score of 9 in the middle actually had a score of 6. It would still get pruned there, so that particular solution wouldn't be found, but the move from root node leading to it (the middle move at root) would still be found. So, eventually, you would be able to reach it.
Some interesting notes:
This implementation would also work in minimax, and avoid the need to store a list of multiple (equally good) solutions
In more complex games than Tic Tac Toe, where you cannot search the complete state space, adding a small random number for the max player and deducting a small random number for the min player like this may actually slightly improve your heuristic evaluation function. The reason for this is as follows. Suppose in state A you have 5 moves available, and in state B you have 10 moves available, which all result in the same heuristic evaluation score. Intuitively, the successors of state B may be slightly better, because you had more moves available; in many games, having more moves available means that you are in a better position. Because you generated 10 random numbers for the 10 successors of state B, it is also a bit more likely that the highest generated random number is among those 10 (instead of the 5 numbers generated for successors of A)

How to extract the fundamental frequency from cepstrum?

After applying a FFT, I get a spectrum with multiple frequency bins. How to get the fundamental frequency from this spectrum using the cepstral method?
I've researched a lot, tryed a lot of codes and asked three times on stackoverflow (wich helped a LOT), and I am pretty sure that the cepstral method is the best to discover the fundamental frequency in my case. I just don't know how to do it.
If you guys know some ready-to-use code for cepstral, please paste it on your answer! Any other resources are welcome too.
Thanks again!
Peaks in the cepstrum identify periodicity in the frequency domain. If your source is clean there should be one peak in the cepstrum. The bin at which this occurs tells you the quefrency. There is a linear relation between this and the fundamental frequency of your input signal. To think about in non-mathematical terms: if the quefrency is 5, then your harmonics are 5 bins apart, which implies a fundamental at bin 5 in the frequency domain. You just translate this to a frequency in the usual way for an FFT. Try plotting the FFT magnitude and the cepstrum for a given input so that you can get a practical understanding of what is going on mathematically.

Counting FLOPS/GFLOPS in program - CUDA

Already finished my application which multiplies CRS matrix and vector (SpMV) and the only thing to do now is to count FLOPS my application did. In my opinion it's really hard to estimate number of floating point operation in case of sparse matrix - vector multiplication, because the number of multiplies in one row is really "jumpy" or fluent.
I only tried to measure time using "cudaprof" ( available in ./CUDA/bin directory) - it works fine.
Any sugestions and instruction pastes appreciated !
That's not just your opinion; it's simple fact that the number of operations in the case of a sparse matrix is data-dependent, and so you can't get a reasonable answer without knowing something about the data. That makes it impossible to have a one-number-fits-all-data estimate.
This is probably one of the sorts of situations where you could think hard about it for many hours (and do lots of research) to make a maybe-accurate estimate, or you could spend a few minutes writing a variant of your existing implementation that increments a counter each time it does an operation. Sure, that's going to take quite a while to run (especially if you don't do it in a CUDA-enabled form), but probably a lot less time than it would take to do the thinking, and when the answer comes out, you don't have to do a lot of work to convince yourself that it's right.

Benchmarking: When can I stop making measurements?

I have a series of functions that are all designed to do the same thing. The same inputs produce the same outputs, but the time that it takes to do them varies by function. I want to determine which one is 'fastest', and I want to have some confidence that my measurement is 'statistically significant'.
Perusing Wikipedia and the interwebs tells me that statistical significance means that a measurement or group of measurements is different from a null hypothesis by a p-value threshold. How would that apply here? What is the null hypothesis between function A being faster than function B?
Once I've got that whole setup defined, how do I figure out when to stop measuring? I'll typically see that a benchmark is run three times, and then the average is reported; why three times and not five or seven? According to this page on Statistical Significance (which I freely admit I do not understand fully), Fisher used 8 as the number of samples that he needed to measure something with 98% confidence; why 8?
I would not bother applying statistics principles to benchmarking results. In general, the term "statistical significance" refers to the likelihood that your results were achieved accidentally, and do not represent an accurate assessment of the true values. In statistics, as a result of simple probability, the likelihood of a result being achieved by chance decreases as the number of measurements increases. In the benchmarking of computer code, it is a trivial matter to increase the number of trials (the "n" in statistics) so that the likelihood of an accidental result is below any arbitrary threshold you care to define (the "alpha" or level of statistical significance).
To simplify: benchmark by running your code a huge number of times, and don't worry about statistical measurements.
Note to potential down-voters of this answer: this answer is somewhat of a simplification of the matter, designed to illustrate the concepts in an accessible way. Comments like "you clearly don't understand statistics" will result in a savage beat-down. Remember to be polite.
You are asking two questions:
How do you perform a test of statistical significance that the mean time of function A is greater than the mean time of function B?
If you want a certain confidence in your answer, how many samples should you take?
The most common answer to the first question is that you either want to compute a confidence interval or perform a t-test. It's not different than any other scientific experiment with random variation. To compute the 95% confidence interval of the mean response time for function A simply take the mean and add 1.96 times the standard error to either side. The standard error is the square root of the variance divided by N. That is,
95% CI = mean +/- 1.96 * sqrt(sigma2/N))
where sigma2 is the variance of speed for function A and N is the number of runs you used to calculate mean and variance.
Your second question relates to statistical power analysis and the design of experiments. You describe a sequential setup where you are asking whether to continue sampling. The design of sequential experiments is actually a very tricky problem in statistics, since in general you are not allowed to calculate confidence intervals or p-values and then draw additional samples conditional on not reaching your desired significance. If you wish to do this, it would be wiser to set up a Bayesian model and calculate your posterior probability that speed A is greater than speed B. This, however, is massive overkill.
In a computing environment it is generally pretty trivial to achieve a very small confidence interval both because drawing large N is easy and because the variance is generally small -- one function obviously wins.
Given that Wikipedia and most online sources are still horrible when it comes to statistics, I recommend buying Introductory Statistics with R. You will learn both the statistics and the tools to apply what you learn.
The research you site sounds more like a highly controlled environment. This is purely a practical answer that has proven itself time and again to be effective for performance testing.
If you are benchmarking code in a modern, multi-tasking, multi-core, computing environment, the number of iterations required to achieve a useful benchmark goes up as the length of time of the operation to be measured goes down.
So, if you have an operation that takes ~5 seconds, you'll want, typically, 10 to 20 iterations. As long as the deviation across the iterations remains fairly constant, then your data is sound enough to draw conclusions. You'll often want to throw out the first iteration or two because the system is typically warming up caches, etc...
If you are testing something in the millisecond range, you'll want 10s of thousands of iterations. This will eliminate noise caused by other processes, etc, firing up.
Once you hit the sub-millisecond range -- 10s of nanoseconds -- you'll want millions of iterations.
Not exactly scientific, but neither is testing "in the real world" on a modern computing system.
When comparing the results, consider the difference in execution speed as percentage, not absolute. Anything less than about 5% difference is pretty close to noise.
Do you really care about statistical significance or plain old significance? Ultimately you're likely to have to form a judgement about readability vs performance - and statistical significance isn't really going to help you there.
A couple of rules of thumb I use:
Where possible, test for enough time to make you confident that little blips (like something else interrupting your test for a short time) won't make much difference. Usually I reckon 30 seconds is enough for this, although it depends on your app. The longer you test for, the more reliable the test will be - but obviously your results will be delayed :)
Running a test multiple times can be useful, but if you're timing for long enough then it's not as important IMO. It would alleviate other forms of error which made a whole test take longer than it should. If a test result looks suspicious, certainly run it again. If you see significantly different results for different runs, run it several more times and try to spot a pattern.
The fundamental question you're trying to answer is how likley is it that what you observe could have happened by chance? Is this coin fair? Throw it once: HEADS. No it's not fair it always comes down heads. Bad conclusion! Throw it 10 times and get 7 Heads, now what do you conclude? 1000 times and 700 heads?
For simple cases we can imagine how to figure out when to stop testing. But you have a slightly different situation - are you really doing a statistical analysis?
How much control do you have of your tests? Does repeating them add any value? Your computer is deterministic (maybe). Eistein's definition of insanity is to repeat something and expect a different outcome. So when you run your tests do you get repeatable answers? I'm not sure that statistical analyses help if you are doing good enough tests.
For what you're doing I would say that the first key thing is to make sure that you really are measuring what you think. Run every test for long enough that any startup or shutdown effects are hidden. Useful performance tests tend to run for quite extended periods for that reason. Make sure that you are not actually measuing the time in your test harness rather than the time in your code.
You have two primary variables: how many iterations of your method to run in one test? How many tests to run?
Wikipedia says this
In addition to expressing the
variability of a population, standard
deviation is commonly used to measure
confidence in statistical conclusions.
For example, the margin of error in
polling data is determined by
calculating the expected standard
deviation in the results if the same
poll were to be conducted multiple
times. The reported margin of error is
typically about twice the standard
deviation.
Hence if your objective is to be sure that one function is faster than another you could run a number of tests of each, compute the means and standard deviations. My expectation is that if your number of iterations within any one test is high then the standard deviation is going to be low.
If we accept that defintion of margin of error, you can see whether the two means are further apart than their total margin's of error.