I'm completing this IBM Data Science certification on Coursera and one of the assignments require us to replicate this link- https://rawnote.dinhanhthi.com/files/ibm/neighborhoods_in_toronto.
I'm fairly new to this so I was going through the link to understand it and I couldn't understand some parts of the code.
So the objective of this assignment is to:
Extract a table from wikipedia and store it in a dataframe
Create a map of toronto city and explore the boroughs that contain "Toronto"
Explore any random neighborhood in Toronto using the FourSqaure API ("The Beaches" have been chosen here)
Get the top 100 venues that are in "The Beaches" within a radius of 500 meters.
They've done the 4th point using the FourSqaure API as shown below:
LIMIT = 100 # limit of number of venues returned by Foursquare API
radius = 500 # define radius
url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
CLIENT_ID,
CLIENT_SECRET,
VERSION,
neighborhood_latitude,
neighborhood_longitude,
radius,
LIMIT)
# get the result to a json file
results = requests.get(url).json()
The "results" variable looks like this:
{'meta': {'code': 200, 'requestId': '5eda4fb9aba297001b2f6207'},
'response': {'headerLocation': 'The Beaches',
'headerFullLocation': 'The Beaches, Toronto',
'headerLocationGranularity': 'neighborhood',
'totalResults': 4,
'suggestedBounds': {'ne': {'lat': 43.680857404499996,
'lng': -79.28682091449052},
'sw': {'lat': 43.67185739549999, 'lng': -79.29924148550948}},
'groups': [{'type': 'Recommended Places',
'name': 'recommended',
'items': [{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4bd461bc77b29c74a07d9282',
'name': 'Glen Manor Ravine',
'location': {'address': 'Glen Manor',
'crossStreet': 'Queen St.',
'lat': 43.67682094413784,
'lng': -79.29394208780985,
'labeledLatLngs': [{'label': 'display',
'lat': 43.67682094413784,
'lng': -79.29394208780985}],
'distance': 89,
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['Glen Manor (Queen St.)',
'Toronto ON',
'Canada']},
'categories': [{'id': '4bf58dd8d48988d159941735',
'name': 'Trail',
'pluralName': 'Trails',
'shortName': 'Trail',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/parks_outdoors/hikingtrail_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []}},
'referralId': 'e-0-4bd461bc77b29c74a07d9282-0'},
{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4ad4c062f964a52011f820e3',
'name': 'The Big Carrot Natural Food Market',
'location': {'address': '125 Southwood Dr',
'lat': 43.678879,
'lng': -79.297734,
'labeledLatLngs': [{'label': 'display',
'lat': 43.678879,
'lng': -79.297734}],
'distance': 471,
'postalCode': 'M4E 0B8',
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['125 Southwood Dr',
'Toronto ON M4E 0B8',
'Canada']},
'categories': [{'id': '50aa9e744b90af0d42d5de0e',
'name': 'Health Food Store',
'pluralName': 'Health Food Stores',
'shortName': 'Health Food Store',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/shops/food_grocery_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []},
'venuePage': {'id': '75150878'}},
'referralId': 'e-0-4ad4c062f964a52011f820e3-1'},
{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4b8daea1f964a520480833e3',
'name': 'Grover Pub and Grub',
'location': {'address': '676 Kingston Rd.',
'crossStreet': 'at Main St.',
'lat': 43.679181434941015,
'lng': -79.29721535878515,
'labeledLatLngs': [{'label': 'display',
'lat': 43.679181434941015,
'lng': -79.29721535878515}],
'distance': 460,
'postalCode': 'M4E 1R4',
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['676 Kingston Rd. (at Main St.)',
'Toronto ON M4E 1R4',
'Canada']},
'categories': [{'id': '4bf58dd8d48988d11b941735',
'name': 'Pub',
'pluralName': 'Pubs',
'shortName': 'Pub',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/nightlife/pub_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []}},
'referralId': 'e-0-4b8daea1f964a520480833e3-2'},
{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4df91c4bae60f95f82229ad5',
'name': 'Upper Beaches',
'location': {'lat': 43.68056321147582,
'lng': -79.2928688743688,
'labeledLatLngs': [{'label': 'display',
'lat': 43.68056321147582,
'lng': -79.2928688743688}],
'distance': 468,
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['Toronto ON', 'Canada']},
'categories': [{'id': '4f2a25ac4b909258e854f55f',
'name': 'Neighborhood',
'pluralName': 'Neighborhoods',
'shortName': 'Neighborhood',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/parks_outdoors/neighborhood_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []}},
'referralId': 'e-0-4df91c4bae60f95f82229ad5-3'}]}]}}
I'm not sure how to proceed. The below image is what is mentioned in the link but:
I don't understand why they've created a function get_category_row?
Why are we writing venues = results['response']['groups'][0]['items']? Isn't json_normalize()
supposed to convert a json file to a datframe? So why cant we
directly do json_normalize(results)?
I'm pretty much lost from section 4.6 onwards in the link.
if anyone could help me out or guide me that would be amazing! :)
No, you are completely wrong json_normalize() normalize semi-structured JSON data into a flat table not to a DataFrame. That's why they use venues = results['response']['groups'][0]['items'] to get the venues. They used the function get_category_type() to get the category of the venue.
If you want to know more about json_normalize() please refer this link
json_normalize will only flatten the records in one path, for example in your json, you can flatten each path separately:
meta
response -> suggestedBounds
response -> groups -> items
And then you'd have to merge them together
df1 = pd.json_normalize(d['response'], record_path=['groups', 'items'], meta=[])
print(df1)
df2 = pd.json_normalize(d['response'])
print(df2)
df3 = pd.json_normalize(d['meta'])
print(df3)
referralId reasons.count ... venue.location.postalCode venue.venuePage.id
0 e-0-4bd461bc77b29c74a07d9282-0 0 ... NaN NaN
1 e-0-4ad4c062f964a52011f820e3-1 0 ... M4E 0B8 75150878
2 e-0-4b8daea1f964a520480833e3-2 0 ... M4E 1R4 NaN
3 e-0-4df91c4bae60f95f82229ad5-3 0 ... NaN NaN
[4 rows x 21 columns]
headerLocation headerFullLocation headerLocationGranularity ... suggestedBounds.ne.lng suggestedBounds.sw.lat suggestedBounds.sw.lng
0 The Beaches The Beaches, Toronto neighborhood ... -79.286821 43.671857 -79.299241
[1 rows x 9 columns]
code requestId
0 200 5eda4fb9aba297001b2f6207
If you want to flatten the full json, you can try flatten_json. Documentation: Flatten JSON
Related
I am writing a python program that load a json string and decode from a .csv file. The .csv file includs the title and one entry below for reference.
key,labels,raw_tweet
2017_Q3_270,"[0, 0]","{'in_reply_to_screen_name': None, 'user': {'profile_banner_url': 'https://pbs.twimg.com/profile_banners/148491006/1494299074', 'follow_request_sent': None, 'name': 'Vanessa', 'verified': False, 'profile_sidebar_fill_color': 'FFFFFF', 'profile_background_color': '352726', 'is_translator': False, 'profile_background_image_url_https': 'https://pbs.twimg.com/profile_background_images/578700342637895680/j-o_FCwY.png', 'id': 148491006, 'geo_enabled': True, 'profile_background_image_url': 'http://pbs.twimg.com/profile_background_images/578700342637895680/j-o_FCwY.png', 'default_profile': False, 'contributors_enabled': False, 'default_profile_image': False, 'location': 'everywhere', 'profile_background_tile': True, 'notifications': None, 'listed_count': 9, 'profile_link_color': '7FDBB6', 'protected': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/891824958225215488/h__HMMlC_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/891824958225215488/h__HMMlC_normal.jpg', 'following': None, 'time_zone': 'Eastern Time (US & Canada)', 'friends_count': 588, 'url': 'https://Instagram.com/vmanks/', 'profile_text_color': '333333', 'followers_count': 541, 'utc_offset': -14400, 'id_str': '148491006', 'description': 'from the bronx, studying at cornell, slowly but surely finding solace', 'created_at': 'Wed May 26 21:01:46 +0000 2010', 'screen_name': 'vmankss', 'favourites_count': 19781, 'profile_use_background_image': True, 'profile_sidebar_border_color': 'FFFFFF', 'statuses_count': 50506, 'lang': 'en'}, 'retweet_count': 0, 'is_quote_status': False, 'in_reply_to_user_id': None, 'id': 901132409508421632, 'coordinates': None, 'entities': {'symbols': [], 'urls': [], 'user_mentions': [], 'hashtags': []}, 'text': ""I basically just go to financial aid to take candy from the candy bowl, y'all are unhelpful"", 'in_reply_to_status_id_str': None, 'in_reply_to_status_id': None, 'geo': None, 'favorited': False, 'place': {'country_code': 'US', 'bounding_box': {'type': 'Polygon', 'coordinates': [[[-76.547738, 42.41815], [-76.547738, 42.480827], [-76.469987, 42.480827], [-76.469987, 42.41815]]]}, 'attributes': {}, 'country': 'United States', 'url': 'https://api.twitter.com/1.1/geo/id/ae76bffcaf2bf545.json', 'full_name': 'Ithaca, NY', 'name': 'Ithaca', 'id': 'ae76bffcaf2bf545', 'place_type': 'city'}, 'favorite_count': 0, 'retweeted': False, 'timestamp_ms': '1503681683314', 'truncated': False, 'id_str': '901132409508421632', 'created_at': 'Fri Aug 25 17:21:23 +0000 2017', 'in_reply_to_user_id_str': None, 'contributors': None, 'source': 'Twitter for iPhone', 'lang': 'en', 'filter_level': 'low'}"
2015_Q1_494,"[0, 0]","{'in_reply_to_user_id_str': None, 'id_str': '577090329658175488', 'timestamp_ms': '1426424031067', 'in_reply_to_status_id_str': None, 'lang': 'en', 'favorited': False, 'retweeted': False, 'in_reply_to_status_id': None, 'id': 577090329658175488, 'filter_level': 'low', 'created_at': 'Sun Mar 15 12:53:51 +0000 2015', 'in_reply_to_user_id': None, 'place': {'country': 'United States', 'url': 'https://api.twitter.com/1.1/geo/id/a307591cd0413588.json', 'id': 'a307591cd0413588', 'country_code': 'US', 'place_type': 'city', 'attributes': {}, 'full_name': 'Buffalo, NY', 'bounding_box': {'type': 'Polygon', 'coordinates': [[[-78.912276, 42.826008], [-78.912276, 42.966451], [-78.79485, 42.966451], [-78.79485, 42.826008]]]}, 'name': 'Buffalo'}, 'truncated': False, 'entities': {'user_mentions': [], 'hashtags': [], 'symbols': [], 'trends': [], 'urls': []}, 'text': '""He licked coke off an encyclopedia"" only in south buffalo', 'retweet_count': 0, 'source': 'Twitter for iPhone', 'in_reply_to_screen_name': None, 'user': {'id_str': '480575646', 'friends_count': 367, 'profile_image_url': 'http://pbs.twimg.com/profile_images/571759767896629250/C-94okMM_normal.jpeg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/480575646/1402863912', 'listed_count': 2, 'screen_name': 'MichaelaFeeney', 'lang': 'en', 'notifications': None, 'profile_text_color': '333333', 'verified': False, 'favourites_count': 3995, 'name': 'Michæla...', 'protected': False, 'statuses_count': 2666, 'id': 480575646, 'profile_sidebar_border_color': 'C0DEED', 'profile_use_background_image': True, 'profile_sidebar_fill_color': 'DDEEF6', 'is_translator': False, 'time_zone': None, 'profile_link_color': '0084B4', 'created_at': 'Wed Feb 01 17:11:27 +0000 2012', 'geo_enabled': True, 'url': None, 'contributors_enabled': False, 'following': None, 'default_profile_image': False, 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'description': 'They call me Lông Isländ. Brockport2018✌', 'utc_offset': None, 'location': '', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/571759767896629250/C-94okMM_normal.jpeg', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'default_profile': True, 'followers_count': 221, 'follow_request_sent': None, 'profile_background_color': 'C0DEED'}, 'coordinates': {'type': 'Point', 'coordinates': [-78.805803, 42.869134]}, 'possibly_sensitive': False, 'geo': {'type': 'Point', 'coordinates': [42.869134, -78.805803]}, 'favorite_count': 0, 'contributors': None}"
2017_Q4_280,"[0, 0]","{'in_reply_to_screen_name': None, 'user': {'profile_banner_url': 'https://pbs.twimg.com/profile_banners/2812396208/1425183203', 'follow_request_sent': None, 'name': 'HunnyBon', 'verified': False, 'profile_sidebar_fill_color': '000000', 'profile_background_color': '000000', 'notifications': None, 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'id': 2812396208, 'geo_enabled': True, 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'default_profile': False, 'contributors_enabled': False, 'default_profile_image': False, 'location': 'New York, NY', 'profile_background_tile': False, 'translator_type': 'none', 'listed_count': 5, 'profile_link_color': '666666', 'protected': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/572570217272713216/rzw1Bbqs_normal.png', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/572570217272713216/rzw1Bbqs_normal.png', 'following': None, 'time_zone': None, 'friends_count': 68, 'url': 'http://www.hunnybon.com', 'profile_text_color': '000000', 'followers_count': 66, 'utc_offset': None, 'id_str': '2812396208', 'description': ""A Healthier Candy Store..organic, vegan, and nonGMO. Indulge your sweet tooth without the guilt. Chocolates, gummies, caramels...what's your indulgence?"", 'created_at': 'Tue Sep 16 03:56:36 +0000 2014', 'screen_name': 'HunnyBonSweets', 'favourites_count': 53, 'profile_use_background_image': False, 'profile_sidebar_border_color': '000000', 'lang': 'en', 'statuses_count': 252, 'is_translator': False}, 'retweet_count': 0, 'is_quote_status': False, 'in_reply_to_user_id': None, 'id': 925755798147313664, 'coordinates': {'type': 'Point', 'coordinates': [-74.0064, 40.7142]}, 'entities': {'symbols': [], 'urls': [{'expanded_url': '', 'display_url': 'instagram.com/p/Ba9WuoQlYuk/', 'url': '', 'indices': [98, 121]}], 'user_mentions': [], 'hashtags': []}, 'text': '🍫Hello November, and hello to our new Chocolate Matcha Truffles! 🍫RAW dark chocolate, CREAMY NUT… ', 'in_reply_to_status_id_str': None, 'in_reply_to_status_id': None, 'geo': {'type': 'Point', 'coordinates': [40.7142, -74.0064]}, 'favorited': False, 'reply_count': 0, 'place': {'country_code': 'US', 'bounding_box': {'type': 'Polygon', 'coordinates': [[[-74.026675, 40.683935], [-74.026675, 40.877483], [-73.910408, 40.877483], [-73.910408, 40.683935]]]}, 'attributes': {}, 'country': 'United States', 'url': '', 'full_name': 'Manhattan, NY', 'name': 'Manhattan', 'id': '01a9a39529b27f36', 'place_type': 'city'}, 'favorite_count': 0, 'retweeted': False, 'timestamp_ms': '1509552356646', 'possibly_sensitive': False, 'truncated': False, 'id_str': '925755798147313664', 'created_at': 'Wed Nov 01 16:05:56 +0000 2017', 'quote_count': 0, 'in_reply_to_user_id_str': None, 'contributors': None, 'source': '', 'lang': 'en', 'filter_level': 'low'}"
I am trying to load raw_tweet, which is a json object as a string and decode it into a json object. I keep getting errors regardless of how I decode the string.
import csv
import json
with open('testfile.csv','r', encoding='utf-8', newline='') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
jobj = row['raw_tweet'].replace("\'", "\"")
jobj = jobj.replace("None", "\"\"")
json.loads(jobj)
How I load the csv file. When I run the program, I get the following error. I also trying using panda dataframe to load and decode it into json object. I failed. Please suggest where I did wrong.
Traceback (most recent call last):
File "/Sandbox/csvfile.py", line 9, in <module>
json.loads(jobj)
File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/json/__init__.py", line 357, in loads
return _default_decoder.decode(s)
File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/json/decoder.py", line 337, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/json/decoder.py", line 355, in raw_decode
raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 184 (char 183)
So in your csv file within the column raw tweet there are instances of False without any quotes. Also replacing the single quotes to double quotes has major break condition like your json already has strings like y'all which inherently uses single quote. So we only need to replace quotes for the keys and actual values and not quotes that occur within the string. So there are a lot of conditions to be replaced.
So I would rather suggest a different way of evaluating the csv and dumping jsons of the raw_tweet column.
import pandas as pd
data = pd.read_csv("test.csv").to_dict('records')
for d in data:
raw_tweet_dict = eval(d['raw_tweet'])
with open("json_dump.json", "w") as fp:
json.dump(raw_tweet_dict, fp)
You can use the raw_tweet_dict as a dictionary if this needs further transformation.
Alternatively you can also use your approach but you have add a lot of condition which I have added for now, it should work on your csv sample.
with open("test.csv", "r") as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
jobj = row['raw_tweet'].replace('"', "'")
jobj = jobj.replace("None", "''")
jobj = jobj.replace("False", "'False'").replace("True", "'True'")
jobj = jobj.replace("':", '\":').replace(": '", ': \"').replace("',", '\",').replace(", '", ', \"').replace("{'", '{\"').replace("'}", '\"}')
json.loads(jobj)
I would like to turn a JSON data structure into a pandas dataframe. My data is retrieved from OpenWeatherMap. The resulting JSON contain multiple nested dictionaries which contain weather data on cities, divided by the URL where the data are retrieved from. Here the last two lines of the JSON, called json_data:
http://api.openweathermap.org/data/2.5/weather?units=Imperial&APPID=a13759df887d2de294c2c7adef912758&q=new norfolk:
{'coord': {'lon': 147.0587, 'lat': -42.7826}, 'weather': [{'id': 803, 'main': 'Clouds', 'description': 'broken clouds', 'icon': '04d'}], 'base': 'stations', 'main': {'temp': 46.04, 'feels_like': 44.29, 'temp_min': 43.92, 'temp_max': 51.93, 'pressure': 1000, 'humidity': 74}, 'visibility': 10000, 'wind': {'speed': 4, 'deg': 319, 'gust': 15.99}, 'clouds': {'all': 77}, 'dt': 1652657623, 'sys': {'type': 2, 'id': 2031307, 'country': 'AU', 'sunrise': 1652649449, 'sunset': 1652684337}, 'timezone': 36000, 'id': 2155415, 'name': 'New Norfolk', 'cod': 200}
http://api.openweathermap.org/data/2.5/weather?units=Imperial&APPID=a13759df887d2de294c2c7adef912758&q=fortuna:
{'coord': {'lon': -124.1573, 'lat': 40.5982}, 'weather': [{'id': 801, 'main': 'Clouds', 'description': 'few clouds', 'icon': '02d'}], 'base': 'stations', 'main': {'temp': 66.67, 'feels_like': 66.18, 'temp_min': 64.98, 'temp_max': 67.93, 'pressure': 1017, 'humidity': 67}, 'visibility': 10000, 'wind': {'speed': 17.27, 'deg': 360}, 'clouds': {'all': 20}, 'dt': 1652657623, 'sys': {'type': 2, 'id': 2040243, 'country': 'US', 'sunrise': 1652619589, 'sunset': 1652671580}, 'timezone': -25200, 'id': 5563839, 'name': 'Fortuna', 'cod': 200}
However, when I turn the JSON into a Pandas Dataframe, only the last dictionary goes into the dataframe.
Here is my code:
pd.set_option('display.max_columns', None)
pd.json_normalize(json_data)
Here is the result (I cannot copy the panda dataframe directly without losing formatting).
Why is only the last dictionary turned into a dataframe? How can I get a multiple-line dataframe?
If you're only seeing one line in your dataframe, you are probably overwriting your json_data with the last value.
Besides, you can normalize the weather column separately and join it to the rest:
json_data = [
{'coord': {'lon': 147.0587, 'lat': -42.7826}, 'weather': [{'id': 803, 'main': 'Clouds', 'description': 'broken clouds', 'icon': '04d'}], 'base': 'stations', 'main': {'temp': 46.04, 'feels_like': 44.29, 'temp_min': 43.92, 'temp_max': 51.93, 'pressure': 1000, 'humidity': 74}, 'visibility': 10000, 'wind': {'speed': 4, 'deg': 319, 'gust': 15.99}, 'clouds': {'all': 77}, 'dt': 1652657623, 'sys': {'type': 2, 'id': 2031307, 'country': 'AU', 'sunrise': 1652649449, 'sunset': 1652684337}, 'timezone': 36000, 'id': 2155415, 'name': 'New Norfolk', 'cod': 200},
{'coord': {'lon': -124.1573, 'lat': 40.5982}, 'weather': [{'id': 801, 'main': 'Clouds', 'description': 'few clouds', 'icon': '02d'}], 'base': 'stations', 'main': {'temp': 66.67, 'feels_like': 66.18, 'temp_min': 64.98, 'temp_max': 67.93, 'pressure': 1017, 'humidity': 67}, 'visibility': 10000, 'wind': {'speed': 17.27, 'deg': 360}, 'clouds': {'all': 20}, 'dt': 1652657623, 'sys': {'type': 2, 'id': 2040243, 'country': 'US', 'sunrise': 1652619589, 'sunset': 1652671580}, 'timezone': -25200, 'id': 5563839, 'name': 'Fortuna', 'cod': 200}
]
pd.set_option('display.max_columns', None)
df = pd.json_normalize(json_data)
df = df.loc[:, df.columns!='weather'].join(pd.json_normalize(json_data, record_path='weather', record_prefix='weather.'))
print(df)
Output:
base visibility dt timezone id name cod \
0 stations 10000 1652657623 36000 2155415 New Norfolk 200
1 stations 10000 1652657623 -25200 5563839 Fortuna 200
coord.lon coord.lat main.temp main.feels_like main.temp_min \
0 147.0587 -42.7826 46.04 44.29 43.92
1 -124.1573 40.5982 66.67 66.18 64.98
main.temp_max main.pressure main.humidity wind.speed wind.deg \
0 51.93 1000 74 4.00 319
1 67.93 1017 67 17.27 360
wind.gust clouds.all sys.type sys.id sys.country sys.sunrise \
0 15.99 77 2 2031307 AU 1652649449
1 NaN 20 2 2040243 US 1652619589
sys.sunset weather.id weather.main weather.description weather.icon
0 1652684337 803 Clouds broken clouds 04d
1 1652671580 801 Clouds few clouds 02d
As you can see, both lines are in the dataframe
I am trying to parse a json and insert the results in pandas dataframe.
My json looks like
{'result': {'data': [{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-01', 'name': ''}],
'metrics': [41, 4945]},
{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-02', 'name': ''}],
'metrics': [31, 2645]},
{'dimensions': [{'id': '219876166',
'name': 'Our awesome product'},
{'id': '2021-03-01', 'name': ''}], ....
So far, I've managed to get to this point:
[{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-01', 'name': ''}],
'metrics': [41, 4945]},
{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-02', 'name': ''}],
'metrics': [31, 2645]},
However, when I place it in Pandas I get
dimensions metrics
0 [{'id': '219876173', 'name': 'Our great product... [41, 4945]
1 [{'id': '219876173', 'name': 'Our great product... [31, 2645]
2 [{'id': '219876166', 'name': 'Our awesome product... [27, 2475]
I can now manually split the results in columns using some lambdas
df = pd.io.json.json_normalize(r.json().get('result').get('data'))
df['delivered_units'] = df['metrics'].apply(lambda x: x[0])
df['revenue'] = df['metrics'].apply(lambda x: x[1])
df['name'] = df['dimensions'].apply(lambda x: x[0])
df['sku'] = df['name'].apply(lambda x: x['name'])
Is there a better way to parse json directly without lambdas?
Look into flatten_json:
data = {'result': {'data': [{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-01', 'name': ''}],
'metrics': [41, 4945]},
{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-02', 'name': ''}],
'metrics': [31, 2645]},
{'dimensions': [{'id': '219876166',
'name': 'Our awesome product'},
{'id': '2021-03-01', 'name': ''}]}]}}
from flatten_json import flatten
dic_flattened = (flatten(d, '.') for d in data['result']['data'])
df = pd.DataFrame(dic_flattened)
dimensions.0.id dimensions.0.name dimensions.1.id dimensions.1.name metrics.0 metrics.1
0 219876173 Our great product 2021-03-01 41.0 4945.0
1 219876173 Our great product 2021-03-02 31.0 2645.0
2 219876166 Our awesome product 2021-03-01 NaN NaN
I'm trying to use the peopledata API at peopledatalabs.com to retrieve data. I am using the sample python code located at https://docs.peopledatalabs.com/docs/quickstart
which is:
import requests
API_KEY = # YOUR API KEY
###
pdl_url = "https://api.peopledatalabs.com/v4/person?api_key={}&".format(API_KEY)
param_string = "name=sean thorne&company=peopledatalabs.com"
json_response = requests.get(pdl_url + param_string).json()
# OR
pdl_url = "https://api.peopledatalabs.com/v4/person"
params = {
"api_key": API_KEY,
"name": ["sean thorne"],
"company": ["peopledatalabs.com"]
}
json_response = requests.get(pdl_url, params=params).json()
json_response returns:
{'status': 200,
'likelihood': 5,
'data': {'id': 'yj5RUCSORrirXf2sf3gR',
'skills': [{'name': 'social media'},
{'name': 'strategic partnerships'},
{'name': 'public speaking'},
{'name': 'sales'},
{'name': 'photoshop'},
{'name': 'networking'},
{'name': 'mobile marketing'},
{'name': 'start ups'},
{'name': 'business development'},
{'name': 'fundraising'},
{'name': 'seo'},
{'name': 'strategy'},
{'name': 'idea generation'},
{'name': 'enterprise technology sales'},
{'name': 'entrepreneurship'},
{'name': 'social networking'},
{'name': 'creative strategy'},
{'name': 'time management'},
{'name': 'product management'},
{'name': 'social media marketing'},
{'name': 'css'},
{'name': 'https'},
{'name': 'saas'},
{'name': 'management'},
{'name': 'project management'},
{'name': 'public relations'},
{'name': 'marketing communications'},
{'name': 'sales/marketing and strategic partnerships'},
{'name': 'marketing strategy'},
{'name': 'mobile devices'},
{'name': 'installation'},
{'name': 'company culture'},
{'name': 'strategic vision'},
{'name': 'html5'},
{'name': 'hiring'}],
'industries': [{'name': 'computer software', 'is_primary': True}],
'interests': [{'name': 'location based services'},
{'name': 'mobile'},
{'name': 'social media'},
{'name': 'colleges'},
{'name': 'university students'},
{'name': 'consumer internet'},
{'name': 'college campuses'}],
'profiles': [{'network': 'linkedin',
'ids': ['145991517'],
'clean': 'linkedin.com/in/seanthorne',
'aliases': [],
'username': 'seanthorne',
'is_primary': True,
'url': 'http://www.linkedin.com/in/seanthorne'},
{'network': 'linkedin',
'ids': [],
'clean': 'linkedin.com/in/sean-thorne-9b9a8540',
'aliases': ['linkedin.com/pub/sean-thorne/40/a85/9b9'],
'username': 'sean-thorne-9b9a8540',
'is_primary': False,
'url': 'http://www.linkedin.com/in/sean-thorne-9b9a8540'},
{'network': 'twitter',
'ids': [],
'clean': 'twitter.com/seanthorne5',
'aliases': [],
'username': 'seanthorne5',
'url': 'http://www.twitter.com/seanthorne5'},
{'network': 'angellist',
'ids': [],
'clean': 'angel.co/475041',
'aliases': [],
'username': '475041',
'url': 'http://www.angel.co/475041'}],
'emails': [{'address': 'sthorne#uoregon.edu',
'type': None,
'sha256': 'e206e6cd7fa5f9499fd6d2d943dcf7d9c1469bad351061483f5ce7181663b8d4',
'domain': 'uoregon.edu',
'local': 'sthorne'},
{'address': 'sean#peopledatalabs.com',
'type': 'current_professional',
'sha256': '138ea1a7076bb01889af2309de02e8b826c27f022b21ea8cf11aca9285d5a04e',
'domain': 'peopledatalabs.com',
'local': 'sean'}],
'phone_numbers': [{'E164': '+14155688415',
'number': '+14155688415',
'type': None,
'country_code': '1',
'national_number': '4155688415',
'area_code': '415'}],
'birth_date_fuzzy': '1990',
'birth_date': None,
'gender': 'male',
'primary': {'job': {'company': {'name': 'people data labs',
'founded': '2015',
'industry': 'information technology and services',
'location': {'locality': 'san francisco',
'region': 'california',
'country': 'united states'},
'profiles': ['linkedin.com/company/peopledatalabs',
'linkedin.com/company/1640694639'],
'website': 'peopledatalabs.com',
'size': '11-50'},
'locations': [],
'end_date': None,
'start_date': '2015-03',
'title': {'levels': ['owner'],
'name': 'co-founder',
'functions': ['co founder']},
'last_updated': '2019-05-01'},
'location': {'name': 'san francisco, california, united states',
'locality': 'san francisco',
'region': 'california',
'country': 'united states',
'last_updated': '2019-01-01',
'continent': 'north america'},
'name': {'first_name': 'sean',
'middle_name': None,
'last_name': 'thorne',
'clean': 'sean thorne'},
'industry': 'computer software',
'personal_emails': [],
'linkedin': 'linkedin.com/in/seanthorne',
'work_emails': ['sean#peopledatalabs.com'],
'other_emails': ['sthorne#uoregon.edu']},
'names': [{'first_name': 'sean',
'last_name': 'thorne',
'suffix': None,
'middle_name': None,
'middle_initial': None,
'name': 'sean thorne',
'clean': 'sean thorne',
'is_primary': True}],
'locations': [{'name': 'san francisco, california, united states',
'locality': 'san francisco',
'region': 'california',
'subregion': 'city and county of san francisco',
'country': 'united states',
'continent': 'north america',
'type': 'locality',
'geo': '37.77,-122.41',
'postal_code': None,
'zip_plus_4': None,
'street_address': None,
'address_line_2': None,
'most_recent': True,
'is_primary': True,
'last_updated': '2019-01-01'}],
'experience': [{'company': {'name': 'hallspot',
'size': '1-10',
'founded': '2013',
'industry': 'computer software',
'location': {'locality': 'portland',
'region': 'oregon',
'country': 'united states'},
'profiles': ['linkedin.com/company/hallspot',
'twitter.com/hallspot',
'crunchbase.com/organization/hallspot',
'linkedin.com/company/3019184'],
'website': 'hallspot.com'},
'locations': [],
'end_date': '2015-02',
'start_date': '2012-08',
'title': {'levels': ['owner'],
'name': 'co-founder',
'functions': ['co founder']},
'type': None,
'is_primary': False,
'most_recent': False,
'last_updated': None},
{'company': {'name': 'people data labs',
'size': '11-50',
'founded': '2015',
'industry': 'information technology and services',
'location': {'locality': 'san francisco',
'region': 'california',
'country': 'united states'},
'profiles': ['linkedin.com/company/peopledatalabs',
'linkedin.com/company/1640694639'],
'website': 'peopledatalabs.com'},
'locations': [],
'end_date': None,
'start_date': '2015-03',
'title': {'levels': ['owner'],
'name': 'co-founder',
'functions': ['co founder']},
'type': None,
'is_primary': True,
'most_recent': True,
'last_updated': '2019-05-01'}],
'education': [{'school': {'name': 'university of oregon',
'type': 'post-secondary institution',
'location': 'eugene, oregon, united states',
'profiles': ['linkedin.com/edu/university-of-oregon-19207',
'facebook.com/universityoforegon',
'twitter.com/uoregon'],
'website': 'uoregon.edu'},
'end_date': '2014',
'start_date': '2010',
'gpa': None,
'degrees': [],
'majors': ['entrepreneurship'],
'minors': [],
'locations': []}]},
'dataset_version': '7.3'}
While trying to get the phone_numbers field, I have tried:
print(json_response["phone_numbers"])
and got the error code:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-132-2acb0f9f59c5> in <module>()
----> 1 json_response["phone_numbers"]
KeyError: 'phone_numbers'
I am hoping to get the number '+14155688415' as my result
print(json_response["data"]["phone_numbers"])
When dealing with lots of data like that, JSONLint is a good resource to stay organized.
I'm starting to dig into graph databases, but i have no idea, how these graphs are stored internally. Let's say i have this graph (taken from Wikipedia):
How do i serialize this graph as a key-value object? (a Python dict, for example)
I imagine two dicts, one for vertices and one for edges:
{'vertices':
{'1': {'Name': 'Alice', 'Age': 18},
'2': {'Name': 'Bob', 'Age': 22},
'3': {'Type': 'Group', 'Name': 'Chess'}},
'edges':
{'100': {'Label': 'knows', 'Since': '2001/10/03'},
'101': {'Label': 'knows', 'Since': '2001/10/04'},
'102': {'Label': 'is_member', 'Since': '2005/7/01'},
'103': {'Label': 'Members'},
'104': {'Label': 'Members'},
'105': {'Label': 'is_member', 'Since': '2011/02/14'}},
'connections': [['1', '2', '100'], ['2', '1', '101'],
['1', '3', '102'], ['3', '1', '103'],
['3', '2', '104'], ['2', '3', '105']]}
But i'm not sure, whether this is the most practical implementation. Maybe the "connections" should be inside "vertices" dict. So, what is the best way to implement graph datastore using key-value objects? What and where can i read more about it?
Possibly related, but not a duplicate: How to represent a strange graph in some data structure
The normal pattern is to not have a separate connections structure but to put that information in the edges structure. This gives something like:
{
'vertices': {
'1': {'Name': 'Alice', 'Age': 18},
'2': {'Name': 'Bob', 'Age': 22},
'3': {'Type': 'Group', 'Name': 'Chess'} },
'edges': [
{'from': '1', 'to': '2', 'Label': 'knows', 'Since': '2001/10/03'},
{'from': '2', 'to': '1', 'Label': 'knows', 'Since': '2001/10/04'},
{'from': '1', 'to': '3', 'Label': 'is_member', 'Since': '2005/7/01'},
{'from': '3', 'to': '1', 'Label': 'Members'},
{'from': '3', 'to': '2', 'Label': 'Members'},
{'from': '2', 'to': '3', 'Label': 'is_member', 'Since': '2011/02/14'} ] }
seems ok - each object has its it, there is no duplications. it's good for 'read and process purpose'. but there is no 'best' representation. it always depends on your purpose. do you want to be able to quickly find vertices by name? or edges by date? or maybe you want to quickly test if two vertices are connected? or the opposite - you want to quickly modify some parts of the graph? each purpose requires different data structures of database tables
how these graphs are stored internally
how do I serialize this graph as a key-value object
These questions are different and they need different answers.
In the former case, the main requirement is probably to perform complex queries efficiently.
I'd suggest to investigate existing industrial-strength solutions.
In NoSQL terms, these nested key-value objects are documents. Hence, one could look into how graphs are stored in "layered" multi-model databases that:
support graph data model, and
use underlying document data model.
Examples of such databases are ArangoDB, OrientDB, Azure CosmosDB.
You could also replace "document data model" with "wide column data model", because wide column data model can be conidered as two-dimensional key-value model.
Examples of such databases are DataStax Enterprise Graph and perhaps Grakn.
For instance, in ArangoDB, edges are stored as regular documents, but in special collections.
Obviously, data structures used may be accompanied with additional indexes etc. (or not).
So, what is the best way to implement graph datastore using key-value objects?
What and where can i read more about it?
I'd suggest another one article from ArangoDB:
Storing a graph in a pure document store
I'd make few changes in Eamonn's answer.
Every vertex and edge has 3 things.. id, Label and Properties
{
'vertices': {
'1': {'Label' : Person, 'Properties' : { 'Name': 'Alice', 'Age': 18}},
'2': {'Label' : Person, 'Properties' : {'Name': 'Bob', 'Age': 22}},
'3': {'Label': 'Group', 'Properties' : { 'Name': 'Chess'} },
'edges': [
'4' : {'from': '1', 'to': '2', 'Label': 'knows', 'Properties':{'Since': '2001/10/03' , 'Until' : '2001/10/03'}},
'5' : {'from': '2', 'to': '1', 'Label': 'knows', 'Properties':{'Since': '2001/10/04', 'Until' : '2001/10/05'}}
]
}
This way you can do query by vertex/edge, and their Labels and their properties.
I would serialize it like this, except you should choose the keys based on what you are looking up by. I assumed you are using the id, but perhaps using the name could be better.
{
'members': {
'1': {
'id': '1',
'name': 'Alice',
'age': 18,
'groups': {
'3': {
'path': 'groups.3',
'since': '2005-07-01'
}
},
'knows': {
'2': {
'path': 'members.2',
'since': '2001-10-03'
}
}
},
'2': {
'id': '2',
'name': 'Bob',
'age': 22,
'groups': {
'3': {
'path': 'groups.3',
'since': '2011-02-14'
}
},
'knows': {
'1': {
'path': 'members.1',
'since': '2001-10-04'
}
}
}
},
'groups': {
'3': {
'id': '3',
'name': 'Chess',
'members': {
'1': { 'path': 'members.1' },
'2': { 'path': 'members.2' }
}
}
}
}
You can serialize graphs directly into key-value pairs if you have a way of serializing references to other parts of the graph, which is what I use 'path' for. If I was deserializing it into a dict, I may consider replacing the path values with the actual dictionaries they refer to. Keep in mind that this may cause circular references which could cause problems if you were serializing it into json or something.
I would add an adjacency to the structure too. My take would be like this,
{
'vertices': {
'1': {'Name': 'Alice', 'Age': 18},
'2': {'Name': 'Bob', 'Age': 22},
'3': {'Type': 'Group', 'Name': 'Chess'}
},
'edges': {
'100' : {'from': '1', 'to': '2', 'Label': 'knows', 'Since': '2001/10/03'},
'101': {'from': '2', 'to': '1', 'Label': 'knows', 'Since': '2001/10/04'},
....
},
'adjacency': {
'1': ['101', '102'],
...
}
}
This way I can easily find which edges are adjacent to my vertices instead of iterating through all the edges.