I'm trying to use the peopledata API at peopledatalabs.com to retrieve data. I am using the sample python code located at https://docs.peopledatalabs.com/docs/quickstart
which is:
import requests
API_KEY = # YOUR API KEY
###
pdl_url = "https://api.peopledatalabs.com/v4/person?api_key={}&".format(API_KEY)
param_string = "name=sean thorne&company=peopledatalabs.com"
json_response = requests.get(pdl_url + param_string).json()
# OR
pdl_url = "https://api.peopledatalabs.com/v4/person"
params = {
"api_key": API_KEY,
"name": ["sean thorne"],
"company": ["peopledatalabs.com"]
}
json_response = requests.get(pdl_url, params=params).json()
json_response returns:
{'status': 200,
'likelihood': 5,
'data': {'id': 'yj5RUCSORrirXf2sf3gR',
'skills': [{'name': 'social media'},
{'name': 'strategic partnerships'},
{'name': 'public speaking'},
{'name': 'sales'},
{'name': 'photoshop'},
{'name': 'networking'},
{'name': 'mobile marketing'},
{'name': 'start ups'},
{'name': 'business development'},
{'name': 'fundraising'},
{'name': 'seo'},
{'name': 'strategy'},
{'name': 'idea generation'},
{'name': 'enterprise technology sales'},
{'name': 'entrepreneurship'},
{'name': 'social networking'},
{'name': 'creative strategy'},
{'name': 'time management'},
{'name': 'product management'},
{'name': 'social media marketing'},
{'name': 'css'},
{'name': 'https'},
{'name': 'saas'},
{'name': 'management'},
{'name': 'project management'},
{'name': 'public relations'},
{'name': 'marketing communications'},
{'name': 'sales/marketing and strategic partnerships'},
{'name': 'marketing strategy'},
{'name': 'mobile devices'},
{'name': 'installation'},
{'name': 'company culture'},
{'name': 'strategic vision'},
{'name': 'html5'},
{'name': 'hiring'}],
'industries': [{'name': 'computer software', 'is_primary': True}],
'interests': [{'name': 'location based services'},
{'name': 'mobile'},
{'name': 'social media'},
{'name': 'colleges'},
{'name': 'university students'},
{'name': 'consumer internet'},
{'name': 'college campuses'}],
'profiles': [{'network': 'linkedin',
'ids': ['145991517'],
'clean': 'linkedin.com/in/seanthorne',
'aliases': [],
'username': 'seanthorne',
'is_primary': True,
'url': 'http://www.linkedin.com/in/seanthorne'},
{'network': 'linkedin',
'ids': [],
'clean': 'linkedin.com/in/sean-thorne-9b9a8540',
'aliases': ['linkedin.com/pub/sean-thorne/40/a85/9b9'],
'username': 'sean-thorne-9b9a8540',
'is_primary': False,
'url': 'http://www.linkedin.com/in/sean-thorne-9b9a8540'},
{'network': 'twitter',
'ids': [],
'clean': 'twitter.com/seanthorne5',
'aliases': [],
'username': 'seanthorne5',
'url': 'http://www.twitter.com/seanthorne5'},
{'network': 'angellist',
'ids': [],
'clean': 'angel.co/475041',
'aliases': [],
'username': '475041',
'url': 'http://www.angel.co/475041'}],
'emails': [{'address': 'sthorne#uoregon.edu',
'type': None,
'sha256': 'e206e6cd7fa5f9499fd6d2d943dcf7d9c1469bad351061483f5ce7181663b8d4',
'domain': 'uoregon.edu',
'local': 'sthorne'},
{'address': 'sean#peopledatalabs.com',
'type': 'current_professional',
'sha256': '138ea1a7076bb01889af2309de02e8b826c27f022b21ea8cf11aca9285d5a04e',
'domain': 'peopledatalabs.com',
'local': 'sean'}],
'phone_numbers': [{'E164': '+14155688415',
'number': '+14155688415',
'type': None,
'country_code': '1',
'national_number': '4155688415',
'area_code': '415'}],
'birth_date_fuzzy': '1990',
'birth_date': None,
'gender': 'male',
'primary': {'job': {'company': {'name': 'people data labs',
'founded': '2015',
'industry': 'information technology and services',
'location': {'locality': 'san francisco',
'region': 'california',
'country': 'united states'},
'profiles': ['linkedin.com/company/peopledatalabs',
'linkedin.com/company/1640694639'],
'website': 'peopledatalabs.com',
'size': '11-50'},
'locations': [],
'end_date': None,
'start_date': '2015-03',
'title': {'levels': ['owner'],
'name': 'co-founder',
'functions': ['co founder']},
'last_updated': '2019-05-01'},
'location': {'name': 'san francisco, california, united states',
'locality': 'san francisco',
'region': 'california',
'country': 'united states',
'last_updated': '2019-01-01',
'continent': 'north america'},
'name': {'first_name': 'sean',
'middle_name': None,
'last_name': 'thorne',
'clean': 'sean thorne'},
'industry': 'computer software',
'personal_emails': [],
'linkedin': 'linkedin.com/in/seanthorne',
'work_emails': ['sean#peopledatalabs.com'],
'other_emails': ['sthorne#uoregon.edu']},
'names': [{'first_name': 'sean',
'last_name': 'thorne',
'suffix': None,
'middle_name': None,
'middle_initial': None,
'name': 'sean thorne',
'clean': 'sean thorne',
'is_primary': True}],
'locations': [{'name': 'san francisco, california, united states',
'locality': 'san francisco',
'region': 'california',
'subregion': 'city and county of san francisco',
'country': 'united states',
'continent': 'north america',
'type': 'locality',
'geo': '37.77,-122.41',
'postal_code': None,
'zip_plus_4': None,
'street_address': None,
'address_line_2': None,
'most_recent': True,
'is_primary': True,
'last_updated': '2019-01-01'}],
'experience': [{'company': {'name': 'hallspot',
'size': '1-10',
'founded': '2013',
'industry': 'computer software',
'location': {'locality': 'portland',
'region': 'oregon',
'country': 'united states'},
'profiles': ['linkedin.com/company/hallspot',
'twitter.com/hallspot',
'crunchbase.com/organization/hallspot',
'linkedin.com/company/3019184'],
'website': 'hallspot.com'},
'locations': [],
'end_date': '2015-02',
'start_date': '2012-08',
'title': {'levels': ['owner'],
'name': 'co-founder',
'functions': ['co founder']},
'type': None,
'is_primary': False,
'most_recent': False,
'last_updated': None},
{'company': {'name': 'people data labs',
'size': '11-50',
'founded': '2015',
'industry': 'information technology and services',
'location': {'locality': 'san francisco',
'region': 'california',
'country': 'united states'},
'profiles': ['linkedin.com/company/peopledatalabs',
'linkedin.com/company/1640694639'],
'website': 'peopledatalabs.com'},
'locations': [],
'end_date': None,
'start_date': '2015-03',
'title': {'levels': ['owner'],
'name': 'co-founder',
'functions': ['co founder']},
'type': None,
'is_primary': True,
'most_recent': True,
'last_updated': '2019-05-01'}],
'education': [{'school': {'name': 'university of oregon',
'type': 'post-secondary institution',
'location': 'eugene, oregon, united states',
'profiles': ['linkedin.com/edu/university-of-oregon-19207',
'facebook.com/universityoforegon',
'twitter.com/uoregon'],
'website': 'uoregon.edu'},
'end_date': '2014',
'start_date': '2010',
'gpa': None,
'degrees': [],
'majors': ['entrepreneurship'],
'minors': [],
'locations': []}]},
'dataset_version': '7.3'}
While trying to get the phone_numbers field, I have tried:
print(json_response["phone_numbers"])
and got the error code:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-132-2acb0f9f59c5> in <module>()
----> 1 json_response["phone_numbers"]
KeyError: 'phone_numbers'
I am hoping to get the number '+14155688415' as my result
print(json_response["data"]["phone_numbers"])
When dealing with lots of data like that, JSONLint is a good resource to stay organized.
Related
I am writing a python program that load a json string and decode from a .csv file. The .csv file includs the title and one entry below for reference.
key,labels,raw_tweet
2017_Q3_270,"[0, 0]","{'in_reply_to_screen_name': None, 'user': {'profile_banner_url': 'https://pbs.twimg.com/profile_banners/148491006/1494299074', 'follow_request_sent': None, 'name': 'Vanessa', 'verified': False, 'profile_sidebar_fill_color': 'FFFFFF', 'profile_background_color': '352726', 'is_translator': False, 'profile_background_image_url_https': 'https://pbs.twimg.com/profile_background_images/578700342637895680/j-o_FCwY.png', 'id': 148491006, 'geo_enabled': True, 'profile_background_image_url': 'http://pbs.twimg.com/profile_background_images/578700342637895680/j-o_FCwY.png', 'default_profile': False, 'contributors_enabled': False, 'default_profile_image': False, 'location': 'everywhere', 'profile_background_tile': True, 'notifications': None, 'listed_count': 9, 'profile_link_color': '7FDBB6', 'protected': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/891824958225215488/h__HMMlC_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/891824958225215488/h__HMMlC_normal.jpg', 'following': None, 'time_zone': 'Eastern Time (US & Canada)', 'friends_count': 588, 'url': 'https://Instagram.com/vmanks/', 'profile_text_color': '333333', 'followers_count': 541, 'utc_offset': -14400, 'id_str': '148491006', 'description': 'from the bronx, studying at cornell, slowly but surely finding solace', 'created_at': 'Wed May 26 21:01:46 +0000 2010', 'screen_name': 'vmankss', 'favourites_count': 19781, 'profile_use_background_image': True, 'profile_sidebar_border_color': 'FFFFFF', 'statuses_count': 50506, 'lang': 'en'}, 'retweet_count': 0, 'is_quote_status': False, 'in_reply_to_user_id': None, 'id': 901132409508421632, 'coordinates': None, 'entities': {'symbols': [], 'urls': [], 'user_mentions': [], 'hashtags': []}, 'text': ""I basically just go to financial aid to take candy from the candy bowl, y'all are unhelpful"", 'in_reply_to_status_id_str': None, 'in_reply_to_status_id': None, 'geo': None, 'favorited': False, 'place': {'country_code': 'US', 'bounding_box': {'type': 'Polygon', 'coordinates': [[[-76.547738, 42.41815], [-76.547738, 42.480827], [-76.469987, 42.480827], [-76.469987, 42.41815]]]}, 'attributes': {}, 'country': 'United States', 'url': 'https://api.twitter.com/1.1/geo/id/ae76bffcaf2bf545.json', 'full_name': 'Ithaca, NY', 'name': 'Ithaca', 'id': 'ae76bffcaf2bf545', 'place_type': 'city'}, 'favorite_count': 0, 'retweeted': False, 'timestamp_ms': '1503681683314', 'truncated': False, 'id_str': '901132409508421632', 'created_at': 'Fri Aug 25 17:21:23 +0000 2017', 'in_reply_to_user_id_str': None, 'contributors': None, 'source': 'Twitter for iPhone', 'lang': 'en', 'filter_level': 'low'}"
2015_Q1_494,"[0, 0]","{'in_reply_to_user_id_str': None, 'id_str': '577090329658175488', 'timestamp_ms': '1426424031067', 'in_reply_to_status_id_str': None, 'lang': 'en', 'favorited': False, 'retweeted': False, 'in_reply_to_status_id': None, 'id': 577090329658175488, 'filter_level': 'low', 'created_at': 'Sun Mar 15 12:53:51 +0000 2015', 'in_reply_to_user_id': None, 'place': {'country': 'United States', 'url': 'https://api.twitter.com/1.1/geo/id/a307591cd0413588.json', 'id': 'a307591cd0413588', 'country_code': 'US', 'place_type': 'city', 'attributes': {}, 'full_name': 'Buffalo, NY', 'bounding_box': {'type': 'Polygon', 'coordinates': [[[-78.912276, 42.826008], [-78.912276, 42.966451], [-78.79485, 42.966451], [-78.79485, 42.826008]]]}, 'name': 'Buffalo'}, 'truncated': False, 'entities': {'user_mentions': [], 'hashtags': [], 'symbols': [], 'trends': [], 'urls': []}, 'text': '""He licked coke off an encyclopedia"" only in south buffalo', 'retweet_count': 0, 'source': 'Twitter for iPhone', 'in_reply_to_screen_name': None, 'user': {'id_str': '480575646', 'friends_count': 367, 'profile_image_url': 'http://pbs.twimg.com/profile_images/571759767896629250/C-94okMM_normal.jpeg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/480575646/1402863912', 'listed_count': 2, 'screen_name': 'MichaelaFeeney', 'lang': 'en', 'notifications': None, 'profile_text_color': '333333', 'verified': False, 'favourites_count': 3995, 'name': 'Michæla...', 'protected': False, 'statuses_count': 2666, 'id': 480575646, 'profile_sidebar_border_color': 'C0DEED', 'profile_use_background_image': True, 'profile_sidebar_fill_color': 'DDEEF6', 'is_translator': False, 'time_zone': None, 'profile_link_color': '0084B4', 'created_at': 'Wed Feb 01 17:11:27 +0000 2012', 'geo_enabled': True, 'url': None, 'contributors_enabled': False, 'following': None, 'default_profile_image': False, 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'description': 'They call me Lông Isländ. Brockport2018✌', 'utc_offset': None, 'location': '', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/571759767896629250/C-94okMM_normal.jpeg', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'default_profile': True, 'followers_count': 221, 'follow_request_sent': None, 'profile_background_color': 'C0DEED'}, 'coordinates': {'type': 'Point', 'coordinates': [-78.805803, 42.869134]}, 'possibly_sensitive': False, 'geo': {'type': 'Point', 'coordinates': [42.869134, -78.805803]}, 'favorite_count': 0, 'contributors': None}"
2017_Q4_280,"[0, 0]","{'in_reply_to_screen_name': None, 'user': {'profile_banner_url': 'https://pbs.twimg.com/profile_banners/2812396208/1425183203', 'follow_request_sent': None, 'name': 'HunnyBon', 'verified': False, 'profile_sidebar_fill_color': '000000', 'profile_background_color': '000000', 'notifications': None, 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'id': 2812396208, 'geo_enabled': True, 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'default_profile': False, 'contributors_enabled': False, 'default_profile_image': False, 'location': 'New York, NY', 'profile_background_tile': False, 'translator_type': 'none', 'listed_count': 5, 'profile_link_color': '666666', 'protected': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/572570217272713216/rzw1Bbqs_normal.png', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/572570217272713216/rzw1Bbqs_normal.png', 'following': None, 'time_zone': None, 'friends_count': 68, 'url': 'http://www.hunnybon.com', 'profile_text_color': '000000', 'followers_count': 66, 'utc_offset': None, 'id_str': '2812396208', 'description': ""A Healthier Candy Store..organic, vegan, and nonGMO. Indulge your sweet tooth without the guilt. Chocolates, gummies, caramels...what's your indulgence?"", 'created_at': 'Tue Sep 16 03:56:36 +0000 2014', 'screen_name': 'HunnyBonSweets', 'favourites_count': 53, 'profile_use_background_image': False, 'profile_sidebar_border_color': '000000', 'lang': 'en', 'statuses_count': 252, 'is_translator': False}, 'retweet_count': 0, 'is_quote_status': False, 'in_reply_to_user_id': None, 'id': 925755798147313664, 'coordinates': {'type': 'Point', 'coordinates': [-74.0064, 40.7142]}, 'entities': {'symbols': [], 'urls': [{'expanded_url': '', 'display_url': 'instagram.com/p/Ba9WuoQlYuk/', 'url': '', 'indices': [98, 121]}], 'user_mentions': [], 'hashtags': []}, 'text': '🍫Hello November, and hello to our new Chocolate Matcha Truffles! 🍫RAW dark chocolate, CREAMY NUT… ', 'in_reply_to_status_id_str': None, 'in_reply_to_status_id': None, 'geo': {'type': 'Point', 'coordinates': [40.7142, -74.0064]}, 'favorited': False, 'reply_count': 0, 'place': {'country_code': 'US', 'bounding_box': {'type': 'Polygon', 'coordinates': [[[-74.026675, 40.683935], [-74.026675, 40.877483], [-73.910408, 40.877483], [-73.910408, 40.683935]]]}, 'attributes': {}, 'country': 'United States', 'url': '', 'full_name': 'Manhattan, NY', 'name': 'Manhattan', 'id': '01a9a39529b27f36', 'place_type': 'city'}, 'favorite_count': 0, 'retweeted': False, 'timestamp_ms': '1509552356646', 'possibly_sensitive': False, 'truncated': False, 'id_str': '925755798147313664', 'created_at': 'Wed Nov 01 16:05:56 +0000 2017', 'quote_count': 0, 'in_reply_to_user_id_str': None, 'contributors': None, 'source': '', 'lang': 'en', 'filter_level': 'low'}"
I am trying to load raw_tweet, which is a json object as a string and decode it into a json object. I keep getting errors regardless of how I decode the string.
import csv
import json
with open('testfile.csv','r', encoding='utf-8', newline='') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
jobj = row['raw_tweet'].replace("\'", "\"")
jobj = jobj.replace("None", "\"\"")
json.loads(jobj)
How I load the csv file. When I run the program, I get the following error. I also trying using panda dataframe to load and decode it into json object. I failed. Please suggest where I did wrong.
Traceback (most recent call last):
File "/Sandbox/csvfile.py", line 9, in <module>
json.loads(jobj)
File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/json/__init__.py", line 357, in loads
return _default_decoder.decode(s)
File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/json/decoder.py", line 337, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/json/decoder.py", line 355, in raw_decode
raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 184 (char 183)
So in your csv file within the column raw tweet there are instances of False without any quotes. Also replacing the single quotes to double quotes has major break condition like your json already has strings like y'all which inherently uses single quote. So we only need to replace quotes for the keys and actual values and not quotes that occur within the string. So there are a lot of conditions to be replaced.
So I would rather suggest a different way of evaluating the csv and dumping jsons of the raw_tweet column.
import pandas as pd
data = pd.read_csv("test.csv").to_dict('records')
for d in data:
raw_tweet_dict = eval(d['raw_tweet'])
with open("json_dump.json", "w") as fp:
json.dump(raw_tweet_dict, fp)
You can use the raw_tweet_dict as a dictionary if this needs further transformation.
Alternatively you can also use your approach but you have add a lot of condition which I have added for now, it should work on your csv sample.
with open("test.csv", "r") as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
jobj = row['raw_tweet'].replace('"', "'")
jobj = jobj.replace("None", "''")
jobj = jobj.replace("False", "'False'").replace("True", "'True'")
jobj = jobj.replace("':", '\":').replace(": '", ': \"').replace("',", '\",').replace(", '", ', \"').replace("{'", '{\"').replace("'}", '\"}')
json.loads(jobj)
I am trying to parse a json and insert the results in pandas dataframe.
My json looks like
{'result': {'data': [{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-01', 'name': ''}],
'metrics': [41, 4945]},
{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-02', 'name': ''}],
'metrics': [31, 2645]},
{'dimensions': [{'id': '219876166',
'name': 'Our awesome product'},
{'id': '2021-03-01', 'name': ''}], ....
So far, I've managed to get to this point:
[{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-01', 'name': ''}],
'metrics': [41, 4945]},
{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-02', 'name': ''}],
'metrics': [31, 2645]},
However, when I place it in Pandas I get
dimensions metrics
0 [{'id': '219876173', 'name': 'Our great product... [41, 4945]
1 [{'id': '219876173', 'name': 'Our great product... [31, 2645]
2 [{'id': '219876166', 'name': 'Our awesome product... [27, 2475]
I can now manually split the results in columns using some lambdas
df = pd.io.json.json_normalize(r.json().get('result').get('data'))
df['delivered_units'] = df['metrics'].apply(lambda x: x[0])
df['revenue'] = df['metrics'].apply(lambda x: x[1])
df['name'] = df['dimensions'].apply(lambda x: x[0])
df['sku'] = df['name'].apply(lambda x: x['name'])
Is there a better way to parse json directly without lambdas?
Look into flatten_json:
data = {'result': {'data': [{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-01', 'name': ''}],
'metrics': [41, 4945]},
{'dimensions': [{'id': '219876173',
'name': 'Our great product'},
{'id': '2021-03-02', 'name': ''}],
'metrics': [31, 2645]},
{'dimensions': [{'id': '219876166',
'name': 'Our awesome product'},
{'id': '2021-03-01', 'name': ''}]}]}}
from flatten_json import flatten
dic_flattened = (flatten(d, '.') for d in data['result']['data'])
df = pd.DataFrame(dic_flattened)
dimensions.0.id dimensions.0.name dimensions.1.id dimensions.1.name metrics.0 metrics.1
0 219876173 Our great product 2021-03-01 41.0 4945.0
1 219876173 Our great product 2021-03-02 31.0 2645.0
2 219876166 Our awesome product 2021-03-01 NaN NaN
i have a following json file and i would like to read all the parameters: "dataRecordId" only and store them into a df:
{'responseInformation': '20 metadata records in response.',
'metaDataResponse': [{'timestampFrom': '2020-10-07T10:19:07.7810000Z',
'timestampTo': '2020-10-07T23:59:59.9999990Z',
'component': {'type': '', 'id': '', 'name': '', 'comment': ''},
'resource': {'type': 'EQU', 'id': '6100380', 'name': '', 'comment': ''},
'processStep': {'type': '', 'id': '', 'name': '', 'comment': ''},
'context': '',
'dataRecords': [{'dataRecordId': '171533103',
'groupName': 'Process',
'sensorName': 'AutomaticProcessActive',
'profile': 'sd',
'type': 'Switch2Way',
'unit': 'state',
'returnType': 'timeSeries'}]},
{'timestampFrom': '2020-10-08T00:00:00.6540000Z',
'timestampTo': '2020-10-08T23:59:59.9999990Z',
'component': {'type': '', 'id': '', 'name': '', 'comment': ''},
'resource': {'type': 'EQU', 'id': '6100380', 'name': '', 'comment': ''},
'processStep': {'type': '', 'id': '', 'name': '', 'comment': ''},
'context': '',
'dataRecords': [{'dataRecordId': '171534669',
'groupName': 'Process',
'sensorName': 'AutomaticProcessActive',
'profile': 'sd',
'type': 'Switch2Way',
'unit': 'state',
'returnType': 'timeSeries'}]},
This is what i did so far, but i have no idea how to go deeper in the structure, in order to achieve the 'dataRecordId':
import json
with open('file_200826_201026.json') as json_file:
data = json.load(json_file)
for p in data['metaDataResponse']:
print('p['dataRecords'])
I have the following JSON type:
import pandas as pd
data = {'Big Bean Pot': [{'name': 'bacon', 'unit': 'lb', 'amount': 0.06},
{'name': 'baked beans', 'unit': 'oz', 'amount': 2.67},
{'name': 'brown sugar', 'unit': 'cup', 'amount': 0.04},
{'name': 'canned lima beans', 'unit': 'oz', 'amount': 1.25},
{'name': 'canned red kidney beans', 'unit': 'oz', 'amount': 1.25},
{'name': 'cider vinegar', 'unit': 'cup', 'amount': 0.03},
{'name': 'garlic powder', 'unit': 'teaspoon', 'amount': 0.08},
{'name': 'ground mustard', 'unit': 'teaspoon', 'amount': 0.04},
{'name': 'ketchup', 'unit': 'cup', 'amount': 0.02},
{'name': 'onions', 'unit': 'medium', 'amount': 0.25}],
'Chicken and Potatoes': [{'name': 'chicken', 'unit': 'lbs', 'amount': 0.38},
{'name': 'garlic cloves', 'unit': '', 'amount': 0.5},
{'name': 'olive oil', 'unit': 'cup', 'amount': 0.06},
{'name': 'parmesan cheese', 'unit': 'cup', 'amount': 0.19},
{'name': 'potatoes', 'unit': 'small', 'amount': 0.75},
{'name': 'salt and pepper', 'unit': 'servings', 'amount': 1.0}]}
I am converting the value (list of dicts) of each key with pd.json_normalize, so for example for key = 'Big Bean Pot'
I will apply pd.json_normalize(data.get('Big Bean Pot')) but I want the key to be one of the columns. Is there any way to add a column of recipe_name and put there "Big Bean Pot"?
Try pandas concat :
pd.concat(pd.DataFrame(value).assign(recipe=key) for key, value in data.items())
To set it as the first column, numpy's np.r_ comes in handy :
pd.concat(pd.DataFrame(value).assign(recipe=key) for key, value in data.items()).iloc[:, np.r_[-1, 0:3]]
I'm completing this IBM Data Science certification on Coursera and one of the assignments require us to replicate this link- https://rawnote.dinhanhthi.com/files/ibm/neighborhoods_in_toronto.
I'm fairly new to this so I was going through the link to understand it and I couldn't understand some parts of the code.
So the objective of this assignment is to:
Extract a table from wikipedia and store it in a dataframe
Create a map of toronto city and explore the boroughs that contain "Toronto"
Explore any random neighborhood in Toronto using the FourSqaure API ("The Beaches" have been chosen here)
Get the top 100 venues that are in "The Beaches" within a radius of 500 meters.
They've done the 4th point using the FourSqaure API as shown below:
LIMIT = 100 # limit of number of venues returned by Foursquare API
radius = 500 # define radius
url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
CLIENT_ID,
CLIENT_SECRET,
VERSION,
neighborhood_latitude,
neighborhood_longitude,
radius,
LIMIT)
# get the result to a json file
results = requests.get(url).json()
The "results" variable looks like this:
{'meta': {'code': 200, 'requestId': '5eda4fb9aba297001b2f6207'},
'response': {'headerLocation': 'The Beaches',
'headerFullLocation': 'The Beaches, Toronto',
'headerLocationGranularity': 'neighborhood',
'totalResults': 4,
'suggestedBounds': {'ne': {'lat': 43.680857404499996,
'lng': -79.28682091449052},
'sw': {'lat': 43.67185739549999, 'lng': -79.29924148550948}},
'groups': [{'type': 'Recommended Places',
'name': 'recommended',
'items': [{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4bd461bc77b29c74a07d9282',
'name': 'Glen Manor Ravine',
'location': {'address': 'Glen Manor',
'crossStreet': 'Queen St.',
'lat': 43.67682094413784,
'lng': -79.29394208780985,
'labeledLatLngs': [{'label': 'display',
'lat': 43.67682094413784,
'lng': -79.29394208780985}],
'distance': 89,
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['Glen Manor (Queen St.)',
'Toronto ON',
'Canada']},
'categories': [{'id': '4bf58dd8d48988d159941735',
'name': 'Trail',
'pluralName': 'Trails',
'shortName': 'Trail',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/parks_outdoors/hikingtrail_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []}},
'referralId': 'e-0-4bd461bc77b29c74a07d9282-0'},
{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4ad4c062f964a52011f820e3',
'name': 'The Big Carrot Natural Food Market',
'location': {'address': '125 Southwood Dr',
'lat': 43.678879,
'lng': -79.297734,
'labeledLatLngs': [{'label': 'display',
'lat': 43.678879,
'lng': -79.297734}],
'distance': 471,
'postalCode': 'M4E 0B8',
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['125 Southwood Dr',
'Toronto ON M4E 0B8',
'Canada']},
'categories': [{'id': '50aa9e744b90af0d42d5de0e',
'name': 'Health Food Store',
'pluralName': 'Health Food Stores',
'shortName': 'Health Food Store',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/shops/food_grocery_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []},
'venuePage': {'id': '75150878'}},
'referralId': 'e-0-4ad4c062f964a52011f820e3-1'},
{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4b8daea1f964a520480833e3',
'name': 'Grover Pub and Grub',
'location': {'address': '676 Kingston Rd.',
'crossStreet': 'at Main St.',
'lat': 43.679181434941015,
'lng': -79.29721535878515,
'labeledLatLngs': [{'label': 'display',
'lat': 43.679181434941015,
'lng': -79.29721535878515}],
'distance': 460,
'postalCode': 'M4E 1R4',
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['676 Kingston Rd. (at Main St.)',
'Toronto ON M4E 1R4',
'Canada']},
'categories': [{'id': '4bf58dd8d48988d11b941735',
'name': 'Pub',
'pluralName': 'Pubs',
'shortName': 'Pub',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/nightlife/pub_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []}},
'referralId': 'e-0-4b8daea1f964a520480833e3-2'},
{'reasons': {'count': 0,
'items': [{'summary': 'This spot is popular',
'type': 'general',
'reasonName': 'globalInteractionReason'}]},
'venue': {'id': '4df91c4bae60f95f82229ad5',
'name': 'Upper Beaches',
'location': {'lat': 43.68056321147582,
'lng': -79.2928688743688,
'labeledLatLngs': [{'label': 'display',
'lat': 43.68056321147582,
'lng': -79.2928688743688}],
'distance': 468,
'cc': 'CA',
'city': 'Toronto',
'state': 'ON',
'country': 'Canada',
'formattedAddress': ['Toronto ON', 'Canada']},
'categories': [{'id': '4f2a25ac4b909258e854f55f',
'name': 'Neighborhood',
'pluralName': 'Neighborhoods',
'shortName': 'Neighborhood',
'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/parks_outdoors/neighborhood_',
'suffix': '.png'},
'primary': True}],
'photos': {'count': 0, 'groups': []}},
'referralId': 'e-0-4df91c4bae60f95f82229ad5-3'}]}]}}
I'm not sure how to proceed. The below image is what is mentioned in the link but:
I don't understand why they've created a function get_category_row?
Why are we writing venues = results['response']['groups'][0]['items']? Isn't json_normalize()
supposed to convert a json file to a datframe? So why cant we
directly do json_normalize(results)?
I'm pretty much lost from section 4.6 onwards in the link.
if anyone could help me out or guide me that would be amazing! :)
No, you are completely wrong json_normalize() normalize semi-structured JSON data into a flat table not to a DataFrame. That's why they use venues = results['response']['groups'][0]['items'] to get the venues. They used the function get_category_type() to get the category of the venue.
If you want to know more about json_normalize() please refer this link
json_normalize will only flatten the records in one path, for example in your json, you can flatten each path separately:
meta
response -> suggestedBounds
response -> groups -> items
And then you'd have to merge them together
df1 = pd.json_normalize(d['response'], record_path=['groups', 'items'], meta=[])
print(df1)
df2 = pd.json_normalize(d['response'])
print(df2)
df3 = pd.json_normalize(d['meta'])
print(df3)
referralId reasons.count ... venue.location.postalCode venue.venuePage.id
0 e-0-4bd461bc77b29c74a07d9282-0 0 ... NaN NaN
1 e-0-4ad4c062f964a52011f820e3-1 0 ... M4E 0B8 75150878
2 e-0-4b8daea1f964a520480833e3-2 0 ... M4E 1R4 NaN
3 e-0-4df91c4bae60f95f82229ad5-3 0 ... NaN NaN
[4 rows x 21 columns]
headerLocation headerFullLocation headerLocationGranularity ... suggestedBounds.ne.lng suggestedBounds.sw.lat suggestedBounds.sw.lng
0 The Beaches The Beaches, Toronto neighborhood ... -79.286821 43.671857 -79.299241
[1 rows x 9 columns]
code requestId
0 200 5eda4fb9aba297001b2f6207
If you want to flatten the full json, you can try flatten_json. Documentation: Flatten JSON