Compare functions in haskell - function

I have a list of commands ([Command]) which looks like [forward 15, left 20, right 10].
I want to add forward 15 to [Command] whenever I see a forward 15 command. I used elem and == to compare whether the element is forward 15 or not but it gives me No instance for (Eq Command) arising error.
Also, in another function, I want to add [left 15, forward 15, forward 15, right 15, right 15, forward 15, forward 15, left 15] to [Command] whenever I see 4 consecutive forward 15 commands.
Thus my question is how to compare functions, because forward is a function and I can't compare it using elem or ==.
Command is defined as a type, not as a data, hence I can't use deriving Eq.
type Command = Funcs -> (Picture, Funcs)
data Funcs = Funcs {pen :: Bool, angle :: Float, point :: Point, penColor :: Color} deriving (Eq, Show)
forward :: Float -> Command
forward x = ....

I recommend making a new data type for commands, and an interpreter into the Command semantic domain. For example:
data ReifiedCommand
= Forward Float
| Backward Float
| Left Float
| Right Float
deriving (Eq, Ord, Read, Show)
interpret :: ReifiedCommand -> Command
interpret (Forward x) = forward x
interpret (Backward x) = backward x
interpret (Left x) = left x
interpret (Right x) = right x
Now you may compare ReifiedCommands for equality and do whatever inspection you need to do to build a suitable [ReifiedCommand], and then all at once at the end you may interpret these into a [Command] (or, more likely I think, even a single Command).

You might be missing a deriving clause in your data definition.
Prelude> data Command = Forward Int | Left Int | Right Int deriving (Eq, Show)
Prelude> Forward 15 == Forward 15
True
If you do not have the deriving clause you will see
No instance for (Eq Command) arising from a use of ‘==’
By the way, while it is true that Forward happens to be a (constructor) function, you want to make sure you are doing == comparisons not on functions themselves (you can't do this in Haskell) but rather on the result of applying the function. So you can never compare
Forward == Forward
because the type of Forward is Int->Command (a function) but you can compare
Forward 15 == Forward 15
as long as you associate the type Command with the Eq typeclass.

Related

error message by list comprehension with floored float numbers and in lambda functions

I'm learning Haskell and have some problems with list comprehension.
If I define a function to get a list of the divisors of a given number, I get an error.
check n = [x | x <- [1..(floor (n/2))], mod n x == 0]
I don't get why it's causing an error. If I want to generate a list from 1 to n/2 I can do it with [1..(floor (n/2))], but not if I do it in the list comprehension.
I tried another way but I get also an error (in this code I want to get all so called "perfect numbers")
f n = [1..(floor (n/2))]
main = print $ filter (\t -> foldr (+) 0 (f t) == t) [2..100]
Usually it is better to start writing a signature. While signatures are often not required, it makes it easier to debug a single function.
The signature of your check function is:
check :: (RealFrac a, Integral a) => a -> [a]
The type of input (and output) a thus needs to be both a RealFrac and an Integral. While technically speaking we can make such type, it does not make much sense.
The reason this happens is because of the use of mod :: Integral a => a -> a -> a this requires x and n to be both of the same type, and a should be a member of the Integral typeclass.
Another problem is the use of n/2, since (/) :: Fractional a => a -> a -> a requires that n and 2 have the same type as n / 2, and n should also be of a type that is a member of Fractional. To make matters even worse, we use floor :: (RealFrac a, Integral b) => a -> b which enforces that n (and thus x as well) have a type that is a member of the RealFrac typeclass.
We can prevent the Fractional and RealFrac type constaints by making use of div :: Integral a => a -> a -> a instead. Since mod already required n to have a type that is a member of the Integral typeclass, this thus will not restrict the types further:
check n = [x | x <- [1 .. div n 2], mod n x == 0]
This for example prints:
Prelude> print (check 5)
[1]
Prelude> print (check 17)
[1]
Prelude> print (check 18)
[1,2,3,6,9]

Feeding data to Haskell twice function as explained by Erik Meijer lecture 7

Can somebody point me to how to feed data to:
twice f x = f (f x)
It's taken from Erik Meijer's lecture, and I have the feeling I can only truely understand when passing data to it. Now this only results in errors.
The derived type signature is (t -> t) -> t -> t. Pass any arguments that match and you won't get compiler errors. One example is twice (+1) 0.
The main mistake here is disregarding the type of twice. In Haskell types are very important, and explain precisely how you would call such a function.
twice :: (a -> a) -> a -> a
So, the function works in this way:
the caller chooses any type a they want
the caller passes a function f of type a -> a
the caller passes an argument of type a
twice finally produces a value of type a
Hence, we could do the following. We can choose, for instance, a = Int. Then define the function f as
myFun :: Int -> Int
myFun y = y*y + 42
then choose x :: Int as 10. Finally, we can make the call
twice myFun 10
Alternatively, we can use a lambda and skip the function definition above
twice (\y -> y*y + 42) 10
For illustration here are three functions called erik1, erik2, and erik3 with the same type signature.
erik1, erik2, erik3 ::(a -> a) -> a -> a
erik1 f x = f x
erik2 f x = f(f x) -- Equivalent to "twice"
erik3 f x = f(f(f x))
These eriks take two arguments, the first being a function and the second being a number. Let's choose sqrt as the function and the number to be 16 and run the three eriks. Here's what you get:
*Main> erik1 sqrt 16
4.0
*Main> erik2 sqrt 16
2.0
*Main> erik3 sqrt 16
1.4142135623730951
There are many things you can try, such as erik3 (/2) 16 = 2,because the f in the function allows you to use any appropriate function. In the particular case of sqrt, erik3 is equivalent to this statement in C:
printf ("Eighth root of 16 = %f \n", sqrt(sqrt(sqrt(16))));
Dr. Meijer Ch 7 1:48 to 3:37
As I watched this lecture last night a key point was made when Erik wrote the type signature as twice :: (a -> a) -> (a -> a) and said, "twice is a function that takes a to a and returns a new function from a to a, and by putting some extra parens it becomes painfully obvious that twice is a higher order function."
A C example that comes closer to illustrating that is:
#define eighthRoot(x) (sqrt(sqrt(sqrt(x))))
printf ("eigthtRoot(16) = %f \n", eighthRoot(16));

Haskell function takes 2 parameters but in the definition none

I am new to Haskell and I am trying to understand a game created in Haskell (tic tac toe). I know that if a function takes n parameters then you must provide n parameters in the function definition. Example:
f :: Int -> Int -> String
f a b = "This function makes no sense"
However in this Haskell script there is a function that takes two arguments but in the definition it has none. And of course, it's working but I can't seem to figure out why.
import Data.Map qualified as M
type Board = M.Map (Int, Int) Marker
data Marker = X | O | Blank deriving Eq
getMarker :: Board -> (Int, Int) -> Marker
getMarker = flip $ M.findWithDefault Blank
Any ideas on what this function does and more importantly, why it's working (you can see that getMarker takes 0 parameters at the last line) ?
The misconception is here:
... (you can see that getMarker takes 0 parameters at the last line) ...
and the thing that's puzzling you is partial application.
getMarker :: Board -> (Int, Int) -> Marker
getMarker = flip $ M.findWithDefault Blank
What that last line actually tells you is that the getMarker doesn't do anything with its arguments - but they still get passed to the function created by flip $ M.findWithDefault Blank.
Or, more accurately, getMarker evaluates to a function of the declared type which is applied to getMarker's arguments.
You have getMarker :: Board -> (Int, Int) -> Marker, so it's called like
getMarker board pos
Since you have getMarker = flip $ M.findWithDefault Blank, this is equivalent to:
(flip $ M.findWithDefault Blank) board pos
Expanding $:
(flip (M.findWithDefault Blank)) board pos
Function application is left associative, so (f x) y is equivalent to f x y.
flip (M.findWithDefault Blank) board pos
flip f x y is equivalent to f y x, so the expression is equal to:
(M.findWithDefault Blank) pos board
Again, thanks to left associativity of function application:
M.findWithDefault Blank pos board
And this is sensible.

Weeding duplicates from a list of functions

Is it possible to remove the duplicates (as in nub) from a list of functions in Haskell?
Basically, is it possible to add an instance for (Eq (Integer -> Integer))
In ghci:
let fs = [(+2), (*2), (^2)]
let cs = concat $ map subsequences $ permutations fs
nub cs
<interactive>:31:1:
No instance for (Eq (Integer -> Integer))
arising from a use of `nub'
Possible fix:
add an instance declaration for (Eq (Integer -> Integer))
In the expression: nub cs
In an equation for `it': it = nub cs
Thanks in advance.
...
Further, based on larsmans' answer, I am now able to do this
> let fs = [AddTwo, Double, Square]
> let css = nub $ concat $ map subsequences $ permutations fs
in order to get this
> css
[[],[AddTwo],[Double],[AddTwo,Double],[Square],[AddTwo,Square],[Double,Square],[AddTwo,Double,Square],[Double,AddTwo],[Double,AddTwo,Square],[Square,Double],[Square,AddTwo],[Square,Double,AddTwo],[Double,Square,AddTwo],[Square,AddTwo,Double],[AddTwo,Square,Double]]
and then this
> map (\cs-> call <$> cs <*> [3,4]) css
[[],[5,6],[6,8],[5,6,6,8],[9,16],[5,6,9,16],[6,8,9,16],[5,6,6,8,9,16],[6,8,5,6],[6,8,5,6,9,16],[9,16,6,8],[9,16,5,6],[9,16,6,8,5,6],[6,8,9,16,5,6],[9,16,5,6,6,8],[5,6,9,16,6,8]]
, which was my original intent.
No, this is not possible. Functions cannot be compared for equality.
The reason for this is:
Pointer comparison makes very little sense for Haskell functions, since then the equality of id and \x -> id x would change based on whether the latter form is optimized into id.
Extensional comparison of functions is impossible, since it would require a positive solution to the halting problem (both functions having the same halting behavior is a necessary requirement for equality).
The workaround is to represent functions as data:
data Function = AddTwo | Double | Square deriving Eq
call AddTwo = (+2)
call Double = (*2)
call Square = (^2)
No, it's not possible to do this for Integer -> Integer functions.
However, it is possible if you're also ok with a more general type signature Num a => a -> a, as your example indicates! One naïve way (not safe), would go like
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
data NumResLog a = NRL { runNumRes :: a, runNumResLog :: String }
deriving (Eq, Show)
instance (Num a) => Num (NumResLog a) where
fromInteger n = NRL (fromInteger n) (show n)
NRL a alog + NRL b blog
= NRL (a+b) ( "("++alog++ ")+(" ++blog++")" )
NRL a alog * NRL b blog
= NRL (a*b) ( "("++alog++ ")*(" ++blog++")" )
...
instance (Num a) => Eq (NumResLog a -> NumResLog a) where
f == g = runNumResLog (f arg) == runNumResLog (g arg)
where arg = NRL 0 "THE ARGUMENT"
unlogNumFn :: (NumResLog a -> NumResLog c) -> (a->c)
unlogNumFn f = runNumRes . f . (`NRL`"")
which works basically by comparing a "normalised" version of the functions' source code. Of course this fails when you compare e.g. (+1) == (1+), which are equivalent numerically but yield "(THE ARGUMENT)+(1)" vs. "(1)+(THE ARGUMENT)" and thus are indicated as non-equal. However, since functions Num a => a->a are essentially constricted to be polynomials (yeah, abs and signum make it a bit more difficult, but it's still doable), you can find a data type that properly handles those equivalencies.
The stuff can be used like this:
> let fs = [(+2), (*2), (^2)]
> let cs = concat $ map subsequences $ permutations fs
> let ncs = map (map unlogNumFn) $ nub cs
> map (map ($ 1)) ncs
[[],[3],[2],[3,2],[1],[3,1],[2,1],[3,2,1],[2,3],[2,3,1],[1,2],[1,3],[1,2,3],[2,1,3],[1,3,2],[3,1,2]]

returning two different types from one function

How can I return values of multiple types from a single function?
I want to do something like:
take x y | x == [] = "error : empty list"
| x == y = True
| otherwise = False
I have a background in imperative languages.
There is a type constructor called Either that lets you create a type that could be one of two types. It is often used for handling errors, just like in your example. You would use it like this:
take x y | x == [] = Left "error : empty list"
| x == y = Right True
| otherwise = Right False
The type of take would then be something like Eq a => [a] -> [a] -> Either String Bool. The convention with Either for error handling is that Left represents the error and Right represents the normal return type.
When you have an Either type, you can pattern match against it to see which value it contains:
case take x y of
Left errorMessage -> ... -- handle error here
Right result -> ... -- do what you normally would
There is several solutions to your problem, depending on your intention : do you want to make manifest in your type that your function can fail (and in this case do you want to return the cause of the failure, which may be unnecessary if there is only one mode of failure like here) or do you estimate that getting an empty list in this function shouldn't happen at all, and so want to fail immediately and by throwing an exception ?
So if you want to make explicit the possibility of failure in your type, you can use Maybe, to just indicate failure without explanation (eventually in your documentation) :
take :: (Eq a) => [a] -> [a] -> Maybe Bool
take [] _ = Nothing
take x y = x == y
Or Either to register the reason of the failure (note that Either would be the answer to "returning two types from one function" in general, though your code is more specific) :
take :: (Eq a) => [a] -> [a] -> Either String Bool
take [] _ = Left "Empty list"
take x y = Right $ x == y
Finally you can signal that this failure is completely abnormal and can't be handled locally :
take :: (Eq a) => [a] -> [a] -> Bool
take [] _ = error "Empty list"
take x y = x == y
Note that with this last way, the call site don't have to immediately handle the failure, in fact it can't, since exceptions can only be caught in the IO monad. With the first two ways, the call site have to be modified to handle the case of failure (and can), if only to itself call "error".
There is one final solution that allows the calling code to choose which mode of failure you want (using the failure package http://hackage.haskell.org/package/failure ) :
take :: (Failure String m, Eq a) => [a] -> [a] -> m Bool
take [] _ = failure "Empty list"
take x y = return $ x == y
This can mimics the Maybe and the Either solution, or you can use take as an IO Bool which will throw an exception if it fails. It can even works in a [Bool] context (returns an empty list in case of failure, which is sometimes useful).
You can use the error functions for exceptions:
take :: Eq a => [a] -> [a] -> Bool
take [] _ = error "empty list"
take x y = x == y
The three answers you've gotten so far (from Tikhon Jelvis, Jedai and Philipp) cover the three conventional ways of handling this sort of situation:
Use the error function signal an error. This is often frowned upon, however, because it makes it hard for programs that use your function to recover from the error.
Use Maybe to indicate the case where no Boolean answer can be produced.
Use Either, which is often used to do the same thing as Maybe, but can additionally include more information about the failure (Left "error : empty list").
I'd second the Maybe and Either approach, and add one tidbit (which is slightly more advanced, but you might want to get to eventually): both Maybe and Either a can be made into monads, and this can be used to write code that is neutral between the choice between those two. This blog post discusses eight different ways to tackle your problem, which includes the three mentioned above, a fourth one that uses the Monad type class to abstract the difference between Maybe and Either, and yet four others.
The blog entry is from 2007 so it looks a bit dated, but I managed to get #4 working this way:
{-# LANGUAGE FlexibleInstances #-}
take :: (Monad m, Eq a) => [a] -> [a] -> m Bool
take x y | x == [] = fail "error : empty list"
| x == y = return True
| otherwise = return False
instance Monad (Either String) where
return = Right
(Left err) >>= _ = Left err
(Right x) >>= f = f x
fail err = Left err
Now this take function works with both cases:
*Main> Main.take [1..3] [1..3] :: Maybe Bool
Just True
*Main> Main.take [1] [1..3] :: Maybe Bool
Just False
*Main> Main.take [] [1..3] :: Maybe Bool
Nothing
*Main> Main.take [1..3] [1..3] :: Either String Bool
Right True
*Main> Main.take [1] [1..3] :: Either String Bool
Right False
*Main> Main.take [] [1..3] :: Either String Bool
Left "error : empty list"
Though it's important to note that fail is controversial, so I anticipate reasonable objections to this approach. The use of fail here is not essential, though—it could be replaced with any function f :: (Monad m, ErrorClass m) => String -> m a such that f err is Nothing in Maybe and Left err in Either.