We have a large MySQL table (device_data) with the following columns:
ID (int)
dt (timestamp)
serial_number (char(20))
data1 (double)
data2 (double)
... // other columns
The table receives around 10M rows every day.
We have done a sharding by separating the table based on the date of the timestamp (device_data_YYYYMMDD). However, we feel this is not effective because most of our queries (shown below) always check on the "serial_number" and will perform across many dates.
SELECT * FROM device_data WHERE serial_number = 'XXX' AND dt >= '2018-01-01' AND dt <= '2018-01-07';
Therefore, we think that creating the sharding based on the serial number will be more effective. Basically, we will have:
device_data_<serial_number>
device_data_0012393746
device_data_7891238456
Hence, when we want to find data for a particular device, we can easily reference as:
SELECT * FROM device_data_<serial_number> WHERE dt >= '2018-01-01' AND dt <= '2018-01-07';
This approach seems to be effective because:
The application at all time will access the data based on the device first.
We have checked that there is no query that access the data without specifying the device serial number first.
The table for each device will be relatively small (9000 rows per day)
A few challenges that we think we will face is:
We have alot of devices. This means that the table device_data_ will be alot too. I have checked that MySQL does not provide limitation in the number of tables in the database. Will this impact on performance vs keeping them in one table?
How will this impact on later on when we would like to scale MySQL (e.g. using master / slave, etc)?
Are there other alternative / solution in resolving this?
Update. Below is the show create table result from our existing table:
CREATE TABLE `test_udp_new` (
`id` int(20) unsigned NOT NULL AUTO_INCREMENT,
`dt` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
`device_sn` varchar(20) NOT NULL,
`gps_date` datetime NOT NULL,
`lat` decimal(10,5) DEFAULT NULL,
`lng` decimal(10,5) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `device_sn_2` (`dt`,`device_sn`),
KEY `dt` (`dt`),
KEY `data` (`data`) USING BTREE,
KEY `test_udp_new_device_sn_dt_index` (`device_sn`,`dt`),
KEY `test_udp_new_device_sn_data_dt_index` (`device_sn`,`data`,`dt`)
) ENGINE=InnoDB AUTO_INCREMENT=44449751 DEFAULT CHARSET=latin1 ROW_FORMAT=DYNAMIC
The most frequent queries being run:
SELECT *
FROM test_udp_new
WHERE device_sn = 'xxx'
AND dt >= 'xxx'
AND dt <= 'xxx'
ORDER BY dt DESC;
The optimal way to handle that query is in a non-partitioned table with
INDEX(serial_number, dt)
Even better is to change the PRIMARY KEY. Assuming you currently have id AUTO_INCREMENT because there is not a unique combination of columns suitable for being a "natural PK",
PRIMARY KEY(serial_number, dt, id), -- to optimize that query
INDEX(id) -- to keep AUTO_INCREMENT happy
If there are other queries that are run often, please provide them; this may hurt them. In large tables, it is a juggling task to find the optimal index(es).
Other Comments:
There are very few use cases for which partitioning actually speed up processing.
Making lots of 'identical' tables is a maintenance nightmare, and, again, not a performance benefit. There are probably a hundred Q&A on stackoverflow shouting not to do such.
By having serial_number first in the PRIMARY KEY, all queries referring to a single serial_number are likely to benefit.
A million serial_numbers? No problem.
One common use case for partitioning involves purging "old" data. This is because big DELETEs are much more costly than DROP PARTITION. That involves PARTITION BY RANGE(TO_DAYS(dt)). If you are interested in that, my PK suggestion still stands. (And the query in question will run about the same speed with or without this partitioning.)
How many months before the table outgrows your disk? (If this will be an issue, let's discuss it.)
Do you need 8-byte DOUBLE? FLOAT has about 7 significant digits of precision and takes only 4 bytes.
You are using InnoDB?
Is serial_number fixed at 20 characters? If not, use VARCHAR. Also, CHARACTER SET ascii may be better than the default of utf8?
Each table (or each partition of a table) involves at least one file that the OS must deal with. When you have "too many", the OS groans, often before MySQL groans. (It is hard to make either "die" of overdose.)
Addressing the query
PRIMARY KEY (`id`),
KEY `device_sn_2` (`dt`,`device_sn`),
KEY `dt` (`dt`),
KEY `data` (`data`) USING BTREE,
KEY `test_udp_new_device_sn_dt_index` (`device_sn`,`dt`),
KEY `test_udp_new_device_sn_data_dt_index` (`device_sn`,`data`,`dt`)
-->
PRIMARY KEY(`device_sn`,`dt`, id),
INDEX(id)
KEY `dt_sn` (`dt`,`device_sn`),
KEY `data` (`data`) USING BTREE,
Notes:
By starting the PK with device_sn, dt, you get the clustering benefits to make the query with WHERE device_sn = .. AND dt BETWEEN ...
INDEX(id) is to keep AUTO_INCREMENT happy.
When you have INDEX(a,b), INDEX(a) is redundant.
The (20) is meaningless; id will max out at about 4 billion.
I tossed the last index because it is probably helped enough by the new PK.
lng decimal(10,5) -- Don't need 5 decimal places to left of point; only need 3 or 2. So: lat decimal(7,5),lng decimal(8,5)`. This will save a total of 3 bytes per row.
Related
My application uses a MariaDB database which I try to keep isolated, but one particular user goes straight to the database and started complaining today after 6 weeks without incident that one of their queries slowed down from 5 mins (which I thought was bad enough) to over 120 mins.
Since then today it has sometimes been as fast as usual, sometimes slowing down again.
This is their query:
SELECT MAX(last_updated) FROM data_points;
This is the table:
CREATE TABLE data_points (
seriesId INT UNSIGNED NOT NULL,
modifiedDate DATE NOT NULL,
valueDate DATE NOT NULL,
value DOUBLE NOT NULL,
created DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
last_updated DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP()
ON UPDATE CURRENT_TIMESTAMP,
id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT,
CONSTRAINT pk_data PRIMARY KEY (seriesId, modifiedDate, valueDate),
KEY ix_data_modifieddate (modifiedDate),
KEY ix_data_id (id),
CONSTRAINT fk_data_seriesid FOREIGN KEY (seriesId)
REFERENCES series(id)
) ENGINE=InnoDB
DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_unicode_ci
MAX_ROWS=222111000;
and this is the EXPLAIN:
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE data_points ALL NULL NULL NULL NULL 224166191
The table has approx 250M rows and is growing relatively fast.
I can coerce the user into doing something more sensible but in the short term I'm keen to understand why the query duration is going crazy today after 6 weeks of calm. I'll accept the first answer that can explain that.
SELECT MAX(last_updated) FROM data_points; is easily optimized:
INDEX(last_updated)
That index will make that MAX be essentially instantaneous. And it will avoid pounding on the disk and cache (see below).
Two things control the un-indexed speed:
The size of the table, which is "growing relatively fast", and
[This is probably what you are fishing for.] How much of the table is cached when the query is run. This can make a 10x difference in the speed. You can partially test this claim thus:
Restart mysqld; time the query; time it again. The first run had to hit the disk a lot (because of the fresh restart); the second may have found everything in RAM.
Another thing that can mess with the timings: If some other 'big' query is run and it bumps blocks of this table out of cache, then the query will again be slow.
Of relevance: Size of table, value of innodb_buffer_pool_size, and amount of RAM.
On an unrelated topic... That PRIMARY KEY (seriesId, modifiedDate, valueDate) seems strange. A PK is must be unique. Dates (datetime, etc) are likely to have multiple entries for the same day/second; so can you be sure of uniqueness? Especially with 2 dates?
(More)
Please explain the meaning of each of the 4 dates. And ask yourself if they are all needed. (About half the bulk of the table is those dates!)
The table has an AUTO_INCREMENT; is it needed by some other table? If not then either it could be removed, or it could be used to assure that the PK is unique.
To better help you, we need to see more of the queries.
I have a very large 500 million rows table with the following columns:
id - Bigint - Autoincrementing primary index.
date - Datetime - Approximately 1.5 million rows per date, data older 1 year is deleted.
uid - VARCHAR(60) - A user ID
sessionNumber - INT
start - INT - epoch of start time.
end - INT - epoch of end time.
More columns not relevant for this query.
The combination of uid and sessionNumber forms a uinque index. I also have an index on date.
Due to the sheer size, I'd like to partition the table.
Most of my accesses would be by date, so partitioning by date ranges seems intuitive, but as the date is not part of the unique index, this is not an option.
Option 1: RANGE PARTITION on Date and BEFORE INSERT TRIGGER
I don't really have a regular issue with the uid and sessionNumber uniqueness being violated. The source data is consistent, but sessions that span two days may be inserted on two consecutive days with midnight being the end time of the first and start time of the second.
I'm trying to understand if I could remove the unique key and instead use a trigger that would
Check if there is a session with the same identifiers the previous day and if so,
Updates the end date.
cancels the actual insert.
However, I am not sure if I can 1) trigger an update on the same table. or 2) prevent the actual insert.
Option 2: LINEAR HASH PARTITION on UID
My second option is to use a linear hash partition on the UID. However I cannot see any example that utilizes a VARCHAR and converts it to an INTEGER which is used for the HASH partitioning.
However I cannot finde a permitted way to convert from VARCHAR to INTEGER. For example
ALTER TABLE mytable
PARTITION BY HASH (CAST(md5(uid) AS UNSIGNED integer))
PARTITIONS 20
returns that the partition function is not allowed.
HASH partitioning must work with a 32-bit integer. But you can't convert an MD5 string to an integer simply with CAST().
Instead of MD5, CRC32() can take an arbitrary string and converts to a 32-bit integer. But this is also not a valid function for partitioning.
mysql> alter table v partition by hash(crc32(uid));
ERROR 1564 (HY000): This partition function is not allowed
You could partition by the string using KEY Partitioning instead of HASH partitioning. KEY Partitioning accepts strings. It passes whatever input string through MySQL's built-in PASSWORD() function, which is basically related to SHA1.
However, this leads to another problem with your partitioning strategy:
mysql> alter table v partition by key(uid);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
Your table's primary key id does not include the column uid that you want to partition by. This is a restriction of MySQL's partitioning:
every unique key on the table must use every column in the table's partitioning expression.
Here's the table I'm testing with (it would have been a good idea for you to include this in your question):
CREATE TABLE `v` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`date` datetime NOT NULL,
`uid` varchar(60) NOT NULL,
`sessionNumber` int(11) NOT NULL,
`start` int(11) NOT NULL,
`end` int(11) NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `uid` (`uid`,`sessionNumber`),
KEY `date` (`date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
Before going any further, I have to wonder why you want to use partitioning anyway? "Sheer size" is not a reason to partition a table.
Partitioning, like any optimization, is done for the sake of specific queries you want to optimize for. Any optimization improves one query at the expense of other queries. Optimization has nothing to do with the table. The table is happy to sit there with 5 billion rows, and it doesn't care. Optimization is for the queries.
So you need to know which queries you want to optimize for. Then decide on a strategy. Partitioning might not be the best strategy for the set of queries you need to optimize!
I'll assume your 'uid' is a 128-bit UUID kind of value, which can be stored as a BINARY(16), because that is generally worth the trouble.
Next, stay away from the 'datetime' type, as it is stored like a packed string, and doesn't hold any timezone information. Store date-time-values either as pure numerical values (the number of seconds since the UNIX-epoch), or let MySQL do that for you and use the timestamp(N) type.
Also don't call a column 'date', not just because that is a reserved word, but also because the value contains time details too.
Next, stay away from using anything else than latin1 as the CHARSET of (all) your tables. Only ever do UTF-8-ness at the column level. This to prevent unnecessarily byte-wide columns and indexes creeping in over time. Adopt this habit and you'll happily look back on it after some years, promised.
This makes the table look like:
CREATE TABLE `v` (
`uuid` binary(16) NOT NULL,
`mysql_created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
`visitor_uuid` BINARY(16) NOT NULL,
`sessionNumber` int NOT NULL,
`start` int NOT NULL,
`end` int NOT NULL,
PRIMARY KEY (`uuid`),
UNIQUE KEY (`visitor_uuid`,`sessionNumber`),
KEY (`mysql_created_at`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
PARTITIONED BY RANGE COLUMNS (`uuid`)
( PARTITION `p_0` VALUES LESS THAN (X'10')
, PARTITION `p_1` VALUES LESS THAN (X'20')
...
, PARTITION `p_9` VALUES LESS THAN (X'A0')
, PARTITION `p_A` VALUES LESS THAN (X'B0')
...
, PARTITION `p_F` VALUES LESS THAN (MAXVALUE)
);
To make the KEY (mysql_created_at) be only on the date-part, needs a calculated column, which can be added in-place, and then an index on it is also light to add, so I'll leave that as homework.
I have a monitoring table with the following structure:
CREATE TABLE `monitor_data` (
`monitor_id` INT(10) UNSIGNED NOT NULL,
`monitor_data_time` INT(10) UNSIGNED NOT NULL,
`monitor_data_value` INT(10) NULL DEFAULT NULL,
INDEX `monitor_id_data_time` (`monitor_id`, `monitor_data_time`),
INDEX `monitor_data_time` (`monitor_data_time`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB;
This is a very high traffic table with potentially thousands of rows every minute. Each row belongs to a monitor and contains a value and time (unix_timestamp)
I have three issues:
1.
Suddenly, after a number of months in dev, the table suddenly became very slow. Queries that previously was done under a second could now take up to a minute. I'm using standard settings in my.cnf since this is a dev machine, but the behavior was indeed very strange to me.
2.
I'm not sure that I have optimal indexes. A "normal" query looks like this:
SELECT DISTINCT(md.monitor_data_time), monitor_data_value
FROM monitor_data md
WHERE md.monitor_id = 165
AND md.monitor_data_time >= 1484076760
AND md.monitor_data_time <= 1487271199
ORDER BY md.monitor_data_time ASC;
A EXPLAIN on the query above looks like this:
id;select_type;table;type;possible_keys;key;key_len;ref;rows;Extra
1;SIMPLE;md;range;monitor_id_data_time,monitor_data_time;monitor_id_data_time;8;\N;149799;Using index condition; Using temporary; Using filesort
What do you think about the indexes?
3.
If I leave out the DISTINCT in the query above, I actually get duplicate rows even though there aren't any duplicate rows in the table. Any explanation to this behavior?
Any input is greatly appreciated!
UPDATE 1:
New suggestion on table structure:
CREATE TABLE `monitor_data_test` (
`monitor_id` INT UNSIGNED NOT NULL,
`monitor_data_time` INT UNSIGNED NOT NULL,
`monitor_data_value` INT UNSIGNED NULL DEFAULT NULL,
PRIMARY KEY (`monitor_data_time`, `monitor_id`),
INDEX `monitor_data_time` (`monitor_data_time`)
) COLLATE='utf8_general_ci' ENGINE=InnoDB;
SELECT DISTINCT(md.monitor_data_time), monitor_data_value
is the same as
SELECT DISTINCT md.monitor_data_time, monitor_data_value
That is, the pair is distinct. It does not dedup just the time. Is that what you want?
If you are trying to de-dup just the time, then do something like
SELECT time, AVG(value)
...
GROUP BY time;
For optimal performance of
WHERE md.monitor_id = 165
AND md.monitor_data_time >= 14840767604 ...
you need
PRIMARY KEY (monitor_id, monitor_data_time)
and it must be in that order. The opposite order is much less useful. The guiding principle is: Start with the '=', then move on to the 'range'. More discussion here.
Do you have 4 billion monitor_id values? INT takes 4 bytes; consider using a smaller datatype.
Do you have other queries that need optimizing? It is better to design the index(es) after gather all the important queries.
Why PK
In InnoDB, the PRIMARY KEY is "clustered" with the data. That is, the data is an ordered list of triples: (id, time, value) stored in a B+Tree. Locating id = 165 AND time = 1484076760 is a basic operation of a BTree. And it is very fast. Then scanning forward (that's the "+" part of "B+Tree") until time = 1487271199 is a very fast operation of "next row" in this ordered list. Furthermore, since value is right there with the id and time, there is no extra effort to get the values.
You can't scan the requested rows any faster. But it requires PRIMARY KEY. (OK, UNIQUE(id, time) would be 'promoted' to be the PK, but let's not confuse the issue.)
Contrast... Given an index (time, id), it would do the scan over the dates fine, but it would have to skip over any entries where id != 165 But it would have to read all those rows to discover they do not apply. A lot more effort.
Since it is unclear what you intended by DISTINCT, I can't continue this detailed discussion of how that plays out. Suffice it to say: The possible rows have been found; now some kind of secondary pass is needed to do the DISTINCT. (It may not even need to do a sort.)
What do you think about the indexes?
The index on (monitor_id,monitor_data_time) seems appropriate for the query. That's suited to an index range scan operation, very quickly eliminating boatloads of rows that need to be examined.
Better would be a covering index that also includes the monitor_data_value column. Then the query could be satisfied entirely from the index, without a need to lookup pages from the data table to get monitor_data_value.
And even better would be having the InnoDB cluster key be the PRIMARY KEY or UNIQUE KEY on the columns, rather than incurring the overhead of the synthetic row identifier that InnoDB creates when an appropriate index isn't defined.
If I wasn't allowing duplicate (monitor_id, monitor_data_time) tuples, then I'd define the table with a UNIQUE index on those non-nullable columns.
CREATE TABLE `monitor_data`
( `monitor_id` INT(10) UNSIGNED NOT NULL
, `monitor_data_time` INT(10) UNSIGNED NOT NULL
, `monitor_data_value` INT(10) NULL DEFAULT NULL
, UNIQUE KEY `monitor_id_data_time` (`monitor_id`, `monitor_data_time`)
) ENGINE=InnoDB
or equivalent, specify PRIMARY in place of UNIQUE and remove the identifier
CREATE TABLE `monitor_data`
( `monitor_id` INT(10) UNSIGNED NOT NULL
, `monitor_data_time` INT(10) UNSIGNED NOT NULL
, `monitor_data_value` INT(10) NULL DEFAULT NULL
, PRIMARY KEY (`monitor_id`, `monitor_data_time`)
) ENGINE=InnoDB
Any explanation to this behavior?
If the query (shown in the question) returns a different number of rows with the DISTINCT keyword, then there must be duplicate (monitor_id,monitor_data_time,monitor_data_value) tuples in the table. There's nothing in the table definition that guarantees us that there aren't duplicates.
There are a couple of other possible explanations, but those explanations are all related to rows being added/changed/removed, and the queries seeing different snapshots, transaction isolation levels, yada, yada. If the data isn't changing, then there are duplicate rows.
A PRIMARY KEY constraint (or UNIQUE KEY constraint non-nullable columns) would guarantee us uniqueness.
Note that DISTINCT is a keyword in the SELECT list. It's not a function. The DISTINCT keyword applies to all expressions in the SELECT list. The parens around md.monitor_date_time are superfluous.
Leaving the DISTINCT keyword out would eliminate the need for the "Using filesort" operation. And that can be expensive for large sets, particularly when the set is too large to sort in memory, and the sort has to spill to disk.
It would be much more efficient to have guaranteed uniqueness, omit the DISTINCT keyword, and return rows in order by the index, preferably the cluster key.
Also, the secondary index monitor_data_time doesn't benefit this query. (There may be other queries that can make effective use of the index, though one suspects that those queries would also make effective use of a composite index that had monitor_data_time as the leading column.
I've been thinking about keeping a history in the following table structure:
`id` bigint unsigned not null auto_increment,
`userid` bigint unsigned not null,
`date` date not null,
`points_earned` int unsigned not null,
primary key (`id`),
key `userid` (`userid`),
key `date` (`date`)
This will allow me to do something like SO does with its Reputation Graph (where I can see my rep gain since I joined the site).
Here's the problem, though: I just ran a simple calculation:
SELECT SUN(DATEDIFF(`lastclick`,`registered`)) FROM `users`
The result was as near as makes no difference 25,000,000 man-days. If I intend to keep one row per user per day, that's a [expletive]ing large table, and I'm expecting further growth. Even if I exclude days where a user doesn't come online, that's still huge.
Can anyone offer any advice on maintaining such a large amount of data? The only queries that will be run on this table are:
SELECT * FROM `history` WHERE `userid`=?
SELECT SUM(`points_earned`) FROM `history` WHERE `userid`=? AND `date`>?
INSERT INTO `history` VALUES (null,?,?,?)
Would the ARCHIVE engine be of any use here, for instance? Or do I just not need to worry because of the indexes?
Assuming its mysql:
for history tables you should consider partitioning you can set the best partition rule for you and looking at what queries you have there are 2 choices :
a. partition by date (1 partition = 1 month for example)
b. partition by user (lets say you have 300 partitions and 1 partition = 100000 users)
this will help you allot if you will use partition pruning (here)
you could use a composite index for user,date (it will be used for the first 2 queries)
avoid INSERT statement, when you have huge data use LOAD DATA (this will not work is the table is partitioned )
And most important ... the best engine for huge volumes of data is MyISAM
I have a MySQL MyISAM table with about 400 million rows of price data (7GB data + 9GB index) with 3 columns:
CREATE TABLE `prices` (
`ts` datetime NOT NULL,
`id` int(10) unsigned NOT NULL,
`price` double NOT NULL,
PRIMARY KEY (`ts`,`instrid`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1$$
The number of distinct ids (I think cardinality is the word) is ~500 and for most time ranges of interest, inside those time ranges, the cardinality of id is a lower ~20 (so there are only 20 or so different ids between March 1st and 2nd).
The queries are almost exclusively of the form:
select ts, price from prices where ts between {t1} and {t2} and id = {id}.
It seems like some index(s) should speed things up.
Would a combined index on ts and id or separate indexes on ts and id be better? Some 3rd alternative? I would also appreciate recommendations to where I could learn how to answer this question for myself.
Would another table type (InnoDB?) be more appropriate for my purposes?
I'd go for a single combined index on ts, price and id - normally MySQL does two operations, first it finds the row using the index, then it retrieves the row from the database. However if you have all of the data in the index then it will simply grab the data straight from the index without retrieving the row from the database. It's called a "covering index".
On database choice, most people seem to recommend InnoDB for serious use, there's a good comparison here