Mysql transactions happening at the same time - mysql

Can two transactions occur at the same time? Let's say you have transactions A and B, each of which will perform a read to get the max value of some column then a write to insert a new row with that max+1. Is it possible that A performs a read to get the max, then B performs a read before A writes, causing both transactions to write the same value to the column?
Doing this with isolation level set to read uncommitted to false seems to prevent duplicates, but I can't wrap my head around why.

Can two transactions occur at the same time?
Yes, that is quite possible and in fact it is required for all the RDBMS to support that feature out of the box to speed up things. Think about an application accessed by Thousands of users simultaneously, if everything goes in sequence the users may have to wait day in order to get the response.
Let's say you have transactions A and B, each of which will perform a read to get the max value of some column then a write to insert a new row with that max+1. Is it possible that A performs a read to get the max, then B performs a read before A writes, causing both transactions to write the same value to the column?
If A & B are happening into two different sessions, its quite possible user case.
Doing this with isolation level set to read uncommitted to false seems to prevent duplicates, but I can't wrap my head around why?
I think, your requirement to get next increment number with isolation block is quite common, and here you need to instruct database to do a mutual exclusive read operation for writing operation has to happen, you could instruct the database to do it, by setting isolation, or may be 'temporary isolation' level should solve your.
If gettting next number is only problem and you don't have other constrained then
My Sql AUTO_INCREMENT would be best suited answer for you.
But it seems, you have asked this question specifically, means, you may have constrained.
Refer my similar questions and answer.
Your solution should be something like below.
begin;
select last_number from TABLE1 ... FOR UPDATE;
Read the result in App.
update TABLE1 set last_number=last_number+1 where ...;
commit;

Related

Concurrent writes to MySQL and testing solutions

I was practicing some "system design" coding questions and I was interested in how to solve a concurrency problem in MySQL. The problem was "design an inventory checkout system".
Let's say you are trying to check out a specific item from an inventory, a library book for instance.
If two people are on the website, looking to book it, is it possible that they both check it out? Let's assume the query is updating the status of the row to mark a boolean checked_out to True.
Would transactions solve this issue? It would cause the second query that runs to fail (assuming they are the same query).
Alternatively, we insert rows into a checkouts table. Since both queries read that the item is not checked out currently, they could both insert into the table. I don't think a transaction would solve this, unless the transaction includes reading the table to see if a checkout currently exists for this item that hasn't yet ended.
One of the suggested methods
How would I simulate two writes at the exact same time to test this?
No, transactions alone do not address concurrency issues. Let's quickly revisit mysql's definition of transactions:
Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple changes to the database, either all the changes succeed when the transaction is committed, or all the changes are undone when the transaction is rolled back.
To sum it up: transactions are a way to ensure data integrity.
RDBMSs use various types of locking, isolation levels, and storage engine level solutions to address concurrency. People often mistake transactions as a mean to control concurrency because transactions affect how long certain locks are held.
Focusing on InnoDB: when you issue an update statement, mysql places an exclusive lock on the record being updated. Only the transaction holding the exclusive lock can modify the given record, the others have to wait until the transaction is committed.
How does this help you preventing multiple users checking out the same book? Let's say you have an id field uniquely identifying the books and a checked_out field indicating the status of the book.
You can use the following atomic update to check out a book:
update books set checked_out=1 where id=xxx and checked_out=0
The checked_out=0 criteria makes sure that the update only succeeds if the book is not checked out yet. So, if the above statement affects a row, then the current user checks out the book. If it does not affect any rows, then someone else has already checked out the book. The exclusive lock makes sure that only one transaction can update the record at any given time, thus serializing the access to that record.
If you want to use a separate checkouts table for reserving books, then you can use a unique index on book ids to prevent the same book being checked out more than once.
Transactions don't cause updates to fail. They cause sequences of queries to be serialized. Only one accessor can run the sequence of queries; others wait.
Everything in SQL is a transaction, single-statement update operations included. The kind of transaction denoted by BEGIN TRANSACTION; ... COMMIT; bundles a series of queries together.
I don't think a transaction would solve this, unless the transaction
includes reading the table to see if a checkout currently exists for
this item.
That's generally correct. Checkout schemes must always read availability from the database. The purpose of the transaction is to avoid race conditions when multiple users attempt to check out the same item.
SQL doesn't have thread-safe atomic test-and-set instructions like multithreaded processor cores have. So you need to use transactions for this kind of thing.
The simplest form of checkout uses a transaction, something like this.
BEGIN TRANSACTION;
SELECT is_item_available, id FROM item WHERE catalog_number = whatever FOR UPDATE;
/* if the item is not available, tell the user and commit the transaction without update*/
UPDATE item SET is_item_available = 0 WHERE id = itemIdPreviouslySelected;
/* tell the user the checkout succeeded. */
COMMIT;
It's clearly possible for two or more users to attempt to check out the same item more-or-less simultaneously. But only one of them actually gets the item.
A more complex checkout scheme, not detailed here, uses a two-step system. First step: a transaction to reserve the item for a user, rejecting the reservation if someone else has it checked out or reserved. Second step: reservation holder has a fixed amount of time to accept the reservation and check out the item, or the reservation expires and some other user may reserve the item.

How to count how many records got inserted within 5 minutes from now in a single query?

This is mostly a theoretical question, and it's mostly about MySQL.
Can I write a single query that will give me a number of records inserted from the time the query started to run until it ended, assuming the table has not timestamps etc, so this info cannot be inferred from the data in the table.
I tired this (and maybe it'll clarify the above):
select -(count(*) - (sleep(300) + count(*)) from my_table;
But it doesn't seem to do the job.
I know I can write a stored procedure to do it, but I'm just curious if there's a way to do it in a single query, without writing a new function/stored procedure.
No, you really cannot, at least in theory. Databases support the ACID properties of transactions. The "I" in ACID stands for isolation, which specifically means that two queries do not interfere with each other. In other words, a query should not see inserts that happen after the query begins.
In practice, depending on settings, SELECT does not necessarily behave as its own transaction. However, it only sees the database as it is at any given instant, rather than knowing when particular changes occur.
There are proper ways to accomplish what you want. One simple method is to completely lock the table for the SELECT (in MySQL you can can do that with the for update directive). The query still will not be able to count the number of new rows. But, it will know the answer anyway: 0.

How to atomic select rows in Mysql?

I have 5+ simultaneously processes selecting rows from the same mysql table. Each process SELECTS 100 rows, PROCESS IT and DELETES the selected rows.
But I'm getting the same row selected and processed 2 times or more.
How can I avoid it from happening on MYSQL side or Ruby on Rails side?
The app is built on Ruby On Rails...
Your table appears to be a workflow, which means you should have a field indicating the state of the row ("claimed", in your case). The other processes should be selecting for unclaimed rows, which will prevent the processes from stepping on each others' rows.
If you want to take it a step further, you can use process identifiers so that you know what is working on what, and maybe how long is too long to be working, and whether it's finished, etc.
And yeah, go back to your old questions and approve some answers. I saw at least one that you definitely missed.
Eric's answer is good, but I think I should elaborate a little...
You have some additional columns in your table say:
lockhost VARCHAR(60),
lockpid INT,
locktime INT, -- Or your favourite timestamp.
Default them all to NULL.
Then you have the worker processes "claim" the rows by doing:
UPDATE tbl SET lockhost='myhostname', lockpid=12345,
locktime=UNIX_TIMESTAMP() WHERE lockhost IS NULL ORDER BY id
LIMIT 100
Then you process the claimed rows with SELECT ... WHERE lockhost='myhostname' and lockpid=12345
After you finish processing a row, you make whatever updates are necessary, and set lockhost, lockpid and locktime back to NULL (or delete it).
This stops the same row being processed by more than one process at once. You need the hostname, because you might have several hosts doing processing.
If a process crashes while it is processing a batch, you can check if the "locktime" column is very old (much older than processing can possibly take, say several hours). Then you can just reclaim some rows which have an old "locktime" even though their lockhost is not null.
This is a pretty common "queue pattern" in databases; it is not extremely efficient. If you have a very high rate of items entering / leaving the queue, consider using a proper queue server instead.
http://api.rubyonrails.org/classes/ActiveRecord/Transactions/ClassMethods.html
should do it for you

mySQL - Prevent double booking

I am trying to work out the best way to stop double 'booking' in my application.
I have a table of unique id's each can be sold only once.
My current idea is to use a transaction to check if the chosen products are available, if they are then insert into a 'status' column that it is 'reserved' along with inserting a 'time of update' then if the user goes on to pay I update the status to 'sold'.
Every 10 mins I have a cron job check for 'status' = 'reserved' that was updated more than 10 mins ago and delete such rows.
Is there a better way? I have never used transactions (I have just heard the word banded around) so if someone could explain how I would do this that would be ace.
despite what others here have suggested, transactions are not the complete solution.
sounds like you have a web application here and selecting and purchasing a reservation takes a couple of pages (steps). this means you would have to hold a transaction open across a couple of pages, which is not possible.
your approach (status column) is correct, however, i would implement it differently. instead of a status column, add two columns: reserved_by and reserved_ts.
when reserving a product, set reserved_by to the primary key of the user or the session and reserved_ts to now().
when looking for unreserved products, look for ones where reserved_ts is null or more than 10 minutes old. (i would actually look for a couple minutes older than whatever you tell your user to avoid possible race conditions.)
a cron job to clear old reservations becomes unnecessary.
What you're attempting to do with your "reserved" status is essentially to emulate transactional behavior. You're much better off letting an expert (mysql) handle it for you.
Have a general read about database transactions and then how to use them in MySQL. They aren't too complicated. Feel free to post questions about them here later, and I'll try to respond.
Edit: Now that I think about your requirements... perhaps only using database transactions isn't the best solution - having tons of transactions open and waiting for user action to commit the transactions is probably not a good design choice. Instead, continue what you were doing with "status"="reserved" design, but use transactions in the database to set the value of "status", to ensure that the row isn't "reserved" by two users at the same time.
You do not need to have any added state to do this.
In order to avoid dirty reads, you should set the database to an isolation level of that will avoid them. Namely, REPEATABLE READ or SERIALIZABLE.
You can set the isolation level globally, or session specific. If all your sessions might need the isolation, you may as well set it globally.
Once the isolation level is set, you just need to use a transaction that starts before you SELECT, and optionally UPDATEs the status if the SELECT revealed that it wasn't reserved yet.

Using a table to keep the last used ID in a web server farm

I use a table with one row to keep the last used ID (I have my reasons to not use auto_increment), my app should work in a server farm so I wonder how I can update the last inserted ID (ie. increment it) and select the new ID in one step to avoid problems with thread safety (race condition between servers in the server farm).
You're going to use a server farm for the database? That doesn't sound "right".
You may want to consider using GUID's for Id's. They may be big but they don't have duplicates.
With a single "next id" value you will run into locking contention for that record. What I've done in the past is use a table of ranges of id's (RangeId, RangeFrom, RangeTo). The range table has a primary key of "RangeId" that is a simple number (eg. 1 to 100). The "get next id" routine picks a random number from 1 to 100, gets the first range record with an id lower than the random number. This spreads the locks out across N records. You can use 10's, 100's or 1000's of range records. When a range is fully consumed just delete the range record.
If you're really using multiple databases then you can manually ensure each database's set of range records do not overlap.
You need to make sure that your ID column is only ever accessed in a lock - then only one person can read the highest and set the new highest ID.
You can do this in C# using a lock statement around your code that accesses the table, or in your database you can put together a transaction on your read/write. I don't know the exact syntax for this on mysql.
Use a transactional database and control transactions manually. That way you can submit multiple queries without risking having something mixed up. Also, you may store the relevant query sets in stored procedures, so you can simply invoke these transactional queries.
If you have problems with performance, increment the ID by 100 and use a thread per "client" server. The thread should do the increment and hand each interested party a new ID. This way, the thread needs only access the DB once for 100 IDs.
If the thread crashes, you'll loose a couple of IDs but if that doesn't happen all the time, you shouldn't need to worry about it.
AFAIK the only way to get this out of a DB with nicely incrementing numbers is going to be transactional locks at the DB which is hideous performance wise. You can get a lockless behaviour using GUIDs but frankly you're going to run into transaction requirements in every CRUD operation you can think of anyway.
Assuming that your database is configured to run with a transaction isolation of READ_COMMITTED or better, then use one SQL statement that updates the row, setting it to the old value selected from the row plus an increment. With lower levels of transaction isolation you might need to use INSERT combined with SELECT FOR UPDATE.
As pointed out [by Aaron Digulla] it is better to allocate blocks of IDs, to reduce the number of queries and table locks.
The application must perform the ID acquisition in a separate transaction from any business logic, otherwise any transaction that needs an ID will end up waiting for every transaction that asks for an ID first to commit/rollback.
This article: http://www.ddj.com/architect/184415770 explains the HIGH-LOW strategy that allows your application to obtain IDs from multiple allocators. Multiple allocators improve concurrency, reliability and scalability.
There is also a long discussion here: http://www.theserverside.com/patterns/thread.tss?thread_id=4228 "HIGH/LOW Singleton+Session Bean Universal Object ID Generator"